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Abstract

Systematic improvements in mortality increases dependence in the
survival distributions of insured lives. This is not accounted for in
standard life tables and actuarial models used for annuity pricing and
reserving. Furthermore, systematic longevity risk undermines the law
of large numbers; a law that is relied on in the risk management of
life insurance and annuity portfolios. This paper applies a multivari-
ate Tweedie distribution to incorporate dependence, which it induces
through a common shock component. Model parameter estimation is
developed based on the method of moments and generalized to allow
for truncated observations. The estimation procedure is explicitly de-
veloped for various important distributions belonging to the Tweedie
family, and finally assessed using simulation.
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1 Introduction

This paper generalizes an approach explored in Alai et al. (2013), where
a multivariate gamma distribution was used to model the dependence of
lifetimes. The property of gamma random variables generates a multivari-
ate gamma distribution using the so-called multivariate reduction method;
see Chereiyan (1941) and Ramabhadran (1951). This constructs a depen-
dency structure that is natural for modelling lifetimes of individuals within
a pool. The method uses the fact that a sum of gamma random variables
with the same rate parameter follows a gamma distribution with that rate
parameter. However, the claim that lifetimes follow a gamma distribution
is too restricted; although previously applied in, for example, Klein and
Moeschberger (1997).

We presently model a portfolio of lifetimes using a multivariate construc-
tion of the Tweedie family of distributions, which is an important subclass
of the exponential dispersion family (EDF) that is as rich as it is popular in
actuarial science; see, for example, Aalen (1992), Jørgensen and De Souza
(1994), Smyth and Jørgensen (2002), Wüthrich (2003), Kaas (2005), and
Furman and Landsman (2010). Recall that the random variable X is said
to belong to the EDF of distributions in the additive form if its probability
measure Pθ,λ is absolutely continuous with respect to some measure Qλ and
can be represented as follows for some function κ (θ) called the cumulant:

dPθ,λ(x) = e[θx−λκ(θ)]dQλ(x);

see Jørgensen (1997), Section 3.1; for a recent reference see Landsman and
Valdez (2005). The parameter θ is named the canonical parameter belonging
to the set

Θ = {θ ∈ R |κ (θ) <∞} .
The parameter λ is called the index or dispersion parameter belonging to the
set of positive real numbers Λ = (0,∞) = R+. We denote by X ∼ ED (θ, λ)
a random variable belonging to the additive EDF.

In Furman and Landsman (2010) it was shown that the multivariate re-
duction method can construct the multivariate EDF distribution only for an
important subclass of the EDF, the so-called Tweedie class. To define this
class we notice that for regular EDF, see definition in Landsman and Valdez
(2005), cumulant κ (θ) is a twice differentiable function and for the additive
form, the expectation is given by

µ = λκ′(θ).

Moreover, function κ′(θ) is one-to-one map and there exists inverse function

θ = θ(µ) = (κ′)−1(µ).
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Then function V (µ) = κ′′(θ(µ)) is called the unit variance function and
provides the classification of members of the EDF. In particular, the Tweedie
subclass is the class of EDF with power unit variance function; introduced
in Tweedie (1984).

V (µ) = µp,

where p is called the power parameter. Specific values of p correspond to
specific distributions, for example when p = 0, 1, 2, 3, we recover the normal,
overdispersed Poisson, gamma, and inverse Gaussian distributions, respec-
tively. The cumulant κp(θ) = κ(θ) for a Tweedie subclass has the form

κ(θ) =


eθ, p = 1,
− log(−θ), p = 2,
α−1
α

( θ
α−1)α, p 6= 1, 2,

where α = (p− 2)/(p− 1). Furthermore, the canonical parameter belongs to
set Θp, given by

Θp =


[0,∞), for p < 0,

R, for p = 0, 1,

(−∞, 0), for 1 < p ≤ 2,

(−∞, 0], for 2 < p <∞.
We denote by X ∼ Twp (θ, λ) a random variable belonging to the additive
Tweedie family.

Remark 1 Although we deal with the additive form of the EDF, the repro-
ductive form can easily be obtained by the transformation Y = X/λ, yielding
probability measure P ∗θ,λ, absolutely continuous with respect to some measure
Q∗λ,

dP ∗θ,λ(y) = eλ[θy−κ(θ)]dQ∗λ(y).

Organization of the paper: Section 2 defines the multivariate Tweedie
dependence structure for survival models for a pool of lives. Section 3 pro-
vides the estimation of the parameters of the model by method of moments.
We consider the case when samples are given both with and without trun-
cation. The former is essentially more complicated, but required in practice.
In Section 4 we apply the estimation procedure to various distributions that
fall under the Tweedie family. Section 5 concludes the paper.

2 Multivariate Tweedie Survival Model

The model is applied to individuals within a pool of lives. We assume M
pools of lives. The pools can, in general, be of individuals with the same

3



age or other characteristics that share a common risk factor. Let Ti,j be the
survival time of individual i ∈ {1, . . . , Nj} in pool j ∈ {1, . . . ,M}. Although
the number of lives in each pool need not be identical, we presently make this
assumption for simplicity and continue with Nj = N for all j. We assume
the following model for the individual lifetimes:

Ti,j = Y0,j + Yi,j,

where

• Y0,j follows an additive Tweedie distribution with power parameter
p, canonical and dispersion parameters θj and λ0, Twp(θj, λ0), j ∈
{1, . . . ,M},

• Yi,j follows an additive Tweedie distribution with power parameter
p, canonical and dispersion parameters θj and λj, Twp(θj, λj), i ∈
{1, . . . , N}, j ∈ {1, . . . ,M},

• The Yi,j are independent, i ∈ {0, . . . , N} and j ∈ {1, . . . ,M}.

Hence, there is a common component Y0,j within each pool j that impacts the
survival of the individuals of that pool (i.e. Y0,j captures the impact of sys-
tematic mortality dependence between the lives in pool j). The parameters
λj and θj may jointly be interpreted as the risk profile of pool j.

From the properties of the additive EDF it follows that the survival times
Ti,j are also Tweedie distributed with power parameter p, canonical param-
eter θj, and dispersion parameter λ̃j = λ0 + λj.

3 Parameter Estimation

In this section we consider parameter estimation using the method of mo-
ments. For an excellent reference we suggest, for example, Lindgren (1993)
(Ch. 8, Theorem 6).

Notation

Before we undertake parameter estimation, we provide some necessary nota-
tion concerning raw and central, theoretical and sample, moments. Consider
arbitrary random variable X. We denote with αk(X) and µk(X) the kth,
k ∈ Z+, raw and central (theoretical) moments of X, respectively. That is,

αk(X) = E[Xk],

µk(X) = E[(X − α1(X))k].
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Next, consider random sample X = (X1, . . . , Xn)′. The raw sample moments
are given by

ak(X) =
1

n

n∑
i=1

Xk
i , k ∈ Z+.

For X1, . . . , Xn identically distributed, the raw sample moments are unbiased
estimators of the corresponding raw moments of X1:

E[ak(X)] = αk(X1).

Finally, we define the adjusted second and third central sample moments as

m̃2(X) =
1

n− 1

n∑
i=1

(Xi − a1(X))2,

m̃3(X) =
n

(n− 1)(n− 2)

n∑
i=1

(Xi − a1(X))3.

For X1, . . . , Xn independent and identically distributed, these (adjusted) cen-
tral sample moments are unbiased and consistent estimators of the corre-
sponding central moments of X1:

E[m̃2(X)] = µ2(X1) and E[m̃3(X)] = µ3(X1).

3.1 Parameter Estimation for Lifetime Observations

We assume we are given samples, T1, . . . ,TM , from the pools, where Tj =
(T1,j, . . . , TN,j)

′. This assumption requires the data used for calibration to be
based on observed lifetimes for past lives. We allow for truncation which is
addressed in the paper and leave allowance for censoring for future research.

We begin by considering the Tj separately in order to estimate corre-
sponding parameters λj and θj, as well as predict the value of Y0,j. Sub-
sequently, we combine the obtained predictions of Y0,1, . . . , Y0,M in order to
estimate λ0.

In our estimation procedure, we utilize the first raw sample moment and
the second and third central sample moments. Define Yj = (Y1,j, . . . , YN,j)

′.
For the first raw sample moment, we obtain

a1(Tj) =
1

N

N∑
i=1

Ti,j =
1

N

N∑
i=1

Y0,j +
1

N

N∑
i=1

Yi,j = Y0,j + a1(Yj). (1)
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For the second central sample moment, we obtain

m̃2(Tj) =
1

N − 1

N∑
i=1

(Ti,j − a1(Tj))
2

=
1

N − 1

N∑
i=1

(
Y0,j + Yi,j − Y0,j − a1(Yj)

)2
=

1

N − 1

N∑
i=1

(Yi,j − a1(Yj))
2 = m̃2(Yj).

Similarly, for the third central sample moment, we obtain

m̃3(Tj) = m̃3(Yj).

We take expectations of our sample moments in order to formulate a sys-
tem of equations. Since each pool contains only one realization from the
Twp(θj, λ0) distribution, namely, Y0,j, it is not prudent to take its expected
value. Therefore, we condition on Y0,j. Since Y1,j, . . . , YN,j are identically
distributed, the first raw sample moment is an unbiased estimator of the
first raw moment of Y1,j. Consequently, we have

E[a1(Tj)|Y0,j] = Y0,j + E[a1(Yj)] = Y0,j + α1(Y1,j) = Y0,j + λjκ
′(θj).

Furthermore, since Y1,j, . . . , YN,j are also independent, the (adjusted) second
and third central sample moments are unbiased estimators of the second and
third central moments of Y1,j, respectively. As a result, we obtain

E[m̃2(Tj)|Y0,j] = E[m̃2(Yj)] = µ2(Y1,j) = λjκ
′′(θj), (2)

E[m̃3(Tj)|Y0,j] = E[m̃3(Yj)] = µ3(Y1,j) = λjκ
′′′(θj). (3)

Note that the above central sample moments do not depend on Y0,j. As a
result, equations (2) and (3) can be used to estimate λj and θj. Let us notice
that from (1), it follows that for N →∞,

a1(Tj)
P→ Y0,j + λjκ

′(θj),

and we cannot estimate parameters of Y0,j from one pool (j-pool). However,
the estimators of λj and θj can be substituted into equation (1) to yield a
prediction of Y0,j. The system composed of equations (1)-(3) holds for all
p; for illustrative purposes, we end this section with a presentation of the
solution for p 6= 0, 1.
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It is convenient to note the derivates of κ(θ). We have that

κ′(θ) =

{
eθ, p = 1,
( θ
α−1)α−1, p 6= 1,

κ′′(θ) =

{
eθ, p = 1,
( θ
α−1)α−2, p 6= 1.

We obtain

θ̂j = (α− 2)
m̃2(Tj)

m̃3(Tj)
,

λ̂j =

(
α− 1

α− 2

)α−2
m̃3(Tj)

α−2

m̃2(Tj)α−3
.

By applying θ̂j and the λ̂j, we can predict Y0,j,

Ŷ0,j = a1(Tj)−
θ̂α−1j λ̂j

(α− 1)α−1
.

Finally we estimate λ0 using the predicted values of Y0,j. We use the expec-
tation:

E[Y0,j] = λ0

( θj
α− 1

)α−1
.

We obtain

λ̂0 =
( θ̂j
α− 1

)1−α
a1(Ŷ0),

where Ŷ0 = (Ŷ0,1, . . . , Ŷ0,M).
Summarizing, when considering only one pool j, the parameters λj and

θj can be estimated and the random variable Y0,j predicted. In order to
estimate λ0, multiple pools are required.

3.2 Parameter Estimation for Truncated Observations

The results of the previous section cannot be directly used for calibration of
parameters of the proposed model, because, in fact, we deal with truncated
lifetime data. In this section we consider truncated observations τjTi,j =
Ti,j|Ti,j > τj with known truncation point τj. We assume all pools are subject
to the same truncation point, that is τj = τ for all j. This assumption is
predominantly made for ease of presentation and simplicity.

We begin by constructing a useful proposition regarding the theoretical
moments of truncated variables.
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Proposition 1 Consider Y ∼ ED(θ, λ) with probability density and survival
function denoted f(y, θ, λ) and F (y, θ, λ), respectively. Define the associated
truncated random variable τY = Y |Y > τ , where τ ≥ 0. The first raw
moment and the second and third central moments of τY are given by

α1(τY ) = α1(Y ) + g1(τ),

µ2(τY ) = µ2(Y ) + g2(τ)− g1(τ)2,

µ3(τY ) = µ3(Y ) + g3(τ)− 3g2(τ)g1(τ) + 2g1(τ)3,

where

gk(τ) = gk(τ ; θ, λ) =
1

F (τ, θ, λ)

∂kF (τ, θ, λ)

∂θk
, k = 1, 2, 3.

Proof. The density function of τY is given by

fτY (y) =
f(y, θ, λ)

F (τ, θ, λ)
, y > τ.

Notice that α1(Y ) = λκ′(θ) and µk(Y ) = λκ(k)(θ), k = 2, 3. Since the con-
sidered EDF, namely Y, is regular, we can differentiate its survival function
with respect to θ.

∂F (τ, θ, λ)

∂θ
=

∂

∂θ

∫ ∞
τ

e[θx−λκ(θ)]dQλ(x)

=

∫ ∞
τ

(x− λκ′(θ))e[θx−λκ(θ)]dQλ(x)

=

∫ ∞
τ

xe[θx−λκ(θ)]dQλ(x)− λκ′(θ)F (τ, θ, λ)

= (α1(τY )− α1(Y ))F (τ, θ, λ).

A trivial rearrangement yields the expression for the truncated first raw mo-
ment of Y . In order to obtain the truncated second central moment, we
further differentiate the survival function.

∂2F (τ, θ, λ)

∂θ2
=

∂

∂θ

∫ ∞
τ

(x− λκ′(θ))e[θx−λκ(θ)]dQλ(x)

=

∫ ∞
τ

(x− λk′(θ))2e[θx−λκ(θ)]dQλ(x)− λk′′(θ)F (τ, θ, λ)

= (E[(τY − α1(Y ))2]− λk′′(θ))F (τ, θ, λ).

A final rearrangement, noting that

E[(τY − α1(Y ))2] = µ2(τY ) + (α1(τY )− α1(Y ))2
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and
g1(τ) = (α1(τY )− α1(Y )),

yields the expression for the truncated second central moment of Y . Finally,
we differentiate the survival function a third time.

∂3F (τ, θ, λ)

∂θ3
=

∂

∂θ

{∫ ∞
τ

(x− λk′(θ))2e[θx−λκ(θ)]dQλ(x)− λk′′(θ)F (τ, θ, λ)]
}

=

∫ ∞
τ

(x− λk′(θ))3dPθ,λ(x)− 2λk′′(θ)

∫ ∞
τ

(x− λk′(θ))dPθ,λ(x)

− λk′′(θ)∂F (τ, θ, λ)

∂θ
− λk′′′(θ)F (τ, θ, λ).

Then, dividing by F (τ, θ, λ), we obtain,

g3(τ) = E[(τY − α1(Y ))3]− 3µ2(Y )g1(τ)− µ3(Y ).

A final rearrangement, noting that

E[(τY − α1(Y ))3] = µ3(τY ) + 3µ2(τY )g1(τ) + g1(τ)3

and
µ2(τY ) = µ2(Y ) + g2(τ)− g1(τ)2,

yields the expression for the truncated third central moment of Y .
In the above proposition, gk can be interpreted as an additive truncation

adjustment, one that is required for transforming un-truncated into truncated
moments.

We explore the truncated lifetime τTi,j by separating it into its component
parts: the systematic, untruncated Y0,j and the idiosyncratic, truncated Yi,j.
We obtain

τTi,j = Y0,j + τ ′Yi,j,

where τ ′ = τ −Y0,j. The truncation on Yi,j must account for the value of the
systematic component and hence differs from the relatively simple truncation
imposed on Ti,j.

We consider the general case and a simplified case and obtain systems
of equations for both. For the simplified case, we provide algorithms that
facilitate parameter estimation.

3.2.1 The General Case

In this section, we follow the same method utilized in parameter estimation
for untruncated observations. That is, we aim to use the first raw sample
moment, and the second and third central sample moments. Consider given
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truncated samples τT1, . . . , τTM , where τTj = (τT1,j, . . . , τTN,j)
′. From each

pool j, we aim to estimate θj and λj, and predict the value of Y0,j. Define

τ ′Yj = (τ ′Y1,j, . . . , τ ′YN,j)
′. For the first raw sample moment, we obtain

a1(τTj) = Y0,j +
1

N

N∑
i=1

τ ′Yi,j = Y0,j + a1(τ ′Yj).

For the second and third central sample moments, we obtain

m̃2(τTj) = m̃2(τ ′Yj) and m̃3(τTj) = m̃3(τ ′Yj).

Note that Y0,j is present in the truncation point τ ′. Hence, unlike in the un-
truncated case, we cannot solely use the second and third central moments
to estimate θj and λj.

Now suppose that Y0,j is given. Then τ ′Y1,j, . . . , τ ′YN,j are independent
and identically distributed. Consequently, the first raw sample moment is an
unbiased estimator of α1(τ ′Y1,j|Y0,j). Moreover,

a1(τTj|Y0,j)
P→ Y0,j + α1(τ ′Y1,j|Y0,j)

and the (adjusted) second and third central sample moments are unbiased
and consistent estimators of µ2(τ ′Y1,j|Y0,j) and µ3(τ ′Y1,j|Y0,j), respectively.
We take conditional expectations of the sample moments, with respect to
Y0,j, and using Proposition 1 obtain

E[a1(τTj)|Y0,j] = Y0,j + E[a1(τ ′Yj)|Y0,j]
= Y0,j + α1(τ ′Y1,j|Y0,j)
= Y0,j + λjκ

′(θj) + g1(τ
′), (4)

E[m̃2(τTj)|Y0,j] = E[m̃2(τ ′Yj)|Y0,j] = µ2(τ ′Y1,j|Y0,j)
= λjκ

′′(θj) + g2(τ
′)− g1(τ ′)2, (5)

E[m̃3(τTj)|Y0,j] = E[m̃3(τ ′Yj)|Y0,j] = µ3(τ ′Y1,j|Y0,j)
= λjκ

′′′(θj) + g3(τ
′)− 3g1(τ

′)g2(τ
′) + 2g1(τ

′)3, (6)

where gk(τ
′) = gk(τ

′; θj, λj), k = 1, 2, 3, as defined in Proposition 1.
It is evident that equations (4)-(6) are generalizations of equations (1)-

(3). The latter set of equations are obtained when F (τ ′, θj, λj) takes value
one, thus setting the values of the gk to zero, which only occurs when there
is no truncation present.
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3.2.2 The Simplified Case

In addition to the assumption that τj = τ , for all j, we further assume
that θj = θ, and λj = λ for all j. This additional assumption is equivalent
to assuming that lives in every pool have similar risk profiles. The level of
dependence within pools, however, still varies since this depends on the value
Y0,j. The consequence of the simplified case is that the model should only be
applied to pools of a similar nature. In the case of heterogeneous pools, the
problem may have to be compartmentalized and studied separately for each
homogeneous sub-group.

In this simplified case, we begin our estimation procedure by combining all
pools. Define τT = (τT1,1, . . . , τTN,M)′. Due to our simplifying assumptions,
the components of τT are identically distributed, although not independent.
Recall that Ti,j ∼ Twp(θ, λ̃ = λ0 + λ). Then τTi,j has a truncated Twp(θ, λ̃)
distribution. Utilizing the first raw and second central moments, we obtain
the following from the Proposition 1:

E[a1(τT)] = α1(τT1,1) = λ̃κ′(θ) + g1(τ ; θ, λ̃), (7)

E[m̃2(τT)] ≈ µ2(τT1,1) = λ̃κ′′(θ) + g2(τ ; θ, λ̃)− g1(τ ; θ, λ̃)2. (8)

Equation (7) arises from the fact that, for the simplified case, the raw sample
moments of τT are unbiased estimators of the raw moments of τT1,1. This
does not hold for central moments, but the approximation given by (8) yields
very good estimation results, as will be seen below. Notice that we no longer
condition on a single Y0,j. This is due to the fact that τT contains M different
realizations from the Twp(θ, λ0) distribution, rather than one. It is, therefore,
a viable option to take expectations with respect to the Y0,j.

Equations (7) and (8) provides a two by two system of equations, but
due to the presence of the g’s, requires the development of a computational
algorithm to provide solutions. To apply an iteration algorithm we first
notice that

κ′(θ)

κ′′(θ)
=

{
1, p = 1,
θ

α−1 , p 6= 1.

Then system of equations (7) and (8) for p 6= 1 can be reduced to the
following system:

θ ≈ (α− 1)(α1(τT1,1)− g1(τ ; θ, λ̃))

µ2(τT1,1)− g2(τ ; θ, λ̃) + g1(τ ; θ, λ̃)2
, (9)

λ̃ =
α1(τT1,1)− g1(τ ; θ, λ̃)

κ′(θ)
. (10)

We apply an iterative algorithm that is found to perform exceptionally well.
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Algorithm 1

1. Assume starting values for θ and λ̃, denote them θ(1) and λ̃(1).

2. Substitute θ(r) and λ̃(r) into equations (9) and (10) to obtain parameter
estimators θ(r + 1) and λ̃(r + 1) as follows:

θ(r + 1) =
(α− 1)(a1(τT)− g1(τ ; θ(r), λ̃(r)))

m̃2(τT)− g2(τ ; θ(r), λ̃(r)) + g1(τ ; θ(r), λ̃(r))2
,

λ̃(r + 1) =
a1(τT)− g1(τ ; θ(r), λ̃(r))

κ′(θ(r + 1))
,

where the sample moments of τT are used to estimate the theoretical
moments.

3. Return to Step 2 with r = r + 1 until parameter estimates are stable.

From Algorithm 1, we obtain parameter estimate θ̂. With this estimate
in hand, we return our consideration to individual pool j. We reconsider
equations (4) and (5), this time, utilizing θ̂.

E[a1(τTj)|Y0,j] ≈ Y0,j + λκ′(θ̂) + g1(τ
′; θ̂, λ), (11)

E[m̃2(τTj)|Y0,j] ≈ λκ′′(θ̂) + g2(τ
′; θ̂, λ)− g1(τ ′; θ̂, λ)2. (12)

Again, we are presented with a non-linear system of equations. We apply
the following iterative algorithm.

Algorithm 2

1. Assume starting values for Y0,j and λ, denote them Y0,j(1) and λ(1).

2. Substitute Y0,j(r) and λ(r) into equation (12) to obtain λ(r + 1),

λ(r + 1) =
m̃2(τTj)− g2(τ ′(r); θ̂, λ(r)) + g1(τ

′(r); θ̂, λ(r))2

κ′′(θ̂)
,

where τ ′(r) = τ − Y0,j(r).

3. Substitute λ(r + 1) into equation (11) to obtain Y0,j(r + 1),

Y0,j(r + 1) = a1(τTj)− λ(r + 1)κ′(θ̂)− g1(τ ′(r); θ̂, λ(r + 1)),

where τ ′(r) = τ − Y0,j(r).
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4. Return to Step 2 with r = r + 1 until parameter estimates are stable.

To complete the estimation procedure, we set

λ̂ =
1

M

M∑
j=1

λ̂(j), and λ̂0 =
1

M

M∑
j=1

Ŷ0,j

κ′(θ̂)
,

where λ̂(j) and Ŷ0,j are the estimate of λ and predicted value of Y0,j, respec-
tively, obtained using Algorithm 2 on pool j.

4 Application to Specific Distributions

In the above, the parameter estimation has been outlined for general members
of the Tweedie family. The function gk was introduced to facilitate theory.
Recall,

gk(τ) = gk(τ ; θ, λ) =
1

F (τ, θ, λ)

∂kF (τ, θ, λ)

∂θk
, k = 1, 2, 3.

It is evident that to calculate these functions is a non-trivial exercise. In this
section we focus on the simplified scenario of Section 3.2.2, and determine
the necessary gk for some important distributions belonging to the Tweedie
family. Namely, the normal, gamma, inverse Gaussian, and compound Pois-
son distributions, for which it is progressively more difficult to obtain the
gk.

4.1 Truncated Normal Lifetimes

Suppose Y ∼ Twp(θ, λ) with p = 0. Equivalently, Y may be represented
using the normal distribution, that is, Y ∼ N(µ = θλ, σ2 = λ).

Using this equivalence, we have that

F Y (τ, θ, λ) = Φ̄((τ − θλ)/
√
λ),

where Φ̄(x) is the standard normal survival function.
It is a trivial exercise to obtain the functions g1 and g2 for normally

distributed variables. That is, for Twp=0(θ, λ), we have

g1(τ ; θ, λ) =
√
λ
ϕ((τ − λθ)/

√
λ)

Φ̄((τ − λθ)/
√
λ)
,

g2(τ ; θ, λ) = −λ ϕ
′((τ − λθ)/

√
λ)

Φ̄((τ − λθ)/
√
λ)
,

13



where Φ(x) and ϕ(x) are the standard normal cumulative and density distri-
butions.

Therefore, suppose that Yi,j ∼ Twp(θ, λ) and Y0,j ∼ Twp(θ, λ0), with
p = 0. Equivalently, we have that Yi,j ∼ N(θλ, λ) and Y0,j ∼ N(θλ0, λ0).
This consequently implies that Ti,j ∼ Twp=0(θ, λ̃ = λ + λ0) ≡ N(θλ̃, λ̃).
Note that κp=0(θ) = θ2/2, κ′p=0(θ) = θ, κ′′p=0(θ) = 1, and α = 2; this
information together with g1 and g2 yields Algorithms 1 and 2 easily executed
for truncated multivariate normal lifetimes.

Numerical Results

We have simulated truncated multivariate normal lifetimes where

Yi,j ∼ Twp=0(θ = 0.2, λ = 375) ≡ N(θλ = 75, λ = 375),

Y0,j ∼ Twp=0(θ = 0.2, λ0 = 25) ≡ N(θλ0 = 5, λ0 = 25).

Consequently, we have that each individual lifetime is normally distributed
with mean 80 and standard deviation 20,

Ti,j ∼ Twp=0(θ = 0.2, λ̃ = λ+ λ0 = 400) ≡ N(θλ̃ = 80, λ̃ = 400).

In Table 1 we investigate the performance of Algorithm 1. Recall that
the principal concern of Algorithm 1 is to provide an estimate of θ. Each
column of Table 1 represents a scenario with various numbers of pools and
individuals, we find that θ is well estimated in each case. Furthermore, the
algorithm is robust to required initial estimates and converges quickly. In

N 1,000 100,000 10,000 1,000 1,000 10,000
M 1 1 50 1,000 10,000 1,000
N*M 1,000 100,000 500,000 1,000,000 10,000,000 10,000,000
τ 60 60 60 60 60 60

λ̃ 400 400 400 400 400 400̂̃λ 417 372 393 403 400 401
θ 0.200 0.200 0.200 0.200 0.200 0.200

θ̂ 0.188 0.207 0.202 0.197 0.199 0.199

Table 1: Simulation results to test Algorithm 1 using the normal distribution.

Table 2 we investigate the performance of Algorithm 2. Recall that Algorithm
2 requires θ known (estimated, practically speaking), and produces λ̂ and Ŷ0
for one pool. Therefore, in our simulation, we focus on one pool of various

14



sizes, stipulate Y0 = 5, which is its expected value, and use the true θ. The
reason we use the true value of θ is that otherwise, the results would reflect
the accuracy of θ̂; this would not be testing Algorithm 2, it would rather
be a reflection of the performance of Algorithm 1. As can be seen in Table
2, Algorithm 2 performs well. Furthermore, it is robust to required initial
estimates and converges quickly.

N 100 1,000 10,000 100,000 1,000,000
τ 60 60 60 60 60
θ 0.2 0.2 0.2 0.2 0.2
Y0 5.000 5.000 5.000 5.000 5.000

Ŷ0 3.480 10.411 6.639 4.047 4.964
λ 375.000 375.000 375.000 375.000 375.000

λ̂ 378.291 348.675 369.063 379.008 375.114

Table 2: Simulation results to test Algorithm 2 using the normal distribution.

4.2 Truncated Gamma Lifetimes

Suppose Y ∼ Twp(θ, λ) with p = 2. Equivalently, Y may be represented
using the gamma distribution, that is, Y ∼ Γ(λ, β = −θ), where λ, β, are
the shape and rate parameters, respectively.

Using this equivalence, we have that

F Y (τ, θ, λ) = G(τ, λ,−θ)

where

G(τ, λ, β) =
βλ

Γ(λ)

∫ ∞
τ

xλ−1e−βxdx

is the survival function of gamma random variable with shape parameter λ
and rate parameter β.

We wish to find the functions g1 and g2. We differentiate the gamma
survival function with respect to θ and obtain

g1(τ ; θ, λ) =
λ

θ

(
1−K1(τ ; θ, λ)

)
,

g2(τ ; θ, λ) =
λ

θ2

(
(λ− 1)− 2λK1(τ ; θ, λ) + (λ+ 1)K2(τ ; θ, λ)

)
,

where

Kk(τ ; θ, λ) =
G(τ, λ+ k,−θ)
G(τ ;λ,−θ)

, k = 1, 2.
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Therefore, suppose that Yi,j ∼ Twp(θ, λ) and Y0,j ∼ Twp(θ, λ0), with p =
2. Equivalently, we have that Yi,j ∼ Γ(λ,−θ) and Y0,j ∼ Γ(λ0,−θ). This
consequently implies that Ti,j ∼ Twp=2(θ, λ̃ = λ + λ0) ≡ Γ(λ̃,−θ). Note
that κp=2(θ) = − ln(−θ), κ′p=2(θ) = −1/θ, κ′′p=2(θ) = 1/θ2, and α = 0; this
information together with g1 and g2 yields Algorithms 1 and 2 easily executed
for truncated multivariate gamma lifetimes.

Numerical Results

We have simulated truncated multivariate gamma lifetimes where

Yi,j ∼ Twp=2(θ = −0.2, λ = 15) ≡ Γ(λ = 15, β = 0.2),

Y0,j ∼ Twp=2(θ = −0.2, λ0 = 1) ≡ Γ(λ0 = 1, β = 0.2).

Consequently, we have that each individual lifetime is gamma distributed
with mean 80 and standard deviation 20,

Ti,j ∼ Twp=2(θ = −0.2, λ̃ = λ+ λ0 = 16) ≡ Γ(λ̃ = 16, β = 0.2).

In Table 3 we investigate the performance of Algorithm 1 using the gamma
distribution. We find that θ is well estimated. Again, the algorithm is robust
to required initial estimates and converges quickly. In Table 4 we investigate

N 1,000 100,000 10,000 1,000 1,000 10,000
M 1 1 50 1,000 10,000 1,000
N*M 1,000 100,000 500,000 1,000,000 10,000,000 10,000,000
τ 60 60 60 60 60 60

λ̃ 16.00 16.00 16.00 16.00 16.00 16.00̂̃λ 17.26 17.49 16.16 15.97 15.96 15.97
θ -0.200 -0.200 -0.200 -0.200 -0.200 -0.200

θ̂ -0.226 -0.214 -0.204 -0.201 -0.200 -0.201

Table 3: Simulation results to test Algorithm 1 using the gamma distribution.

the performance of Algorithm 2 using the gamma distribution. As before, we
focus on one pool of various sizes, stipulate Y0 = 5, and use the true θ. As
can be seen in Table 4, Algorithm 2 performs well. Furthermore, it is robust
to required initial estimates and converges quickly.
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N 100 1,000 10,000 100,000 1,000,000
τ 60 60 60 60 60
θ -0.2 -0.2 -0.2 -0.2 -0.2
Y0 5.000 5.000 5.000 5.000 5.000

Ŷ0 22.634 7.639 3.546 5.461 5.357
λ 15.000 15.000 15.000 15.000 15.000

λ̂ 12.030 14.575 15.311 14.949 14.933

Table 4: Simulation results to test Algorithm 2 using the gamma distribution.

4.3 Truncated Inverse Gaussian Lifetimes

Suppose Y ∼ Twp(θ, λ) with p = 3. Equivalently, Y may be represented
using the inverse Gaussian distribution, that is,

Y ∼ Twp=3(θ, λ) ≡ IG(µ = λ/
√
−2θ, φ = λ2),

where µ and φ are the mean and the shape parameter, respectively, of the
inverse Gaussian distribution. Using this equivalence, we have that

F Y (τ, θ, λ) = 1− Φ(z1(τ))− e2λ
√
−2θΦ(z2(τ)),

where Φ(x) is the standard normal distribution function and

z1(τ) = z1(τ ; θ, λ) =
√
−2τθ − λ√

τ
,

z2(τ) = z2(τ, θ, λ) = −
√
−2τθ − λ√

τ
;

see, for example, p. 137 of Jørgensen (1997), or Klugman et al. (1998).
We obtain the functions g1 and g2 by differentiating the survival function

with respect to θ. That is, for Twp=3(θ, λ), we have

g1(τ ; θ, λ) =

√
τϕ(z1(τ))− e2λ

√
−2θ
(√

τϕ(z2(τ))− 2λΦ(z2(τ)
)

√
−2θ(1− Φ(z1(τ))− e2λ

√
−2θΦ(z2(τ)))

,

g2(τ ; θ, λ) =
τϕ′(z1(τ))−

√
τ
−2θϕ(z1(τ))− e2λ

√
−2θh(τ ; θ, λ)

2θ(1− Φ(z1(τ))− e2λ
√
−2θΦ(z2(τ)))

,

where,

h(τ ; θ, λ) =
( 2λ√
−2θ

− 4λ2
)

Φ(z2(τ))−
( 1√
−2θ

− 4λ
)√

τϕ(z2(τ))− τϕ′(z2(τ)),
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and where Φ(x) and ϕ(x) are the standard normal cumulative and density
distributions.

Therefore, suppose that Yi,j ∼ Twp(θ, λ) and Y0,j ∼ Twp(θ, λ0), with
p = 3. Equivalently, we have that

Yi,j ∼ IG(µ = λ/
√
−2θ, φ = λ2),

Y0,j ∼ IG(µ = λ0/
√
−2θ, φ = λ20).

This consequently implies that

Ti,j ∼ Twp=3(θ, λ̃ = λ+ λ0) ≡ IG(µ = λ̃/
√
−2θ, φ = λ̃2).

Note that κp=3(θ) = −(−2θ)1/2, κ′p=3(θ) = (−2θ)−1/2, κ′′p=3(θ) = (−2θ)−3/2,
and α = 1/2; this information together with g1 and g2 yields Algorithms 1
and 2 easily executed for truncated multivariate inverse Gaussian lifetimes.

Numerical Results

We have simulated truncated multivariate inverse Gaussian lifetimes where

Yi,j ∼ Twp=3(θ = −0.1, λ =
√

1125) ≡ IG(µ = 75, φ = 1125),

Y0,j ∼ Twp=3(θ = −0.1, λ0 =
√

5) ≡ IG(µ = 5, φ = 5).

Consequently, we have that each individual lifetime is inverse Gaussian dis-
tributed with mean 80 and standard deviation 20,

Ti,j ∼ Twp=2(θ = −0.1, λ̃ = λ+ λ0 =
√

1280) ≡ IG(µ = 80, φ = 1280).

In Tables 5 and 6 we investigate the performance of Algorithm 1 and 2,
respectively, using the inverse Gaussian distribution. The algorithms are
robust to required initial estimates and converge quickly.

4.4 Truncated Compound Poisson Lifetimes

Suppose Y ∼ Twp(θ, λ) with p ∈ (1, 2). Equivalently, Y may be repre-
sented using the compound Poisson distribution, that is, Y may be written
as a random sum of independent and identically distributed gamma random
variables,

Y = S1 + S2 + . . .+ SN ,

resulting in the equivalence,

Y ∼ Twp∈(1,2)(θ, λ) ≡ CP (N ∼ P (λκ(θ)), S1 ∼ Γ(−α,−θ)),
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N 1,000 100,000 10,000 1,000 1,000 10,000
M 1 1 50 1,000 10,000 1,000
N*M 1,000 100,000 500,000 1,000,000 10,000,000 10,000,000
τ 60 60 60 60 60 60

λ̃ 35.78 35.78 35.78 35.78 35.78 35.78̂̃λ 42.64 40.83 36.04 35.65 35.69 35.47
θ -0.100 -0.100 -0.100 -0.100 -0.100 -0.100

θ̂ -0.120 -0.111 -0.102 -0.100 -0.100 -0.099

Table 5: Simulation results to test Algorithm 1 using the inverse Gaussian
distribution.

N 100 1,000 10,000 100,000 1,000,000
τ 60 60 60 60 60
θ -0.1 -0.1 -0.1 -0.1 -0.1
Y0 5.000 5.000 5.000 5.000 5.000

Ŷ0 16.966 16.451 1.505 5.514 4.792
λ 34.641 34.641 34.641 34.641 34.641

λ̂ 29.419 28.776 35.008 33.318 33.611

Table 6: Simulation results to test Algorithm 2 using the inverse Gaussian
distribution.

19



where λκ(θ), −α, and −θ are the mean of the Poisson distribution and the
shape and rate parameters of the gamma distribution, respectively; see, for
example, Jørgensen and De Souza (1994). Alternatively, we may refer to this
distribution as a Poisson-gamma mixture,

Y ∼ Twp∈(1,2)(θ, λ) ≡ Γ(−αN,−θ), where N ∼ P (λκ(θ)),

with the convention that Γ(0,−θ) is degenerate with value zero, and therefore
Pθ[S0 ≤ s] = 1 for s ≥ 0. Using the compound Poisson (or Poisson-gamma)
equivalence, we have that

F Y (τ, θ, λ) = 1−
∞∑
n=0

Pθ[Sn ≤ τ ]Pθ[N = n],

where Sn ∼ Γ(−αn,−θ). We differentiate the survival function with respect
to θ; we provide some details.

∂F Y (τ)

∂θ
= −

∞∑
n=0

{
∂Pθ[Sn ≤ τ ]

∂θ
Pθ[N = n] + Pθ[Sn ≤ τ ]

∂Pθ[N = n]

∂θ

}
.

Let us focus on the partial derivative of the gamma random variable Sn. We
have that for n ∈ Z+,

∂Pθ[Sn ≤ τ ]

∂θ
=

∂

∂θ

∫ τ

0

(−θ)−nα

Γ(−nα)
exθx−nα−1dx

= −nα
θ

∫ τ

0

{
(−θ)−nα

Γ(−nα)
exθx−nα−1 − (−θ)−nα+1

Γ(−nα + 1)
exθx−nαdx

}
= −nα

θ

{
Pθ[Sn ≤ τ ]− Pθ[Sn′ ≤ τ ]

}
,

where Sn′ ∼ Γ(−αn+1,−θ). Applying the infinite sum and coefficient yields,

∞∑
n=0

∂Pθ[Sn ≤ τ ]

∂θ
Pθ[N = n] = −

∞∑
n=0

nα

θ

{
Pθ[Sn ≤ τ ]−Pθ[Sn′ ≤ τ ]

}
Pθ[N = n].

Similarly, the partial derivate of the Poisson random variable N is given by

∂Pθ[N = n]

∂θ
=

∂

∂θ

e−λκ(θ)(λκ(θ))n

n!

= −λκ′(θ)
{
e−λκ(θ)(λκ(θ))n

n!
− e−λκ(θ)(λκ(θ))n−1

(n− 1)!

}
= −λκ′(θ)

{
Pθ[N = n]− Pθ[N = n− 1]

}
.
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Applying the infinite sum and coefficient yields,
∞∑
n=0

Pθ[Sn ≤ τ ]
∂Pθ[N = n]

∂θ
= −λκ′(θ)

∞∑
n=0

{
Pθ[Sn ≤ τ ]− Pθ[Sn+1 ≤ τ ]

}
Pθ[N = n].

Putting the above together yields,

∂F Y (τ)

∂θ
=

∞∑
n=0

(
λκ′(θ)

{
Pθ[Sn ≤ τ ]− Pθ[Sn+1 ≤ τ ]

}
+
nα

θ

{
Pθ[Sn ≤ τ ]− Pθ[Sn′ ≤ τ ]

})
Pθ[N = n].

The function g1(τ) is obtained by dividing the above by the survival function
F Y (τ). The second derivate follows similarly. The function g2(τ) is obtained
by dividing the equation below by the survival function F Y (τ).

∂2FY (τ)

∂θ2
=

∞∑
n=0

(
λκ′′(θ)

{
Pθ[Sn ≤ τ ]− Pθ[Sn+1 ≤ τ ]

}
− (λκ′(θ))2

{
Pθ[Sn ≤ τ ]− 2Pθ[Sn+1 ≤ τ ] + Pθ[Sn+2 ≤ τ ]

}
− 2λκ′(θ)

α

θ

{
n(Pθ[Sn ≤ τ ]− Pθ[Sn′ ≤ τ ])− (n+ 1)(Pθ[Sn+1 ≤ τ ]− Pθ[Sn+1′ ≤ τ ])

}
− nα

θ2

{
(nα+ 1)Pθ[Sn ≤ τ ]− 2nαPθ[Sn′ ≤ τ ] + (nα− 1)Pθ[Sn′′ ≤ τ ]

})
Pθ[N = n],

where Sn′′ ∼ Γ(−αn+ 2,−θ) and Sn+1′ ∼ Γ(−α(n+ 1) + 1,−θ).

Numerical Results

We have simulated truncated multivariate compound Poisson lifetimes with
p = 1.5 (equivalently, α = −1), where

Yi,j ∼ Twp=1.5(θ = −0.4, λ = 3) ≡ CP (N ∼ P (30), S1 ∼ Γ(1, 0.4)),

Y0,j ∼ Twp=1.5(θ = −0.4, λ0 = 0.2) ≡ CP (N ∼ P (2), S1 ∼ Γ(1, 0.4)).

Consequently, we have that each individual lifetime is compound Poisson
distributed with mean 80 and standard deviation 20,

Ti,j ∼ Twp=1.5(θ = −0.4, λ̃ = 3.2) ≡ CP (N ∼ P (32), S1 ∼ Γ(1, 0.4)).

For p = 1.5, we have

κ(θ) = −4/θ, κ′(θ) = 4/θ2, κ′′(θ) = −8/θ3.

In Tables 7 and 8 we investigate the performance of Algorithm 1 and 2,
respectively, using the compound Poisson distribution. The algorithms are
robust to required initial estimates and converge quickly. Of note is that
the infinite summation is approximated using n up to 1, 000; n up to 2, 000
yielded no visible difference in the results.
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N 1,000 100,000 10,000 1,000 1,000 10,000
M 1 1 50 1,000 10,000 1,000
N*M 1,000 100,000 500,000 1,000,000 10,000,000 10,000,000
τ 60 60 60 60 60 60

λ̃ 3.20 3.20 3.20 3.20 3.20 3.20̂̃λ 2.82 3.00 3.26 3.18 3.19 3.15
θ -0.400 -0.400 -0.400 -0.400 -0.400 -0.400

θ̂ -0.388 -0.400 -0.403 -0.399 -0.400 -0.398

Table 7: Simulation results to test Algorithm 1 using the compound Poisson
distribution.

N 100 1,000 10,000 100,000 1,000,000
τ 60 60 60 60 60
θ -0.4 -0.4 -0.4 -0.4 -0.4
Y0 5.000 5.000 5.000 5.000 5.000

Ŷ0 37.601 9.056 5.851 5.756 4.766
λ 3.000 3.000 3.000 3.000 3.000

λ̂ 1.861 2.840 2.977 2.979 3.007

Table 8: Simulation results to test Algorithm 2 using the compound Poisson
distribution.
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5 Conclusion

We model lifetimes using a common stochastic component to address de-
pendence within a portfolio of lives resulting from systematic mortality im-
provements. We develop parameter estimation in the presence of truncated
observations for the Tweedie distribution, in general, and provide explicit
solutions for important members of the Tweedie family, namely, the normal,
gamma, inverse Gaussian, and compound Poisson distributions. Simulation
is used to verify the performance of our estimation procedure.

The allowance for truncated observations is essential for the application
of the model to pools of lives, especially when income insurance products are
considered. However, the allowance for censored observations would further
improve the applicability, and is something we consider for future research.
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