Yang Shen, Michael Sherris and Jonathan Ziveyi
We present a numerical approach to the pricing of guaranteed minimum maturity benefits embedded in variable annuity contracts in the case where the guarantees can be surrendered at any time prior to maturity that improves on current approaches. Surrender charges are important in practice and are imposed as a way of discouraging early termination of variable annuity contracts.
We formulate the valuation framework and focus on the surrender option as an American put option pricing problem and derive the corresponding pricing partial differential equation by using hedging arguments and Itô's Lemma. Given the underlying stochastic evolution of the fund, we also present the associated transition density partial differential equation allowing us to develop solutions.