
 

 

 

 

 

 

 
 

ARC Centre of Excellence in Population Ageing 
Research 

 
 Working Paper 2013/22 

 
 
 
 
 
 

Life Insurer Longevity Risk Management in a Mulit-Period 
Valuation Framework. 
 
 
Craig Blackburn, Katja Hanewald, Annamaria Olivieri and Michael Sherris* 
 
 
 
 
 
 
* Craig Blackburn is a Research Fellow at the ARC Centre of Excellence in Population Ageing 
Research. Katja Hanewald is an Associate Investigator at the ARC Centre of Excellence in 
Population Ageing Research. Annamaria Olivieri is a Professor in the Department of 
Economics at the University of Parma, Italy and an Associate Investigator at the ARC Centre 
of Excellence in Population Ageing Research. Michael Sherris is Professor of Actuarial 
Studies at the University of New South Wales and a Chief Investigator at the ARC Centre of 
Excellence in Population Ageing Research.  

 
We are grateful to the Australian Research Council for generous financial support. 
 
This paper can be downloaded without charge from the ARC Centre of Excellence in 
Population Ageing Research Working Paper Series available at www.cepar.edu.au 

 
 
 

http://www.cepar.edu.au/


Life Insurer Longevity Risk Management, Solvency and

Shareholder Value

Craig Blackburna, Katja Hanewaldb, Annamaria Olivieric, Michael Sherrisd

aSchool of Risk and Actuarial Studies, University of New South Wales, Sydney, Australia, 2052

bSchool of Risk and Actuarial Studies, CEPAR, University of New South Wales, Sydney, Australia, 2052

cDipartimento di Economia, University of Parma

dSchool of Risk and Actuarial Studies, CEPAR, University of New South Wales, Sydney, Australia, 2052

Abstract

This paper assesses the impact of longevity risk management on insurer shareholder
value and solvency for an annuity portfolio. The analysis uses a multi-period stochas-
tic mortality model with both systematic and idiosyncratic longevity risk. We con-
sider both survivor, or longevity, swaps that provide a full longevity risk hedge, and
index-based survivor, or longevity, bonds that do not hedge idiosyncratic longevity
risk. Shareholder value includes the impact of the costs of transferring longevity risk,
policyholder demand elasticity, regulatory capital requirements, capital relief, and fric-
tional costs including the insolvency put option, agency costs, and financial distress
costs. Shareholder value is based on an Economic Value (EV) and a Market-Consistent
Embedded Value (MCEV) approach. Capital management is assessed based on a re-
capitalization and dividend strategy that maintains regulatory capital requirements, as
defined under Solvency II. We demonstrate how longevity risk management strategies
significantly reduce the volatility of shareholder value and frictional costs. Longevity
risk management reduces the probability of insolvency, increases policyholder demand
and hence increases shareholder value.
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1. Introduction

Life insurers writing products that guarantee a retirement income, including life an-
nuities, are increasingly recognizing the need to manage the risk of systematic im-
provements in longevity risk. This risk results from uncertain mortality improvements
impacting all lives in the portfolio to a greater or lesser extent. Traditionally life insur-
ers have been concerned mainly with idiosyncratic longevity risk which is reduced
through pooling lives in an insurer’s portfolio. Many years of mortality improve-
ment and increased uncertainty about future mortality developments has changed
the risk management of mortality risk. Capital must be held by life insurers to meet
solvency and regulatory requirements for these risks. This is costly and must cover
both systematic and idiosyncratic longevity risk, the latter being more significant in
an annuity portfolio at older ages. Shareholders expect to earn a return on capital
by generating a profit on the insurance business, much of this from loadings in the
premiums. The value maximizing premium loading taking into account policyholder
preferences, including for insurer solvency, is a critical decision for an insurer when
considering its risk management strategy.

Risk management strategies for insurers increase shareholder value by reducing fric-
tional costs (Zanjani [38], Krvavych and Sherris [22], Froot [17], Yow and Sherris [37]).
Both costs and benefits of risk management need to be considered. The costs include
profit margins, over and above the market price, charged for hedging or transferring
the risk. The benefits include reduced costs of capital and higher levels of solvency.
Holding high levels of capital is costly because of frictional and agency costs. Re-
ducing levels of capital, without reducing volatility, imposes a cost on policyholders
since this results in a wealth transfer when the insolvency put option value increases.
Higher premium loadings are required to offset the costs of holding higher levels of
capital. This can increase shareholder value if policyholders have preferences for more
highly capitalized insurers. Higher premium loadings, and hence higher prices, reduce
demand depending on policyholder price sensitivity. This trade-off between solvency
and price is an important factor in determining value maximizing risk management
strategies. This aspects of risk management is not well understood, and not yet con-
sidered in the assessment of longevity risk management.

A life insurer writing annuity business will most often use reinsurance to manage
its longevity risk, although capital market securitization is also of increasing interest.
Blake and Burrows [7] proposed survivor bonds as a hedge for longevity risk, where
the coupon payment each year is proportional to the number of survivors in a cohort.
Dowd et al. [15] proposed survivor swaps, as an exchange of cash flows based on the
outcome of a survivor index. Reinsurance is indemnity-based, whereas securitization
is index-based, which includes basis risk between the index and the annuity portfolio
of the insurer. Basis risk is higher for higher levels of idiosyncratic mortality risk since
smaller portfolios of lives produce more variability between the actual experience of
an insurer’s portfolio of lives and the survivor index used. This increases the risk of
life insurer insolvency, especially in the older ages of the annuitants, often referred to
as tail risk.

Attempts have been made to securitize longevity risk. Blake et al. [8] considers the
EIB/BNP longevity bond, and discusses possible reasons for the failure of the EIB/BNP
bond issue. Survivor, or longevity, swaps have been more successful than securitiza-
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tion of longevity risk through survivor, or longevity, bonds. The first survivor swap
took place between Swiss Re and Friends’ Provident in 2007. Although legally an
insurance contract, this was a pure longevity risk transfer of £1.7 billion on a closed
portfolio of annuitants. In 2008, the first derivative transaction, based on a ‘q-forward’,
was placed between JPMorgan and Lucidia (Coughlan et al. [11]). Also in 2008, the
first capital market survivor swap was executed. Canada Life hedged £500 million
of it’s UK annuity book, with JPMorgan acting as the intermediary (Blake et al. [9]).
Since 2008, several publicly announced survivor swaps have been placed in the UK.
The largest to date was a £3.2 billion survivor swap for the BAE Systems pension plan
in 2013.

Longevity risk management using securitization is considered in Cowley and Cum-
mins [12], Wills and Sherris [36], Biffis and Blake [3], Gupta and Wang [20], along with a
small number studies on the reinsurance of longevity risk in Olivieri [31], Olivieri and
Pitacco [32], Levantesi and Menzietti [25]. Risk management using reinsurance and
securitization have been compared for other risks including mortality risks (MacMinn
and Richter [26]), for insurable risks in general (Cummins and Trainar [13]) and for
catastrophe risks (Lakdawalla D. and Zanjani [23]). Gupta and Wang [20] assess securi-
tization and natural hedging strategies for the management of longevity risk in a multi-
period shareholder maximization framework. MacMinn and Richter [26] compare
index-based and indemnity-based hedging for the mortality risk inherent in a life book
in a two-period shareholder value framework. The consideration of survivor swaps
and bonds has not been considered in the framework we use in this paper.

A number of previous studies have recognised the impact of product pricing and
consumers’ preferences for an insurer’s solvency on insurer value. Zanjani [38], Froot
[17], Yow and Sherris [37], Gründl et al. [19], Zimmer et al. [39], Nirmalendran et al.
[30] incorporate consumer preferences for solvency in an insurer’s value maximization
model. Zimmer et al. [40] and Zimmer et al. [39] are the first to provide estimates of
consumers’ reactions to insurance default risk. Zimmer et al. [39] incorporated the de-
mand curve into a single-period shareholder value maximization model for a non-life
insurance company. Nirmalendran et al. [30] incorporate consumers’ preferences for
an insurer’s solvency in annuity demand and use a shareholder value maximization
model for an annuity provider to assess optimal product pricing and capitalization
strategies under different solvency capital requirements. Risk management and its
impact on solvency and shareholder value has not been considered in this setting.

In this paper we assess the impact of longevity risk management on life insurer share-
holder value and solvency for an annuity portfolio using reinsurance and securitiza-
tion. Capital management is also considered based on a recapitalization and dividend
strategy that maintains regulatory capital requirements, as defined under Solvency II.
We use a multi-period framework that allows us to examine the impacts on volatility
as well as solvency over the full horizon of the business. This run-off approach is in
contrast to that used in Solvency II which is based on a 1-year horizon.

We only consider longevity risk. Capital requirements are based on Solvency II. Risk
margins are market consistent based on reinsurance premiums. Interest rates are as-
sumed to be deterministic in order to focus on longevity risk. The interest rate forward
curve is used to price annuities, to discount future cash flows, and to determine the
investment return on the insurer’s assets. The impact of both systematic and idiosyn-
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cratic longevity risk over the full term of the life annuity portfolio are included. By
considering both survivor, or longevity, swaps that provide a full indemnity based
longevity risk hedge, and index-based survivor, or longevity, bonds that do not hedge
idiosyncratic longevity risk, we provide a comprehensive analysis of longevity risk
and its impact on a life annuity portfolio.

Shareholder value is determined using an Economic Value (EV) and a Market-Consistent
Embedded Value (MCEV) approach. Under the EV approach cash flows are valued
allowing for risk and shareholder value is the difference between the value of the assets
and liabilities adjusted for frictional and other costs. The MCEV determines and then
values future profits and is based on a deferral-and-matching approach, where the
initial annuity premium is respread over the life of the contract. Shareholder value
includes the costs of transferring longevity risk, the impact of policyholder demand
elasticity, regulatory capital requirements, capital relief, and frictional costs including
the insolvency put option, agency costs, and financial distress costs.

The different valuation approaches have significant implications for the volatility of
shareholder value, dividends and frictional costs. We demonstrate how longevity
risk management strategies significantly reduce the volatility of shareholder value,
especially when MCEV is used. The most significant impact of longevity risk man-
agement is from the reduction in the probability of insolvency since this increases pol-
icyholder demand and allows the insurer to determine an optimal value maximizing
premium loading and hence increase shareholder value. The volatility of dividends
is also shown to be significantly reduced for a life insurer that holds capital to meet
Solvency II requirements.

The structure of the paper is as follows. Section 2 presents the multi-period stochastic
model used for systematic and idiosyncratic longevity risks and the valuation of cash
flows. Section 3 presents the cash flow and shareholder value model along with the
survivor swap and bond. Section 4 presents the results and Section 5 concludes.

2. Longevity Risk Multi-Period Model

We assess longevity risk management for a life insurer writing life annuity business.
Cash flows on the annuity portfolio are simulated and valued including payments
to policyholders, capital and dividend payments to and from shareholders, expenses,
frictional costs including capital costs and the default put option value. The cash flows
are modified to reflect risk management using a longevity swap and a longevity bond
to hedge different amounts of longevity risk. We also assess the impact of differing
levels of capital relief. We use a multi-period model and our analysis focuses on
longevity risk. We implement a recently developed stochastic mortality model based
on forward or, cohort, mortality rates. The model avoids the need for simulations
within simulations at future time periods when valuing the future liabilities.

The longevity risk model used is in the framework of forward rate models proposed by
Heath et al. [21] (HJM) for interest rates. This framework, adapted to mortality rates, is
well suited for the multi-period analysis of an insurer’s liability and regulatory capital
requirements. In contrast to short rate mortality models, the forward rate structure
allows us to determine the distribution of each annuitant’s uncertain lifetime at all time
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points in the future and to value future liabilities along any simulated path of future
mortality rates. This approach to mortality modeling has been considered, amongst
others, by Plat [33], Dahl [14], Miltersen and Persson [29], Cairns et al. [10], and Bauer
et al. [2].

We use the affine mortality framework presented in Blackburn and Sherris [6], and use
the estimation and forecasting results from Blackburn [5] for the Australian male pop-
ulation. The parameters of the mortality term structure are estimated from historical
mortality rates available in the Human Mortality Database. The model specification
is relatively simple and allows multiple mortality risk factors to be either non-mean
reverting or mean reverting processes under a risk-neutral measure. The non-mean
reverting process corresponds to an exponentially increasing mortality rate with age
and a simple HJM volatility function. Our risk-neutral measure is defined as the best
estimate cohort survivor curve used to value annuity cash flows without loadings,
usually referred to as the actuarially fair value. We also estimate a market pricing
measure that is used for market valuation that is consistent with the assumed survivor
swap premiums.

2.1. Stochastic Mortality Model

Following Milevsky and Promislow [27] and Biffis et al. [4], we assume a continuous-
time framework that defines mortality rates equivalent to a credit risk defaultable
intensity process. The approach is similar to that of Lando [24], Schönbucher [34]
and Duffie and Singleton [16] for pricing defaultable bonds. Our longevity model is
the 2-factor mortality model calibrated in Blackburn [5] with a deterministic volatility
function and Gaussian dynamics.

We define a filtered probability space (Ω, F , F, Q), where F = (Ft)t>0 and Q is a
martingale measure and is based on the best estimate survivor probability. We define
two sub-filtrations G and H such that F = G ∨ H. The sub-filtration G = (Gt)t>0

contains all financial and actuarial information, while the sub-filtration H = (Ht)t>0

captures the occurrence of death. A counting process, N(t; x), counts the number of

deaths in the cohort, N(t; x) = ∑
n0
i=1 1τi<t, where τi is a F-stopping time and admits an

intensity process µ(t; x), where µ(t; x) is a predictable process with
´ t

0 µ(s; x)ds < ∞.

The initial time-0 number of individuals, or portfolio size for a given cohort, is denoted
by n0, and x denotes the age of the cohort at time-0. The survivor index for the cohort
using population mortality rates is the proportion of survivors at time t is denoted by

S(t; x). The survivor index at time t is given by

S(t; x) =
n0 −N(t; x)

n0
. (1)

The stochastic forward interest and mortality rates are given by

f (t, s) = f (0, s) +

ˆ s

0
ν f (u, s)du +

ˆ s

0
σf (u, s)dWr(u) (2)

µ(t, s; x) = µ(0, s; x) +

ˆ s

0
νµ(u, s; x)du +

ˆ s

0
σµ(u, s; x)dWµ(u), (3)
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where f (t, s) and µ(t, s; x) are the F-adapted interest and mortality forward processes
at time-t, and µ(0, t; x) is the best estimate initial forward mortality curve.

The martingale measure is not unique, hence we define an equivalent Q-measure with
Radon-Nikodym density,

dQ

dQ

∣∣∣
Ft

= e−
´ t

0 λ(s)dWµ(s)−
1
2

´ t
0 |λ(s)|2ds,

where λ(s) are the market prices of longevity risk. We assume no change to the mor-
tality hazard rate process under the measure change. This new measure is the pricing
and market valuation measure. We restrict λ(s) to a constant price of longevity risk,
Milevsky and Promislow [27] defines λ as the instantaneous Sharpe ratio. A constant
price of longevity risk in the forward mortality model does not affect the volatility
function, but scales the initial forward mortality curve. The stochastic forward interest
and mortality rates under the market measure is

f (t, s) = f (0, s) +

ˆ s

0
ν f (u, s)du +

ˆ s

0
σf (u, s)dWr(u) (4)

µ(t, s; x) = µ(0, s; x) +

ˆ s

0
νµ(u, s; x)du +

ˆ s

0
σµ(u, s; x)dWµ(u), (5)

where µ(0, t; x) is the risk-adjusted initial forward mortality curve. There is no change
to the interest rate process under this measure change.

The time-t market value of a zero-coupon longevity bond that matures at time-T is
given by

P(t, T; x) = EQ
[

e−
´ T

t r(s)dsS(T; x)
∣∣∣Ft

]
= S(t; x)EQ

[
e−
´ T

t [r(s)+µ(s;x)]ds
∣∣∣Gt

]
. (6)

where the survivor index under the market measure is

S(t; x) =
n0 − N(t; x)

n0
. (7)

Assuming interest rates and mortality rates are independent, and using the forward
mortality and interest rate model, the market value can also be written as,

P(t, T; x) = S(t; x)e−
´ T

t f (t,s)+µ(t,s;x)ds.

At time-0 we define the forward zero-coupon longevity bond market value, for 0 ≤
t ≤ T, as

P(0, t, T; x) =
P(0, T; x)

P(0, t; x)

=e−
´ T

t f (0,s)+µ(0,s;x)ds, (8)
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and the forward survivor probability as

S(0, t, T; x) = e
´ T

t µ(0,s;x)ds.

The forward survivor probability is the probability of surviving from t to T, uncondi-
tional on surviving to t, and based on the cohort information at time-0. We assume
interest rates are deterministic by setting σf (t, s) = 0. Blackburn [5] provides a more
extensive coverage of the model.

Given the processes in equations (4) and (5), the discounted value of $1 payable on
survival for an individual aged x at time-t is a Q-martingale for all T and given by

P∗(t, T; x) =
P(t, T; x)

Bt
=

S(t; x)e−
´ T

t f (t,s)+µ(t,s;x)ds

Bt
,

where Bt is the money market account value, defined as dBt = Btr(t)dt.

For P∗(t, T; x) to be a Q-martingale, the interest rate and mortality rate drift conditions
must satisfy

ν f (t, T) =σf (t, T)

ˆ T

t
σf (t, s)

′
ds (9)

νµ(t, T; x) =σµ(t, T; x)

ˆ T

t
σµ(t, s; x)

′
ds, (10)

where σµ(t, T; x) is the deterministic volatility function defined in equation (11), and
σf (t, T; x) is the volatility function of the interest rate process.

Using the forward modelling framework, we specify, under the Q-measure, a multi-
factor stochastic mortality model for each cohort. Each initial forward mortality curve
is a risk-adjusted version of the best estimate mortality curve, and the volatility func-
tion for the 2-factor model is

σµ(t, T; x) =
[

σ1e−δ1(T−t+(x−x0), σ2e−δ2(T−t+(x−x0)
]

(11)

where x is the cohort age at time-0 and x0 is the lowest assumed age in the affine model.

The term e−δi(x−x0) scales the volatility function by the initial cohort age.

The estimated parameters of the 2-factor mortality model are shown in Table 1. The
mortality model is estimated from historical Australian male population data obtained
from the Human Mortality Database, for the years 1965 to 2009 and ages 50 to 99.

δ1 δ2 σ1 σ2

-0.1014 -0.1307 1.923e-4 5.742e-5

Table 1: Fitted Risk-Neutral Parameters; Years 1965-2009, Ages 50-99
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2.2. Model Implementation

The mortality model is implemented as a discrete time version of the HJM model using
Monte Carlo simulation based on Glasserman [18]. The model uses discrete time points
t0 = 0 < t1 < · · · < tn, where tn = T is the time corresponding to the oldest age
when all the annuity contracts have terminated. We generate mortality rates to give a
survivor index for each simulation path assuming deaths are equal to those expected
in a large portfolio. From these mortality rates deaths for the survivors in the portfolio
are simulated for each time period, generating the actual survivors. The number of
simulations, M, is set to 10,000.

The time-0 forward interest rates for these discrete time points are denoted by f̂ (0, 0),

f̂ (0, t1), · · · , f̂ (0, tn−1). These are the discrete time values of the initial forward curve
f (0, t) given by

f̂ (0, ti) =
1

ti+1 − ti

ˆ ti+1

ti

f (0, s)ds.

Similarly, the initial forward mortality rates are denoted by µ̂(0, 0; x), µ̂(0, t1; x), · · · ,
µ̂(0, tn−1; x), and these discrete forward mortality rates are given by

µ̂(0, ti; x) =
1

ti+1 − ti

ˆ ti+1

ti

µ(0, s; x)ds.

Parameters for the forward yield curve are based on Nirmalendran et al. [30], who
calibrated the models to Australian market data. The same interest rate term structure
is used to price annuities, determine investment returns, value liabilities and discount
cash flows.

The forward mortality curve evolves according to the dynamics

µ̂(ti, tj; x) = µ̂(ti−1, tj; x) + ν̂µ(ti−1, tj; x)[ti − ti−1] + σ̂µ(ti−1, tj; x)
√

ti − ti−1Zi, j = i, · · · , T,

where Zi are normal N(0, 1) random variables. The drift term is given by

ν̂µ(ti−1, tj; x)[tj+1 − tj] =
1

2

(
j

∑
k=i

σ̂µ(ti−1, tk; x)[tk+1 − tk]

)2

−
1

2

(
j−1

∑
k=i

σ̂µ(ti−1, tk; x)[tk+1 − tk]

)2

,

where σ̂µ(ti, tj; x) is the volatility function defined in equation (11) evaluated at discrete
times ti and tj.

At time 0 the zero-coupon longevity bond price in the discrete time model is

P̂(0, ti; x) = exp
(
−

ti−1

∑
tu=t0

[
f̂ (0, tu) + µ̂(0, tu; x)

]
·
[

tu+1 − tu

])
,
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and the survivor curve is

Ŝ(0, ti; x) = exp
(
−

ti−1

∑
tu=t0

µ̂(0, tu; x) · [tu+1 − tu]
)

,

with the forward zero coupon longevity bond price for t0 ≤ ti ≤ ts ≤ tn, given by

P̂(0, ti, ts; x) = exp
(
−

ts−1

∑
tu=ti

[ f̂ (0, tu) + µ̂(0, tu; x)] · [tu+1 − tu]
)

and the forward survivor curve as

Ŝ(0, ti, ts; x) = exp
(
−

ts−1

∑
tu=ti

µ̂(0, tu; x) · [tu+1 − tu]
)

We generate M forward mortality curves at each discrete time point ti. We define the
expected number of survivors in the portfolio at time-ti as,

Î(ti; x) = n0 · exp
(
−

ti

∑
ts=t0

µ(m)(ts, ts; x)[ts+1 − ts]
)

,

where m = 1, 2, · · · , M, and where n0 is the initial portfolio size.

To generate idiosyncratic longevity risk, random death times for individuals are de-
termined by the first time the mortality hazard rate is above a random level ̺. The
random death time is determined as

τi = inf
{

tu :
tu

∑
ts=t0

µ(m)(ts; x) ≥ ̺
}

, (12)

where ̺ is an exponential random variable with parameter 1.

The number of survivors at time-ti for path m, is Ĩ(m)(ti; x) = n0 − Ñ(m)(ti; x), where

Ñ(m)(ti; x) =
n0

∑
i=1

1{τi≤ti}
, (13)

and Ĩ(m)(0; x) = n0. For a large portfolio the idiosyncratic risk will be low and Ĩ(m)(ti ; x) ≈

Î(m)(ti; x), and from our model definition, the law of large numbers gives us

1

M

M

∑
m=1

Î(m)(tj; x) → E[ Î(tj; x)] = Ŝ(0, tj; x) = S(0, tj; x)

Figure 1 plots the distribution of Ĩ(m)(t; x) for two different portfolio sizes of 65 year
old policyholders. Smaller portfolio sizes generate much more uncertainty even in the
early years.
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Figure 1: Portfolio Survivors Ĩ(m)(t; x) for portfolios of 65 year olds

Using the simulated mortality paths we can determine the market value of an annuity
that pays $b per year to surviving annuitants in a cohort. For those aged x at time-0
this is given by

â(0, tn; x) =
tn

∑
ts=t1

b · exp
(
−

ts−1

∑
tj=t0

(
f̂ (0, tj) + µ̂(0, tj; x) · [tj+1 − tj]

))
. (14)

At time 0 we can also determine forward market values of the annuity given by

â(0, ti, tn; x) =
tn

∑
ts=ti+1

b · exp
(
−

ts−1

∑
tj=t0

(
f̂ (0, tj) + µ̂(0, tj; x) · [tj+1 − tj]

))
. (15)

At future times, for a given simulation path, m, the market value of the annuity at
time-t is,

â(m)(ti, tn; x) =
tn

∑
ts=ti+1

b · exp
(
−

ts−1

∑
tj=ti

(
f̂ (m)(tj, ti) + µ̂(m)(tj, ti; x) · [tj+1 − tj]

))
. (16)

2.2.1. Annuity Fair Value

The annuity premium paid by annuitants at time 0 is based on the best estimate sur-

vivor curves under the Q-measure and not the pricing and market valuation measure.
The actuarial value of an annuity that pays $b per year to each annuitant in a cohort
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age x at time-0 is given by

â(0, tn; x) =
tn

∑
ts=t1

b · exp
(
−

ts−1

∑
tj=t0

(
f̂ (0, tj) + µ̂(0, tj; x)

)
· [tj+1 − tj]

)
, (17)

where µ̂(0, tj; x) is the best estimate cohort forward survivor curve.

Swap payment to the reinsurer are fixed at time-0 and are based on the best estimate
forward survivor curve, given as

Ŝ(0, ti; x) = exp
(
−

ti−1

∑
tj=t0

µ̂(0, tj; x) · [tj+1 − tj]
)

. (18)

3. Cash Flows, Liability Valuation and Shareholder Value

The model simulates cash flows on the life annuity portfolio. Liabilities are valued
based on the annuity cash flows using the discrete time implementation of the longevity
risk model. The model also allows us to consider solvency of the insurer over the full
run-off of the annuity portfolio, quantifying how both systematic and idiosyncratic
longevity risk impacts on solvency. The annuity portfolio represents a single cohort
of n0 persons from a homogeneous population aged 65 at time-0. A single premium
is paid at the age of 65 and the annuity payments are in arrears. The ultimate age at
which the contract terminates is age 100. Each annuity is for an annual payment of
b = $1, 000 as long as the policyholder is alive.

Shareholder value is determined using an economic valuation approach and the MCEV
approach. These produce consistent expected shareholder values but have quite dis-
tinct differences with respect to volatility of these values and for the determination of
insurer solvency.

3.1. Portfolio Size

An important factor impacting the longevity risk in an annuity portfolio at the older
ages is the number of policies initially sold in a cohort. This is determined by a demand
function that reflects both the price, or loading, and the insolvency risk of the insurer.
We base our demand function on Zimmer et al. [39] and Nirmalendran et al. [30].

Zimmer et al. [39] use experimental data and find that an exponential demand function
provides an overall best fit with functional form

φ(π, d1) = e(α·d1+β·π+θ), (19)

where φ(π, d1) represents the percentage of individuals willing to purchase at price π
from an insurer with 1-year default probability d1; α is the default sensitivity parameter
(α < 0), β is the price sensitivity parameter (β < 0) and θ is a constant. This exponen-
tial demand function developed by Zimmer et al. [39] was modified in Nirmalendran
et al. [30] to produce as reasonable price and default risk preferences in the annuity
market.
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We use a similar annuity demand function as in Nirmalendran et al. [30]. This is
modified so that policyholders’ price sensitivity is a function of the premium loading
factor, γP, rather than the premium rate π, and the cumulative default probability over
the full run-off of a cohort, d, instead of the 1-year probability, d1. We use

φ∗(γP, d) =e(α·d+β·γP+θ) (20)

=e(−3.8328·d−9.7089·γP−0.4689), (21)

where φ∗(γP, d) represents the percentage of individuals willing to buy the annuity.
The calibration of the price-default annuity demand curve is similar to Nirmalendran
et al. [30] who calibrated the price-default risk demand curve to reflect annuity demand
in Australia.

Figure 2 shows the sensitivity of demand due to changes in price and changes in
default risk in our model.

Figure 2: Price and default sensitivity of the demand for annuities.

A maximum potential market size of nm = 25, 000 is assumed for the representative life
annuity provider. This reflects the number of males aged 65 and the market share of
Australia’s largest life insurer. The number n0 of annuities sold at time 0 is determined
by multiplying the level of demand with the assumed maximum potential market size,
nm:

n0 = nm · φ∗(γP, d). (22)

Each annuitant in the annuity portfolio pays a single premium π at time-0 based on
the annuity actuarial value in the discrete time model, given as

π = b ·
(

1 + γP
)
· â(0, tn; x), (23)

where the actuarial annuity value is given in equation (17). For an annuity portfolio
initial size n0, the total premium revenue at time-0 the insurer receives is

Π = π · n0. (24)
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3.2. Survivor Swaps and Bonds

We consider the transfer of the insurer’s longevity risk through either a survivor swap
or a survivor bond as a static hedge. These are also referred to as a longevity swap and
a longevity bond.

The survivor swap takes the form of a reinsurance contract with no counter-party
default risk. Each party agrees to make periodic payments until the maturity of the
swap at time-T, or until the insurer defaults. Similar to an interest rate swap, there
is a fixed and a floating leg. The fixed leg are payments based on an agreed survivor
curve at time-0, while the floating leg payments are based on the actual survivors in
the annuity portfolio for each period. The fixed leg payments are based on the best
estimate cohort survivor curve, equation (18), and includes a swap premium. The net
swap payment for each time-ti is,

b ·
(

Ĩ(m)(ti; x)− (1 + γR)Ŝ(0, ti; x)
)

.

The survivor bond proposed by Blake and Burrows [7] is structured as an interest
bearing bond with an initial purchase price at time-0 and regular interest payments
proportional to the population survivor index. We structure the longevity bond as an
annuity bond with floating rate payments similar to the cash flows for the survivor
swap. The main difference between these is that the survivor bond has floating pay-
ments based on a population survivor index. The net swap payments are

b ·
(

Î(m)(ti; x)− (1 + γR)Ŝ(0, ti; x)
)

.

This allows a comparison between the longevity swap and the longevity bond with
respect to idiosyncratic mortality risk. This risk gives rise to basis risk since the actual
number of survivors, N(ti; x), deviates from the expected number. This basis risk is
greater for smaller portfolio sizes.

3.3. Annuity Portfolio Cash Flows

The annuity portfolio cash flow at time-0 is the premiums less the initial expenses, or

C̃F(0) = Π − E(0).

The insurer’s expenses consist of acquisition costs for the policies, asset management
costs, overhead and other general expenses. Acquisition costs are proportional to the
annuity single premium and are paid at time t = 0.

E(0) = e[i] · Π, (25)

where e[i] is the proportion of initial acquisition costs at time-0.

The insurer also has recurrent expenses, which are expressed as a proportion of the

market reserves, Ṽ
(m)
s (ti), in each period. This expense is paid annually in arrears. We
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assume expenses incurred at time-t are

Ẽ(m)(ti) = e[r] · Ṽ
(m)
s (ti) (26)

where e[r] denotes the proportion of recurrent expense.

For future times, ti, i > 0, the cash flow on the annuity portfolio takes into account the
proportion of longevity risk that is hedged, ωh. This is simulated along each path. We
have

• with no hedging, cash outgoes are the actual annuity payments to survivors and
the recurrent expenses

C̃F
(m)

(ti) = −b · Ĩ(m)(ti ; x)− Ẽ(m)(ti),

• for the survivor swap, the cash flows now include the fixed leg swap payments,
including the reinsurance loading, and the floating leg receipts based on actual
survivors

C̃F
(m)

(ti) = −b ·
[

Ĩ(m)(ti; x) + ωh

(
(1 + γR) · Ŝ(0, ti; x)− Ĩ(m)(ti; x)

)]
− Ẽ(m)(ti),

• for the survivor bond, the cash flows now include the fixed leg swap payments,
with the reinsurance loading, and the floating leg receipts based on the survivor
index, reflecting only systematic longevity risk

C̃F
(m)

(ti) = −b ·
[

Ĩ(m)(ti; x) + ωh

(
(1 + γR) · Ŝ(0, ti; x)− Î(m)(ti; x)

)]
− Ẽ(m)(ti).

3.4. Valuation of Insurer Liabilities

The liability valuation includes a risk margin, or loading, for longevity risk and is not
based solely on the actuarial values, or best estimate values. There have been a number
of approaches proposed to incorporate a price of longevity risk. Milevsky et al. [28]
values a pure endowment contract using an instantaneous Sharpe ratio. Bauer et al.
[1] use a forward mortality framework, as presented in Bauer et al. [2], for pricing a
zero coupon longevity bond and show how the Sharpe ratio coincides with a change
of probability measure assuming a constant market price of longevity risk. Biffis et al.
[4] use a change of measure approach to generate risk-adjusted survivor curves based
on a generalized Lee-Carter model.

Risk margins are included in actuarial valuations to reflect the amount that would
be required for these obligations to be taken over by another insurer. The market
valuation approach is used instead of the cost of capital approach to determine the risk
margin to produce a market consistent value of the liabilities, since we calibrate the
margin to the reinsurance loading on the survivor swap. The insurer sets the solvency
capital requirement based on Solvency II. We assume that there is no explicit profit
loading in the reinsurance contract. We then calibrate the market prices of risk in the
mortality model for liability valuation to be consistent with the reinsurance loading.
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The value of the fixed payments for the survivor swap value at time-0 are equated un-
der the actuarial value with the reinsurance loading and the market valuation measure
to give

tn−1

∑
ti=t0

P(0, ti; x) =
tn−1

∑
ti=t0

(1 + γR)P(0, ti; x), (27)

There is no change in the interest rate process under this measure change, and equation
(27) can be reduced to

tn−1

∑
ti=t0

S(0, ti ; x) =
tn−1

∑
ti=0

e−
´ ti

0

´ u
0 ||λ(s)σµ(s,u;x)||dsduS(0, ti; x)

=
tn−1

∑
ti=t0

e−λ
´ ti

0

´ u
0 ||σµ(s,u;x)||dsduS(0, ti; x). (28)

We have assumed λ to be a constant price of longevity risk, the same value for each
factor in the mortality model. With λ = [λ1, λ2], set so that λ1 = λ2 the instantaneous
Sharpe ratio is λ = 0.1555. We solve equation (28) for λ using a method of least squares.

Figure 3 shows the market pricing and best estimate survivor curves, S(t0, tn−1; 65) and

S(t0, tn−1; 65) respectively, with 99% confidence intervals for a cohort aged 65 at time-
0. The market valuation survivor curve is shifted upwards along with the confidence
intervals.
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Figure 3: Cohort Survival Distribution Aged 65 in 2010

The forward survivor curves, for different ages of the cohort, are shown in Figure
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4. Each curve shows the forward distribution for the survivor index. As the future
age increases the uncertainty also increases substantially. This highlights the extent to
which systematic longevity risk is prevalent at the older ages.
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(a) Distribution at Age 66
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(b) Distribution at Age 75
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(c) Distribution at Age 85
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(d) Distribution at Age 95

Figure 4: Forward Survival Distributions, Cohort Aged 65 in 2010

The liability value for the annuity portfolio that is held by the insurer at time-ti is path
dependent and defined as

Ṽ
(m)
p (ti; x) = Ĩ(m)(ti; x) · â(m)(ti; x), (29)

for path m. The reserve is established only for the actual survivors in the portfolio,
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Ĩ(m)(ti; x), using the time-t market annuity value.

For a fully hedged portfolio, using either the survivor swap or survivor bond, the
initial survivor curve is fixed at time-0. In this case the reserve for the annuity portfolio
is based on the time-0 survivor curve and forward market annuity values,

V̂h(ti ; x) = n0 · Ŝ(0, ti; x) · â(0, ti, tn; x). (30)

The annuity portfolio liability value reflects the proportion of the portfolio that is
hedged, and is given by

Ṽs
(m)

(ti ; x) = (1 − ωh)Ṽ
(m)
p (ti; x) + ωhV̂h(ti; x).

In addition to the actuarial liability reserve the insurer holds other reserves. A solvency
capital reserve, Mp(t), is held according to the Solvency II standards, see QIS51. The
requirement is based on a 20% longevity shock, or decrease in mortality rates, for each
age. The Solvency Capital Requirement (SCR) is given by

M̃
(m)
p (ti) =Ṽ

(m)
p (ti)|Longevityshok − Ṽ

(m)
p (ti)

= Ĩ(m)(ti; x) ·
tn−1

∑
ts=ti

b · exp
(
−

ts

∑
tj=ti

f̂ (m)(tj, ts)
)
·
[

exp
(
−

ts

∑
tj=ti

µ̂(m)(tj, ts; x)
)]1−φ

− Ṽ
(m)
p (ti; x)

= Ĩ(m)(ti; x) ·

[
tn−1

∑
ts=ti

b · exp
(
−

tn−1

∑
ts=ti

f̂ (m)(tj, ts)ds
)
·
[

exp
(
−

tn−1

∑
ts=ti

µ̂(m)(tj, ts; x)ds
)]1−φ

−â(m)(ti; x)

]

= Ĩ(m)(ti; x) ·
[

â(m),φ(ti; x)− â(m)(ti; x)
]
, (31)

where φ = 0.2 is the longevity shock and â(m),φ(ti; x) is the annuity market value based
on the shocked mortality rates.

We consider the effect of capital relief. Assuming ωc, is the proportion of hedged lia-
bilities that are given capital relief, the solvency capital reserve for the hedged portion
of liabilities is adjusted to

M̃
(m)
h (ti) =M̃

(m)
p (ti) · (1 − ωc). (32)

The total solvency capital reserve reflecting the proportion hedged and the extent of

1The European Insurance and Occupational Pensions Authority (EIOPA)
publishes documents relating to the Quantitative Impact Study (QIS) at
https://eiopa.europa.eu/consultations/qis/insurance/quantitative-impact-study-5/index.html
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capital relief is then

M̃(m)(ti) =(1 − ωh) · M̃
(m)
p (ti) + ωh · M̃

(m)
h (ti)

=(1 − ωh · ωc)M̃
(m)
p (ti).

In addition to the insurer holding a reserve for the annuity liabilities, Ṽ
(m)
s (ti), and

the solvency capital requirement, M̃(m)(ti), the insurer also holds a reserve for future
expenses. The expense reserve at time-ti is determined as

Ṽ
(m)
e (ti) =

tn−1

∑
ts=ti

e[r] · Ṽ
(m)
s (ts) · ν(ti, ts), (33)

where ν(ti , ts) is the discount factor at time-ti for a payment at time-ts from the forward

interest rate curve. The recurrent expenses are assumed to be e[r] = 2%. Initial acquisi-

tion costs are incurred and assumed to be e[i] = 3% of the total premium income. This
does not impact the reserves. The total liability reserves are then

Ṽ(m)(ti) = Ṽ
(m)
s (ti) + M̃(m)(ti) + Ṽ

(m)
e (ti). (34)

3.5. Dividend and Recapitalisation Strategy

In the multi-period model a dividend and recapitalization strategy is important for the
insurer. This will have an impact on solvency depending on the simulated mortality
experience. We assume that the insurer strategy is to always meet the Solvency II
capital requirements. However the insurer will only subscribe capital if the actuarial
value of the liabilities is less than available assets. Otherwise the insurer will either
subscribe capital to restore Solvency II requirements or withdraw a dividend if capital
exceeds the Solvency II requirements.

The insurer starts with assets at time-0 from the premiums less initial expenses plus
any shareholder cash flows with

Ã(0) = Ṽ(0) = C̃F(0) + R̃(0)− D̃(0), (35)

where Ṽ(0) is the time-0 total liability reserve, R̃(0) is any initial shareholder capital

subscribed and D̃(0) is any excess capital paid as dividends to shareholders. The initial
assets must be sufficient to meet the liability reserve, including regulatory require-
ments, at time-0.

The asset value at each period for time-ti, i ≥ 1, is given by

Ã(m)(ti) = Ã(m)(ti−1) · (1 + i(ti)) + C̃F
(m)

(ti) + R̃(m)(ti)− D̃(m)(ti), (36)

where R̃(m)(ti) is any additional capital required from shareholders for the insurer

to remain solvent and meet reserving requirement. D̃(m)(ti) represents the capital
released to shareholders as dividends and i(ti) is the investment return for time-ti.
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At time-ti, i ≥ 1, the dividend and recapitalisation strategy is determined by the
financial position of the insurer as follows,

• Ã(m)(ti) < Ṽ
(m)
s (ti): there are insufficient assets to cover time-t liabilities and the

insurer defaults.

• Ã(m)(ti)− Ṽ(m)(ti) < 0: the insurer is not in default, but does not have enough

capital to meet regulatory obligations. The shortfall, R̃(m)(ti), is recapitalised

from shareholders, R̃(m)(ti) = Ṽ
(m)
s (ti) + M̃(m)(ti) + Ṽ

(m)
e (ti)− Ã(m)(ti).

• Ã(m)(ti) − Ṽ(m)(ti) ≥ 0: the insurer is not in default and has enough capital to
meet regulatory requirements. The excess capital is distributed to shareholders

as a dividend, D̃(m)(ti) = Ã(m)(ti)− Ṽ
(m)
s (ti)− M̃(m)(ti)− Ṽ

(m)
e (ti).

3.6. Economic Valuation Approach

The economic valuation approach determines the value of shareholder equity by sub-
tracting the market value of the liabilities of the insurer, frictional costs, expenses and
the limited liability put option from the initial value of premiums. The shareholder
Economic Value (EV) at time-0 is given by

X(0) = Π − V
(m)
s (0)− P̃V

(m)
FC (0)− P̃V

(m)
FCR(0)− P̃V

(m)
E (0) + L̃LPO(0), (37)

Frictional costs arise from a variety of sources including taxation and agency costs as
well as costs of raising capital in the market to recapitalize the insurer. There are two
types of frictional costs in the model. The annual frictional cost on shareholder capital
is set to ρ = 1% of the equity at time-ti. A report by Swiss Re [35] suggests frictional
costs of holding capital of 2%.

In the event of recapitalization the frictional costs, which we refer to as recapitaliza-
tion costs, are assumed to be ψ = 3% of the additional capital subscribed from the
shareholders.

Frictional costs as a proportion ρ of the capital held over and above the market reserve,
are given by

F̃C
(m)

(ti) =ρ · [Ṽ(m)(ti)− Ṽ
(m)
s (ti)]

=ρ · [M̃(m)(ti) + Ṽ
(m)
e (ti)]. (38)

The insurer holds no capital above Ṽ(m)(ti), since the excess is distributed to share-
holders. The present value of the frictional costs is

P̃V
(m)
FC (t) =

tn−1

∑
ts=ti

F̃C
(m)

(ts) · ν(ti , ts). (39)

In the case where the insurer has to recapitalize by subscribing additional capital R̃(ti),
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proportional frictional costs ψ are

F̃C
(m)
R (ti) = ψ · R̃(m)(ti). (40)

The present value of the frictional costs in case of recapitalization is given by:

P̃V
(m)
FCR(ti) =

tn−1

∑
ts=ti

F̃C
(m)
R (ti) · ν(ti , ts). (41)

In the event of insolvency, the shareholders are not required to cover the shortfall
between the assets of the company and its liability. The annuitants receive only the

residual assets. In the event that Ã(m)(ti)− Ṽ
(m)
s (ti) ≤ 0, then at time-ti the surviving

annuitants receive less than the future guaranteed annuity benefits as reflected in the
reserve value, up to the amount of the assets available at that time.

We define the value of this Limited Liability Put Option, L̃LPO
(m)

(ti), at time ti as

L̃LPO
(m)

(ti) = max{0, Ṽ
(m)
s (ti)− Ã(m)(ti)} (42)

where Ṽ
(m)
s (ti)− Ã(m)(ti) is the amount of the liabilities which are unfunded at insol-

vency time-ti.

3.7. Market-Consistent Embedded Value (MCEV)

In the MCEV approach, profits are determined by re-spreading the initial premium
over the life of the annuity contract. This is a deferral-and-matching logic for profit
reporting, with profit released over time. The timing of the emergence of profit is
determined by the lability reserve. The MCEV is the value of future profits. The annual
profit is defined as

C̃F
(m)

(ti) +
(

Ṽ(m)(ti)− Ṽ(m)(ti−1)
)
+ i · Ã(m)(ti−1). (43)

Then, the present value of future profits F̃P
(m)

(ti) is,

F̃P
(m)

(ti) =
tn−1

∑
ts=ti+1

[(
Ṽ(m)(ts)− Ṽ(m)(ts−1)

)
+ i · Ã(m)(ts−1) + C̃F

(m)
(ts)
]
· ν(ti , ts).

(44)

The Value of the In-Force business (VIF) at time t is defined as

VIF(t) = F̃P
(m)

(ti)− P̃V
(m)
FC (ti)− P̃V

(m)
FCR(ti) + L̃LPO(ti), (45)

and the MCEV at time-ti is

MCEV(ti) = VIF(ti) + EQ(ti), (46)
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where EQ(ti) is the time-ti equity of the insurer.

In our case, for valuation at time 0, there are no carried forward profits and no current
equity so EQ(ti) = 0. Liability reserves are funded from the premium received from
policyholders at time-0 and funding raised from shareholders. No capital is held in

excess of the total liability reserving requirement V(m)(ti). The shareholder value is
then given by VIF(ti).

Tables 2 and 3 illustrate the values from the two approaches with a 15% loading on
policyholder annuity premiums and run-off solvency equivalent to a 1 year default
probability of 0.79%, with a fund size of 1399.

For the per policy issued results the actuarial annuity value is $12,180 and the risk
adjusted liability reserve with a risk margin is $12,790. The premium charged to the
policyholder with a 15% loading on the actuarial value is $14,708. Initial expenses are
3% of the premium and the value of renewal expenses is $640 per policy, which is 5%
of the risk adjusted liability reserve. The frictional costs are only 0.8% and the LLPO
almost zero. This reflects the high level of solvency of the life insurer even without risk
management for a premium loading of 15%.

The most striking result is the volatility of the present value of future profits under the
MCEV. Because the initial premium, which has zero volatility in present value terms,
is re-spread and accounted for as part of the annual insurer profit in the MCEV, this
gives rise to volatility in accounting results. Risk management will be shown to be a
very effective way of reducing this volatility.

Economic Valuation

Portfolio Size 1399
1-Year Default Probability 0.79%

Value per
Expected Value CoV policy

A0 $19,597,515 $14,008
Total Assets $19,597,515 $14,008

V0 $17,893,499 $12,790
Frictional Costs $142,612 12.7% $101.94
Recapitalization costs $27,164 69.1% $19.42
Expenses $896,093 5.7% $640.52
LLPO $4,131 961% $2.95
EV $642,277.28 16.42% $459.10

Total Liabilities $19,597,515.13 $14,008.23

Table 2: Economic valuation without risk management
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MCEV
Portfolio Size 1399
1-Year Default Probability 0.79%

Value per
Expected Value CoV policy

Future Profits $807,598 116.5% $577.27
Frictional Costs $142,612 12.7% $101.94
Recapitalization costs $27,164 69.1% $19.42
LLPO $4,131 961% $2.95

VIF $641,952.22 148.24% $458.87

Table 3: MCEV without risk management

With deterministic interest rates, the two approaches produce the same shareholder
values, assuming the insurer does not default. This is because the premium less the
market value liability reserve with risk margin and less the present value of expenses
is equal to the present value of future profits.

4. Results

We consider the situation where policyholder demand is based on the insurer always
meeting the Solvency II requirement of a 1-year default probability of 0.5%. We deter-
mine the optimal premium loading. We consider different combinations of longevity
risk transfer and relief from solvency capital requirements. Levels of reinsurance trans-
fer, ωh, can be either 50% or 100%. Levels of capital relief, ωc, can be either 50% or
100%. These are compared to the case of no reinsurance. This allows us to assess the
impact of both risk management and capital relief.

4.1. Demand Function for a Solvency II Default Probability

We use a default probability in the demand function equivalent to 0.5% per year. The
demand function in this case is given in Figure 5. Using the market size of 25, 000 annu-
itants, a premium loading of 5% results in a portfolio of 5196 annuitants. A premium
loading of 30% reduces the size of the portfolio to 459. Because of this reduction in
demand and the resulting increase in idiosyncratic longevity risk, premium loadings
have significant impacts on solvency.
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Figure 5: Portfolio Size vs Premium Loading

Figure 6a shows the sensitivity of the insurer’s actual annualised 1-year default prob-
ability to the premium loading for the no reinsurance case. The increasing default
probability with premium loading results only from the reduced portfolio size. When
the premium loading reaches 15%, or a portfolio size of 1968, the default probability is
above the Solvency II requirement of 0.5%.

Figure 6b shows the default probabilities with age for a number of premium loadings.
Without hedging, defaults occur in the early years and also the later years of the
annuity contract, especially for the higher premium loadings. For most years the
insurer holds sufficient capital to avoid insolvency. For the 30% premium loading case
the default probability is above the 0.5% Solvency II requirement until the age of 70. In
the 17.5% loading case the default probability is above 0.5% in the first year only, while
the 5% loading case is below the required 0.5% for all years except the final year of the
contract. This is determined by the portfolio size and the resulting idiosyncratic risk,
especially at the older ages. For an insurer charging higher premiums a swap agree-
ment will be more desirable because it is indemnity based and hedges this insolvency
risk.

Figures 7a and 7b show the annualised 1-year default probability with the survivor
bond and survivor swap respectively. For the bond, a higher premium loading also cor-
responds to having higher default probabilities, reflecting the smaller portfolio sizes.
For the survivor swap this effect does not occur since the idiosyncratic risk is hedged.
In all cases the default probability is below the Solvency II requirement for all premium
loadings with hedging. Capital relief has no effect when the insurer is fully hedged.

Capital relief can have an adverse effect on solvency with less than full hedging of
longevity risk. This is because capital relief reduces the amount of capital too much
and a simple one-to-one offset for the hedged risk is not optimal.
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Figure 6: 1-Year Default Probability
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Figure 7: 1-Year Default Probability

4.2. Shareholder Value and Volatility

Figures 8a and 8b show the expected VIF and EV respectively. A premium loading
of 11% or greater is required to generate a positive expected value for shareholders
on a risk-adjusted basis. The shareholder value is increasing until a 20% premium
loading, based on the price elasticity of the demand function. For any fixed premium
loading, there are small gains to the expected VIF and EV values when the insurer
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transfers longevity risk. This reflects the low level of frictional costs for the life insurer.
The VIF is increasing in reinsurance weight and capital relief, with the survivor swap
and survivor bond producing similar results. Although risk management can reduce
frictional costs, the value of this for a life insurer with long term business is not major.
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Figure 8: VIF and EV, Expected Value

Figure 9 shows the impact of hedging on the VIF and the EV volatility. Figures 9a and
9b show the significant benefits of transferring longevity risk in the reduced volatility
of the VIF. Once again, capital relief at 100% of the hedged risk is not optimal when only
partially hedged. There is little difference between the two for the economic value.
However volatility is very different as shown in Figures 9c and 9d. Note the much
smaller scale used for EBS in the figures.
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Figure 9: VIF & EV (Std)

4.3. Shareholder Dividend and Recapitalization Strategy

Figure 10 shows the present value and volatility of dividends distributed to sharehold-
ers over the life of the annuity contract for varying premium loadings. There is a point
between a premium loading of 13% and 16%, where the the value no longer reduces
as shown in 10a. Figure 11 shows that this point corresponds to where the premium
loading is sufficient to meet reserving and regulatory requirements, with no initial
shareholder capital required. For lower premium loadings, the initial shareholder
capital is returned as dividends in addition to the profits from the annuity premiums.
The benefits of risk management on the volatility of dividends is shown in Figure 10b.
Hedging longevity risk results in a significant reduction in dividend volatility.
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The shareholder recapitalisation amounts, excluding initial shareholder capital, are
shown in Figure 12. Recapitalisation is reduced by hedging longevity risk, regardless
of premium loading. The volatility of recapitalisation also reduces significantly. The
extent of capital relief does not have a significant impact on recapitalization require-
ments.
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Figure 10: Dividend
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Figure 11: Initial Shareholder Capital
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Figure 12: Recapitalisation

4.4. Frictional Costs

Figure 13 shows the reduction in expected value and volatility of frictional costs. Fric-

tional costs are based on the difference between the total reserves, Ṽ(m)(t), and the

market value of the annuity liability, Ṽ
(m)
s (t). The expected value of frictional costs are

reduced with hedging. Since insurer defaults occur mainly in the older ages, this has
a minimal effect on the time-0 expected value. The benefits of hedging occur in the
reduction in the volatility of frictional costs as seen in Figure 13b.
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Figure 14: Recapitalization Costs
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Figure 13: Frictional Costs

Figure 14 shows a reduction in the expected value and volatility of recapitalization
costs with hedging. These figures do not include time-0 initial shareholder contribu-
tions, only ongoing recapitalisation costs.

4.5. Expenses

The insurer’s expenses are shown in Figure 15. Hedging does not reduce the expected
value of expenses, but does reduce the volatility.
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Figure 15: Expense
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4.6. Impact of solvency probability

The results assume that policyholder demand is based on the Solvency II default proba-
bility, even if the life insurer has different default probabilities. Risk management using
any amount of hedging will reduce the default probabilities. This increases demand.
The results with the actual default probabilities are not shown here, but give the same
conclusions as presented. In these cases shareholder values as a percentage of the total
assets do not change significantly.

5. Conclusions

We assess the benefits of longevity risk management for a life insurer issuing life an-
nuities. Using a multi-period model for cash flows and a recently developed mortality
risk model we show how longevity risk management has its greatest impact through
a reduction of the default probability of the insurer. This results from a reduction in
volatility of the cash flows. We use an economic value (EV) approach and the MCEV
approach. The MCEV approach generates volatility in future profits in a stochastic
model because of the re-spreading of the initial annuity premium to match future
outgoes. This volatility can be significantly reduced by hedging longevity risk.

Both survivor swaps and bonds reduce volatility. Survivor swaps provide an indem-
nity based hedge and are most effective in reducing risk. The index based survivor
bond does not hedge the idiosyncratic risk. This is an important factor, especially in
the older ages of a cohort, and has a significant impact on solvency. Capital relief for
hedged risk should be carefully assessed. Taking too much capital relief reduces capital
to the extent that it has an adverse impact on the solvency of the insurer.

We incorporate a dividend strategy that maintains the solvency capital requirements
under Solvency II along with market consistent risk margins. We show that an im-
portant benefit of hedging is the reduction in the volatility of the dividends. Since
shareholders will value stability of dividends, this is a benefit of hedging not captured
in standard shareholder valuation models. We also demonstrate how Solvency II cap-
ital requirements are inadequate at the older ages of a cohort because of idiosyncratic
risk.

Since hedging longevity risk results in higher demand, because of the lower default
probabilities, life insurers should manage solvency with hedging and maximize share-
holder value based on policyholder price elasticity. This paper shows how an insurer
can maximize value based on optimal demand and the impact of risk management on
that decision.
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