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Abstract

We introduce a fast upper envelope scan (FUES) method to solve and estimate dy-
namic programming problems with discrete and continuous choices. FUES builds on
the standard endogenous grid method (EGM). EGM applied to problems with contin-
uous and discrete choices, however, does not by itself generate the optimal solution,
as the first order conditions used to retrieve the endogenous grid are necessary but not
sufficient. FUES sequentially checks the secant lines between EGM candidate solution
points and eliminates those not on the upper envelope of the value correspondence
by only allowing discontinuities in the policy function at non-concave regions of the
value correspondence. Unlike previous methods used to perform EGM in discrete-
continuous dynamic models, FUES does not require the monotonicity of the policy
functions or analytical information of the value function gradient. It is also computa-
tionally efficient, straightforward to implement, and for sufficiently large EGM grid
sizes, guaranteed to recover the optimal solution.
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1 Introduction

A numerically less expensive alternative to value function iteration (VFI) to solve stochas-
tic dynamic programming problems is the policy iteration using Euler equations (Cole-
man, 1990; Reffett, 1996; Li and Stachurski, 2014; Bertsekas, 2022; Stachurski, 2022). A
popular Euler equation approach is the the endogenous grid method - EGM. (Carroll,
2006).1 EGM relies on the analytical inversion of the Euler equation and may completely
remove costly numerical root-finding or optimization steps (Iskhakov, 2015). The exist-
ing dynamic programming theory behind deriving Euler equations requires, however, (i)
concavity of the payoffs and transition functions, and (ii) convexity of the feasibility con-
straints – both conditions jointly referred to as the convexity of the problem. Unfortunately,
real world applications are increasingly posing problems that violate convexity, such as,
for instance, in models used to understand frictions (Skiba, 1978; Rust, 1987; Khan and
Thomas, 2008; Kaplan and Violante, 2014; Dobrescu et al., 2016; Attanasio et al., 2018;
Kaplan et al., 2020), the dynamics of housing stock adjustments (Yogo, 2016; Fagereng
et al., 2019), asset pricing in the presence of frictions (Cooper, 2006) or the effect of mort-
gage refinancing on life-cycle asset allocation (Laibson et al., 2021). Without convexity,
EGM generates in such cases a value correspondence with possibly multiple sub-optimal
solutions, all satisfying the necessary conditions.

Our contribution is to present a general, efficient, and user-friendly single dimensional
scan method to compute the upper envelope of the value correspondence generated by
EGM, and obtain the optimal policy function for dynamic programming problems with
discrete and continuous choices. The fast upper envelope scan (FUES) works by noting
that the upper envelope of the value correspondence is the supremum of choice-specific
concave value functions, with each value function corresponding to a history-dependent
future sequence of discrete choices. The convex regions of the upper envelope occur
where different choice-specific value functions cross, with the optimal policy function ex-
periencing discontinuous jumps only in these regions. By comparing secant lines between
the evaluation of the value function on the endogenous grid, FUES sequentially checks if
the inclusion of a potential point forms a concave or convex line segment. If it forms a
concave segment, the point is eliminated as sub-optimal if it induces a jump in the policy
function. If, however, it forms a convex region of the upper envelope, the candidate point
is considered optimal and retained.

1Other methods to use FOCs include the envelope condition method (Maliar and Maliar, 2013; Arellano
et al., 2016), and deep learning methods that minimize the Euler equation error (Maliar et al., 2021). While
here we present FUES in the context of EGM, FUES and our theoretical results carry over to any solution
method that uses FOCs to solve for optimal solutions in a discrete-continuous optimization problem.
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We start by illustrating FUES in practice via three applications. The first application im-
plements FUES in the context of a one-dimensional problem using the classic example
of a model with discrete and continuous choices - i.e., a life-cycle model with discrete
retirement and continuous consumption decisions. The second application implements
FUES in a portfolio allocation problem where previous EGM methods that calculate up-
per envelopes in discrete-continuous models (Iskhakov et al., 2017) fail due to the non-
monotonicity of the policy function. Featuring both liquid and illiquid savings, this exam-
ple also shows how our method can be applied to multidimensional problems that do not
satisfy the conditions for ‘pure EGM’ (Iskhakov, 2015), by breaking up such problems into
a one-dimensional EGM step and a root-finding step. The third application implements
FUES in the context of an infinite horizon model with discrete housing and continuous
financial wealth that, unlike previously, requires finding a value function that is a fixed
point to the Bellman operator.

Next, we provide the theoretical foundation for FUES in its general form and show that
if (i) the size of the jumps between policy functions is bounded below (as is the case
when the policy functions only contain finitely many jumps), (ii) the grid size is large
enough relative to the size of the policy function jumps, and (iii) the endogenous grid
is well-behaved around the crossing points between choice-specific value functions, then
FUES recovers the optimal value function without error. The first two conditions above
ensure FUES can differentiate a jump in the policy function when it induces a shift in
the future discrete choices from a smooth change in the policy along a given sequence of
choices. The third condition ensures that the optimal and sub-optimal points where value
functions intersect are correctly identified. Despite (i)-(iii) being quite abstract to verify in
practice, FUES continues to perform well even at lower grid sizes in all the applications
we investigated.

FUES advances the latest methods to solve discrete-continuous dynamic models pro-
posed in both Fella (2014) and Iskhakov et al. (2017). These methods can successfully
compute the upper envelope of the choice-specific value functions but, as mentioned,
they rely on the monotonicity of the optimal policy functions. While Iskhakov et al. (2017)
does not suggest any way to circumvent non-monotonicity, Fella (2014) identifies optimal
points by using the numerical solution of the Bellman equation in non-concave regions
of the value correspondence. Doing so, however, can be computationally costly and thus
impractical to use in problems with multiple states and large grids. In this respect, our
method advances the literature in three ways. First, FUES does not require the mono-
tonicity of any of the policy functions. Second, we prove the efficacy of FUES in the
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general case, which implies that FUES can be applied as a black-box method to identify
upper envelopes. Third, FUES is considerably easier to implement and does not require
knowing the shape of the policy functions or the gradient of the value function.2

Turning to the broader literature, the scan method we present here is informed by the
methods used to calculate convex hulls of points (Graham, 1972). However, in the con-
text of the existing literature and up to our best knowledge, we are the first to propose
a scanning algorithm to identify upper envelopes. Additionally, dynamic programming
problems with discrete and continuous choices are a special case of mixed integer non-
linear programming problems, where discrete and continuous choices optimize an arbi-
trary function. Relatively recent studies have characterized both sufficient and necessary
first and second order conditions for classes of such problems (Jeyakumar et al., 2007;
Jeyakumar and Srisatkunarajah, 2009), but so far, a condition that is both sufficient and
necessary in the general setting remains elusive. Rather than derive sufficient first or
second order conditions, our method recovers the optimal solution by computationally
approximating the upper envelope of those points that satisfy the necessary conditions.

The paper proceeds as follows. In Section 2, we start by solving and discussing our main
results in the context of three well-known applications. Section 2.1 introduces FUES in-
formally using the simple retirement choice model in Iskhakov et al. (2017) where agents
choose their savings and labor force participation; here we also compare the performance
of FUES to that of the DC-EGM method proposed by Iskhakov et al. (2017). Section 2.2 fur-
ther demonstrates FUES in an application where DC-EGM fails, using a model in which
agents choose whether or not to adjust their illiquid housing stock. Finally, Section 2.3
showcases FUES in the discrete choice model proposed by Fella (2014) where agents de-
cide to hold liquid and illiquid assets via discrete choices. In Section 3, we follow our
study of these applications by formally stating FUES in its general form and providing
the proofs on how FUES accurately obtains the upper envelope without error. Section 4
concludes.

2 Illustrative applications

This section illustrates FUES using well-known dynamic optimization applications. We
will briefly introduce each problem, discuss how their discrete choices result in non-

2The rooftop-cut algorithm suggested by Dobrescu and Shanker (2024) uses the analytical gradient at
each point to evaluate whether neighbouring points are on the upper envelope. By contrast, since FUES
compares secant lines, it requires no gradient information.
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convexity, and detail how FUES can be implemented to retrieve the optimal solution.

2.1 Application 1: Finite horizon retirement choice model

Let us start from the finite horizon retirement and savings choice model in Iskhakov et al.
(2017).

2.1.1 Model environment

Consider an agent that consumes, works (if they so choose) and saves from time t =

0 until time t = T. At the beginning of each period, the agent starts as a worker or
retiree, with the state variable denoting their beginning-of-period work status given by
the discrete variable dt. If the agent works, they earn a per-period wage y. Every period,
the agent can choose to continue working during the next period by setting dt+1 = 1,
or to permanently exit the workforce by setting dt+1 = 0. If the agent chooses to work
the next period, they will incur a utility cost δ at time t. We assume all agents start as
workers so d0 = 1. Agents can also consume ct and save in capital at, with at ∈ S and
S : = [0, ā] ⊂ R+. The intertemporal budget constraint is:

at+1 = (1 + r)at + dty− ct (1)

Per-period utility is given by log(ct)− δdt. Letting the function u be defined by u(c) =

log(c), the agent’s maximization problem becomes:

Vd0
0 (a0) = max

(ct,dt+1)
T
t=0

{
T

∑
t=0

βtu(ct)− δdt+1

}
(2)

subject to Equation (1), at ∈ S for each t, and the fact that the agent cannot return to
work after retiring (i.e., dt+1 = 0 if dt = 0). Let Vdt

t denote the beginning of period value
function. If the agent enters the period as a worker, the agent’s time t value function will
be characterised by the Bellman equation:

V1
t (a) = max

c,dt+1∈{0,1}

{
u(c)− dt+1δ + βVdt+1

t+1 (a′)
}

(3)

where a′ = (1 + r)a + y − c and a′ ∈ S. If the agent enters the period as a retiree, the
agent’s value function becomes:

V0
t (a) = max

c

{
u(c) + βV0

t+1(a′)
}

(4)
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with a′ = (1 + r)a − c. The optimization problem for the retiree is a standard concave
problem. For the worker, however, the optimization problem is not concave since she
optimizes jointly a discrete choice and a continuous choice. Moreover, even conditional
on dt+1 = 1, the next period value function V1

t+1 will not be concave since the value
function represents the supremum over all future feasible combinations of discrete choices.
The non-concavity of V1

t+1 produces the ‘secondary kinks’ described by Iskhakov et al.
(2017).

To see how the choice at time t implicitly controls the future sequence of discrete choices
and produces the secondary kinks, write the time t worker’s value function as:

V1
t (a) = max

c
max
d∈D

{
u(c) + βQd

t+1(a′)
}

(5)

where Qd
t+1 is the t + 1 value function conditional on a given sequence of future discrete

choices d, with d = {dt+1, dt+2, . . . , dT}. In particular, letting δ̄ = {δ, βδ, β2δ, . . . , βT−1δ},
we have:

Qd
t+1(a) = max

(ck)
T
k=t+1

{
T

∑
k=t+1

βtu(ck)

}
− δ̄

Td (6)

subject to Equation (1), at ∈ S for each t, and holding the sequence d fixed. The term δ̄
Td

is the discounted sum of fixed costs associated with a given sequence of future choices d.
The set D contains all feasible sequences of discrete choices that can be made from t to
T. By writing the Bellman equation as above at equation (5), we are able to see how the
maximand on the RHS of Equation (5), for a given sequence of discrete choices d, will be
concave. However, the max operator over the discrete choices does not preserve concav-
ity, and so V1

t will not be concave. Rather, V1
t will be the upper envelope of overlapping

concave functions, with each concave function corresponding to a different sequence of
future discrete choices. Figure 1 characterises such a situation, where the upper envelope
of concave functions is not concave.

To sum up, value function non-concavity, even holding the choice dt+1 fixed, is brought
on by the implicit changes in the entire future sequence of discrete choices as one controls
the choice variable c in Equation (5). In this case, the Bellman equation, Equation (3),
still holds and one can numerically implement VFI to compute a solution. The challenge
arises when, in high-dimensional models, solving the Bellman equation using numerical
methods becomes burdensome computationally. A more computationally efficient strat-
egy involves recovering the policy function by solving for points that satisfy the FOCs
(i.e., the Euler equations) of the Bellman equation. However, since the upper envelope is
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Value function
d- specific value functions Qd

t

d1

d2

d3

d4

Assets (t)

V
al

ue

Figure 1: The time t worker value function V1
t is the upper enve-

lope of concave functions, where each concave function is a value
function conditional on a sequence of future discrete choices. The
subscript ‘i’ on di indicate distinct sequences of discrete choices.

not concave, the points satisfying the FOCs could be associated with any future sequence
of discrete choice in Figure 1, and may not be on the upper envelope.

2.1.2 The Euler equation

We now discuss the FOCs and then proceed to our contribution (i.e., the FUES) as a way
to use necessary first order information to efficiently compute Vt. If the agent chooses
dt+1 = 1 (i.e., they continue as a worker in t + 1), we can write the time t worker Euler
equation as:

u′(c1
t ) ≥ β(1 + r)u′(ct+1)

where c1
t is the time t consumption policy conditional on dt+1 = 1, while ct+1 is the

unconditional time t + 1 consumption policy. On the other hand, if the agent chooses
dt+1 = 0 (i.e.,they retire), then the Euler equation is:

u′(c0
t ) ≥ β(1 + r)u′(c0

t+1)

Functional Euler equations. It will now be helpful to write the Euler equation in its
functional form. Let σd

t : S× {0, 1} → R+ be the conditional asset policy function for the
worker at time t if d = 1 and for the retiree if d = 0. We call σd

t the conditional policy

7

Electronic copy available at: https://ssrn.com/abstract=4181302



because it will depend, through its second argument, on the discrete choice - to work or
not to work in t + 1 - made by the worker at time t. The time t and time t + 1 policy
functions will satisfy the functional Euler equation:

u′((1 + r)a + dy− σd
t (a, dt+1))

≥ β(1 + r)u′((1 + r)σd
t (a, dt+1) + dt+1y− σ

dt+1
t+1 (a′, dt+2)) (7)

where a′ = σd
t (a, dt+1). On the choice of whether to work or not, the time t worker will

chose dt+1 = 1 if and only if:

u((1 + r)a + y− σ1
t (a, 1))− δ + βV1

t+1(σ
1
t (a, 1))

> u((1 + r)a + y− σ1
t (a, 0)) + βV0

t+1(σ
1
t (a, 0)) (8)

Since the discrete choice is itself a function of the state, we can also define a discrete
choice policy function It : S× {0, 1} → {0, 1}. As such, we will have dt+1 = It(a, d) and
dt+2 = It+1(a′, dt+1), where It is evaluated to satisfy (8) each period conditional on the
t + 1 value function.

2.1.3 Computation using EGM and FUES

We now turn to how FUES can identify the upper envelope from a set of points that satisfy
the Euler equations. Fix a time t and suppose the value function Vd

t+1, the discrete choice
function It+1 and the optimal policy function σd

t+1 for d = 0 and d = 1 are known. Let
X̂t, V̂t and X̂′t be sequences of points satisfying the Euler equation for workers:

u′((1 + r)x̂i + dy− x̂′i) = β(1 + r)u′((1 + r)x̂′i + ydt+1 − σ
dt+1
t+1 (x̂′i, dt+2)) (9)

v̂i = u((1 + r)x̂i + dy− x̂′i)− dδ + Vd
t+1(x̂i) (10)

where dt+2 = It+1(x̂′i, dt+1), x̂i ∈ X̂t, v̂i ∈ V̂t and x̂′i ∈ X̂t. Such a sequence of points can
be generated analytically using EGM. In particular:

(1 + r)x̂i + dy− x̂′i = u′,−1
[

β(1 + r)u′((1 + r)x̂′i + ydt+1 − σ
dt+1
t+1 (x̂′i, dt+2))

]
(11)

In the case of the EGM, X̂t is the endogenous grid of points, X̂′t is the exogenous one, and
V̂t is the value correspondence.

Next, order the points in X̂t, V̂t and X̂′t in ascending order of the endogenous grid points
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X̂t. Consider the left panel of Figure 2 as a stylised plot of the endogenous grid points
X̂t and associated continuation payoffs V̂t generated by EGM. Assume for the purpose
of illustration that the EGM points are associated with two overlapping future choice-
specific value functions. The right panel of Figure 2 displays the policy functions (i.e.,
next period assets) associated with each future choice-specific value function. Pick a point
x̂i, with x̂i ∈ X̂t such that x̂′i is optimal given x̂i and it lies on the upper envelope. Note
if the points x̂i+1 and x̂′i+1 imply a different future sequence of discrete choices to x̂i and
x̂′i, then x̂′i+1 will experience a ‘discontinuous jump’ from x̂′i. However, for x̂′i+1 to be on
the upper envelope, it must be that x̂′i+1 can only jump if it occurs after the crossing point
between two value functions (for instance, the point x̂6). That is, (x̂′i+1, v̂i+1) can only
jump if it makes a convex ‘left turn’ from the line joining (x̂′i−1, v̂i−1) and (x̂′i, v̂i). On the
other hand, if (x̂′i+1, v̂i+1) makes a concave ‘right turn’, it cannot jump for it to be on the
upper envelope. The reason is that if (x̂′i+1, v̂i+1) has made a right turn, for (x̂′i+1, v̂i+1) to
be on the upper envelope, it must be on the concave value function yielding the same future
sequence of discrete choices d as implied by (x̂′i, v̂i). If a right turn is associated with a
jump (e.g., point x̂7), then it must be on a value function associated with a sub-optimal set
of future discrete choices. We formally prove this argument in Section 3. Informally, we
can use the intuition from Figure 2 to implement the FUES method as follows (see Section
3 for a formal pseudo-code):

Box 1: FUES method

1. Compute X̂t, V̂t and X̂′t using standard EGM.
2. Set a pre-determined ‘jump detection’ threshold M̄.
3. Sort all sequences in order of the endogenous grid X̂t.
4. Start from point i = 2. Compute gi =

v̂i−v̂i−1
x̂i−x̂i−1

and gi+1 = v̂i+1−v̂i
x̂i+1−x̂i

.

5. If | x̂
′
i+1−x′i

x̂i+1−x̂i
| > M̄ and a right turn is made (gi+1 < gi), then remove point i + 1

from grids X̂t, V̂t and X̂′t. Otherwise, set i = i + 1.
6. If i + 1 ≤ |X̂t|, then repeat from step 5.
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Optimal point
Sub-optimal point

(x̂1, v̂1)

(x̂2, v̂2)
(x̂5, v̂5)

(x̂3, v̂3)

(x̂4, v̂4)

(x̂6, v̂6)

(x̂8, v̂8)

(x̂7, v̂7)
(x̂9, v̂9)

Endogenous grid (assets (t))

V
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ue

(x̂1, x̂′1)
(x̂2, x̂′2)

(x̂3, x̂′3)
(x̂4, x̂′4)

(x̂7, x̂′7)
(x̂9, x̂′9)

(x̂5, x̂′5)
(x̂6, x̂′6)

(x̂8, x̂′8)

Endogenous grid (assets (t))
Po

lic
y

Figure 2: FUES eliminates points that cause a concave ‘right turn’ (left panel)
from an optimal point and also cause a discontinuous jump in policy (right
panel).

The method will yield a set of refined grids Xt, Vt and X′t. To address the occasionally
binding lower bound asset constraint, we follow the approach by Iskhakov et al. (2017).
The policy and value functions can then be interpolated over these grids to yield the time
t approximated solution for the worker who chooses to continue working. The retiree
value and policy functions can be calculated using standard EGM since the retiree prob-
lem is concave at each time t. Once the retiree problem is solved for time t, the discrete
choice at time t of whether or not to work at time t + 1 can be evaluated. The procedure
can then be repeated at t− 1 as per standard backward policy iteration.

Numerical example. We apply FUES to solve the model studied in Iskhakov et al. (2017),
with Figure 3 showing how FUES removes sub-optimal points in the value function (left
panel) and selects the optimal policy function (right panel). Figure 4 plots the policy func-
tions for workers at different ages, as a direct comparison to Figure 3 in Iskhakov et al.
(2017).3 Despite a modest grid size of 2,000 points and performing only naive linear in-
terpolation, we find that FUES is able to accurately pick up the upper envelope of the
future choice-specific value functions, and also accurately replicate the shape of the con-

3In doing this comparison, note that we retain liquid assets as a state variable (since we do not need to
prove monotonicity), while plot Figure 3 in Iskhakov et al. (2017) uses total wealth - i.e., the sum of liquid
assets, asset returns and wages - as a state variable.
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Figure 3: Value correspondence and optimal points for t = 17. Pa-
rameters from Iskhakov et al. (2017), Figure 3.

Figure 4: Optimal consumption functions for workers. Param-
eters from Iskhakov et al. (2017), Figure 3.
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sumption functions. Moreover, the added computational time involved in running FUES
is only a small proportion of the overall EGM time. This means that FUES has inher-
ited EGM’s computational efficiency, which has been shown to be orders of magnitudes
higher than that of VFI (Iskhakov et al., 2017).4

For comparison, we also compute the upper envelope using DC-EGM as in Iskhakov
et al. (2017) using the code libraries provided by Carroll et al. (2018). For a 1003 grid of
parameter values for β, r, and y and holding the jump detection threshold M̄ fixed, we
find that FUES recovers an identical solution to DC-EGM for each parameter value.5

2.1.4 Endogenous grid-specific jump detection

In practice, we find that selecting a reasonable constant value for M̄ through experimenta-
tion (and subsequently verifying the upper envelope is recovered) works well. However,
an endogenous jump detection threshold M̄⋆

i can also be theoretically derived based on
the curvature of the policy functions, and easily computed for each grid point. To this
effect, note that the role of the jump detection threshold is to detect a point x̂i+1 that does
not lie on the same future choice-specific policy function as x̂i. Consider now that for any
real-valued continuously differentiable function f on an interval I, by the Mean Value
Theorem, we must have that | f (y)− f (x)| ≤ L|y− x|, where L = sup{| f ′(z)| : z ∈ I}.
Let σd

t be the asset policy function at time t, conditional on a future sequence of discrete
choices d - recall the discussion below Equation (5). The functions a 7→ σd

t (a) are contin-
uously differentiable and convex (Carroll, 2004) since all future discrete choices are held
fixed. For any exogenous grid point x̂i+1 to imply the same future discrete choices as x̂i,
we must then have:

|σdi
t (x̂i)− σ

di+1
t (x̂i+1)| ≤ M̄⋆

i |x̂i+1 − x̂i| (12)

where M̄⋆
i = max

{∣∣∂σdi+1(x̂i+1)
∣∣ ,
∣∣∂σdi(x̂i)

∣∣} and the notation ∂ is used to denote the
derivative of the policy function with respect to assets. The term di above is the future
sequence of discrete choices implied by the exogenous grid point i. If two points do not
satisfy the above inequality, then they cannot lie on the same future choice-specific policy
function and we have ‘detected a jump‘ in the policy function.

Starting from the exogenous grid points, we can use the Euler equation for the problem

4On a single core Intel Xeon ’Cascade Lake’ CPU, the overall EGM time to compute the policy functions
for 20 years was 1.2 seconds, while FUES only took 0.3 seconds.

5To independently check FUES’s sensitivity to various parameter values, use the code available here.
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to derive the terms ∂σdi(x̂i) analytically and recursively as follows:

∂σ
di
t (x̂i) =

(1 + r)u′′(ĉi)

u′′(ĉi) + β(1 + r)u′′(ĉ′i)[(1 + r)− ∂σ
di
t+1(x̂′i)]

(13)

where ĉ′i is the next period consumption implied by the exogenous grid point i. It is im-
portant to note that the dependence of the policy function derivatives ∂σ

di
t on the future

sequence of discrete choices is given implicitly by the exogenous grid point i. Thus the
above derivative can be calculated by evaluating the RHS above as follows: (i) evalu-
ate u′′(ĉi) using the ĉi implied by the standard EGM step, and then (ii) evaluate the next
period value u′′(ĉ′i)

[
(1 + r)− ∂σ

di
t+1(x̂′i)

]
using an interpolant of the function u′′(c′)[(1 +

r)− ∂σd
t+1(x′)]. In what follows, at a time t iteration, the function u′′(c′)

[
(1 + r)− ∂σd

t+1(x′)
]

is evaluated on the exogenous grid points and stored in a grid Ô′t. (For period T, we can
use ∂σd

T = 0 since all wealth is consumed.) In particular, fixing a time t and noting ô′i ∈ Ô′t,
define:

∆̂i =
(1 + r)u′′(ĉi)

u′′(ĉi) + β(1 + r)ô′i
≈ ∂σ

di
t (x̂i) (14)

ôi = u′′(ĉi)
[
(1 + r)− ∆̂i

]
(15)

Using the above, Ôt can be constructed from the points ôi. The modified pseudocode for
FUES with endogenous jump detection becomes:6

Box 2: FUES method with endogenous jump detection

1. Compute X̂t, Ĉt, V̂t, Ôt, X̂′t, Ĉ′ and Ô′t using standard EGM.
2. Sort all sequences in order of the endogenous grid X̂t.
3. Start from point i = 2.
4. Compute gi =

v̂i−v̂i−1
x̂i−x̂i−1

, gi+1 = v̂i+1−v̂i
x̂i+1−x̂i

, ∆̂i, and ∆̂i+1.
5. If the endogenous bound in Equation (12) is violated and a right turn is made

(gi+1 < gi), then remove point i + 1 from grids X̂t, V̂t, Ôt, X̂′t and Ô′t. Other-
wise, set i = i + 1.

6. If i + 1 ≤ |X̂t|, then repeat from step 5.

6The FUES implementation with endogenous jump detection is provided as an additional option in the
code repository of this paper.
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Figure 5: Forward and backward scans to improve accuracy of FUES around
crossing points.

Once the scan is complete for time t, the refined grid Ot can be interpolated on the refined
endogenous grid along with the refined value and policy function. We also point out that
if the policy functions are Lipshitz and there are only finitely many jumps, then the grid-
specific bounds will be bounded and we will have effectively chosen a bound at each grid
point such that the jump detection threshold at Assumption 4 in Section 3 is satisfied. As
a result, for a grid size large enough, FUES will eliminate all sub-optimal points without
error.

2.1.5 Forward and backward scans

So far, we assumed that if a point (x̂i+1, v̂i+1) makes a left turn from point (x̂i, v̂i), then
it is a sufficient and necessary condition for the point (x̂i+1, v̂i+1) to lie after a cross-point
of value functions between itself and (x̂i, v̂i). However, a point (x̂i+1, v̂i+1) may lie after
a crossing point and yet not generate a left turn with respect to point xi. This situation is
presented in the left panel of Figure 5. We also assumed that the first point after a crossing
point (x̂i+1, v̂i+1) must be on the optimal choice-specific value function. However, a se-
lected point may be the first point after a crossing between choice-specific value functions
and not be optimal. This situation is presented in the right panel of Figure 5, where the
point (x̂i, v̂i) is sub-optimal but will not be removed by the basic FUES method since it is
on the same discrete choice as the optimal point right before the crossing point.

To rectify the issue seen in the left panel of Figure 5, we can implement a forward scan
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before a point is eliminated. A forward scan picks a point x̂q to the right of x̂i+1 that is on
the same value function as x̂i. The point x̂q can be found by checking points after i + 1
on the endogenous grid and finding the first point whose policy function does not jump
from the point x̂i. We can then check to see if the point x̂i+1 dominates the line segment
joining (x̂i, v̂i) to (x̂q, v̂q), drawn as gw in the left panel of Figure 5. If x̂i+1 dominates the
line segment, it means x̂i+1 lies after a crossing and must be included as an optimal point.

To rectify the issue seen in the right panel of Figure 5, we can implement a backward scan
after making a left turn. A backward scan picks a point x̂q to the left of x̂i that is on the
same value function as x̂i+1. The point x̂q can be found by checking points before i on the
endogenous grid and finding the first point whose policy function does not jump from
the point x̂i+1. We can then check to see if the point x̂i is dominated by the line segment
joining (x̂i+1, v̂i+1) to (x̂q, v̂q), drawn as gw in the right panel of Figure 5. If x̂i is dominated
by the line segment, then it means x̂i lies after a crossing and must not be included as an
optimal point.

Finally, note that the forward and backward scan procedures can be used to attach ap-
proximations of the choice-specific value functions crossings to the endogenous grid. For
instance, in the right panel of Figure 5, a crossing point can be attached by taking the
intersection of the line segment gw with the line segment g2.

2.1.6 Requirements for FUES accuracy and performance on lower grid sizes

Let us now briefly discuss the conditions required for FUES to guarantee it deletes all
sub-optimal points, but only these ones. We present a formal proof and state conditions
under which FUES recovers the upper envelope in Section 3.

First, note that to guarantee a zero approximation error, the formal FUES theory requires
that the pathologies discussed in Section 2.1.5 do not occur. In practice, even if this does
not hold, we still see the forward and backward scan performing well in approximating
the optimal points around choice-specific value function crossings.

Second, the formal treatment of FUES also requires the jumps between two choice-specific
policy functions to be detectable. Note that every time we move between the two seg-
ments of the policy function in Figure 3, a large jump in x′ occurs. For FUES to guarantee
that an optimal point is picked up, one condition we require is that the jump size be-
tween all policies generated by different discrete choice combinations is sufficiently large
compared to the distance between the endogenous grid points. This ensures that when a
jump to a sub-optimal point occurs, it is registered by FUES. Moreover, policy functions
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are all required to be smooth and have a common Lipshitz constant, which ensures that
changes along a policy function, given a sequence of discrete choices, are not so large as to
incorrectly delete optimal points. The Lipshitz condition on the problem here is straight-
forward to satisfy, since there are only finitely many policy functions at any given time t,
and each one is smooth given a future sequence of discrete choices.

Despite the above requirement of a sufficiently dense endogenous grid, we find FUES
performs well on lower grid sizes too. Figures 10 - 13 compare the upper envelopes of
FUES with DC-EGM, with grid sizes as small as 200, for t = 17 and using the baseline
Iskhakov et al. (2017) parameters. Even though lower grid sizes result in a poorer approx-
imation of the discrete jump point, as can be expected with any EGM method that uses
a uniform exogenous grid, we find that FUES performs as well as DC-EGM. Indeed, for
each grid size we explore, the FUES upper envelope matches DC-EGM.

One limitation of the proofs we present in Section 3 is that when there are infinitely (un-
countably) many possible discrete choices, it may not be possible to show that jump sizes
are bounded below. With the addition of taste shocks that generate a smoothed version
of the model presented here by incorporating uncountably many future discrete choices,
we see, however, that jump sizes are sufficiently large. In such cases, FUES is then able to
successfully pick the optimal grid points (see Figures 8 - 9 in the Appendix).

2.2 Application 2: Continuous housing stock with adjustment frictions

Having introduced FUES via a simple application, we now turn to demonstrate it in a
housing frictions example where the DC-EGM method outlined by Iskhakov et al. (2017)
cannot be applied due to the non-monotonicity of the policy function. Interestingly, the
example in this section also features two dimensions of savings, one for liquid assets
and one for illiquid (housing) assets. Despite being a veritable workhorse in the hous-
ing frictions literature (Kaplan and Violante, 2014; Yogo, 2016; Dobrescu et al., 2022), the
conditions that Iskhakov (2015) requires for multidimensional ‘pure EGM’ do not hold
here, with the set of Euler equations not analytically invertible. As such, this example
also shows how one-dimensional EGM and FUES can be practically applied to a mul-
tidimensional setting where the Iskhakov (2015) conditions fail. The solution strategy
will involve numerically obtaining all the roots of the liquid assets Euler equation along
a single dimension, and then evaluate the optimal non-monotonic housing policy, and
implicitly the optimal liquid asset policy, using EGM and FUES.7

7We point out that non-monotonicity and multidimensionality are in general separate issues. The in-
applicability of DC-EGM (Iskhakov et al., 2017) arises not because of the failure of the multidimensional
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2.2.1 Model environment

To start, let a non-negative liquid asset (i.e., financial wealth) be denoted by at and a non-
negative housing asset be denoted by Ht. The liquid asset earns a rate of return r and
for simplicity we assume housing earns no returns. Investments can be made in and out
of the stock of at without friction. However, adjusting the housing stock to a value Ht+1

requires a payment of τHt+1, with τ > 0. In each period t, with t = 0, 1 . . . , T, the agent
consumes non-housing goods ct, and invests a total of Ht+1 in the housing stock and at+1

in the liquid stock. The agent also makes a discrete choice dt, where investment in and
out of the housing stock can only be made if dt = 1; otherwise if dt = 0 then Ht+1 = Ht.
Finally, in each period, the agent earns a stochastic wage yt and we assume (yt)T

t=0 is a
finite, Markov process.

The following budget constraints will hold for each t. First, total investments and con-
sumption cannot exceed total available wealth each period:

yt + (1 + r)at + dtHt ≥ ct + at+1 + dt(1 + τ)Ht+1 (16)

Second, in terms of payoffs, the agent lives up to time T, after which they die and value
the bequest they leave behind according to a function θ : R+ → R ∪ {−∞}. Per-period
utility is given by a real-valued function φu

t : R+ ×R+ → R∪ {−∞} defined as:

φu
t (ct, Ht+1) = 1t≤Tu(ct, Ht+1) + 1t=T+1θ(cT+1) (17)

where u is a concave, jointly differentiable, increasing function. In the per-period utility
function, the agent earns payoffs from non-housing consumption ct and the housing stock
available at the end of the period, Ht+1.8 Formally, the agent’s dynamic optimization
problem becomes:

V0(a0, H0, y0) = max
(at,Ht,dt)

T+1
t=0

T+1

∑
t=0

βtEφu
t (ct, Ht+1) (18)

such that (16) and (17) hold, Ht ≥ 0 and at ≥ 0 for each t and a0, H0 and y0 are given. The
expectation above is taken over the wage process (yt)T

t=0. The sequential problem implies

conditions in Iskhakov (2015). Moreover multiple dimensions and failure of Iskhakov (2015) are not neces-
sary conditions for non-monotonicity to arise in a policy function.

8See Yogo (2016) for a similar formulation.
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the following recursive Bellman equation:

Vt(a, H, y) = max
a′,H′,d

{
φu

t (c, H′) + βEyVt+1(a′, H′, y′)
}

(19)

where the prime notation indicates next period state values satisfying the budget con-
straint, and c = yt + (1 + r)a + dH − a′ − d(1 + τ)H′. In the Bellman equation, expecta-
tions are now conditional on time t realization of the wage process y.

One final remark. In contrast to Application 1, the application here features uncertainty.
The solutions to the sequential problem in Equation (18) provide the paths of the discrete
choices. Within a path, each period’s discrete choice depends on the history of shocks
up to that time. However, we assume the exogenous shock takes on finitely many values
each period. There are thus finitely many possible future sequences of history-dependent
discrete choices that can be collected in a finite set D, similar to Application 1 (see discus-
sion of Equation (5)). As a result, the intuition related to what causes the secondary kinks
we discussed via Figure 1 carries over to the context of this application too.

2.2.2 The Euler equations

The problem will feature two Euler equations, one for each state. For periods prior to the
terminal one, the Euler equation for the liquid assets will be:

u1(ct, Ht+1) ≥ β(1 + r)Etu1(ct+1, Ht+2) (20)

where we have used the subscript ‘1’ to refer to the first partial derivative of u and will
use the subscript ‘2’ to refer to the second partial derivative of u. If dt = 1, the Euler
equation for the housing stock will be:

(1 + τ)u1(ct, Ht+1) ≥

Marginal value of
housing services stream︷ ︸︸ ︷

Et

ι−1

∑
k=t

βt−ιu2(ck, Hk+1) + Etβ
t−ι (u1(cι, Hι+1))︸ ︷︷ ︸
Marginal value of

liquidating housing at time ι

(21)

The intuition of the Euler equation (20) for the liquid stock is standard. The Euler equation
for the housing stock (21), however, features a stochastic time subscript ι, defined as the
next time period when dι = 1. Since the next time the stock is adjusted will be stochastic,
ι becomes a random stopping time. The Euler equation for the housing stock then tells
us that the shadow value (price) of investment (or withdrawal) from the housing stock is
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given by the discounted expected value of the stock when the stock is next liquidated,9 along
with the stream of housing services provided up to the time of liquidation.

Functional Euler equations. Since the solution sequence for the problem will be recur-
sive, there exists measurable functions σa

t , σH
t and It such that Ht+1 = σH

t (at, Ht, yt),
at+1 = σa

t (at, Ht, yt) and dt = It(at, Ht, yt) for each t. Also let σa,d
t and σH,d

t denote the
choice-specific policy functions conditional on the time t discrete choice d ∈ {0, 1}. In-
serting the policy functions back into (20) and (21) yields the functional Euler equation
for the housing stock:

u1(c, H′)(1 + τ) ≥ βEyIt+1(a′, H′, y′)u1(c′, H′′) + u2(c, H′)

+ (1− It+1(a′, H′, y′))β
[
EyΘt+1(a′, H′, y′) + u2(c′, H′)

]
(22)

where:

c′ = (1 + r)σa,1
t (a, H, y) + σH,1

t (a, H, y) + y′

− σa,1
t+1(a′, H′, y′)− σH,1

t+1(a′, H′, y′)(1 + τ) (23)

c = (1 + r)a + H + y− σa,1
t (a, H, y)− σH,1

t (a, H, y)(1 + τ) (24)

H′′ = σH,1
t+1(a′, H′, y) (25)

and we have a′ = σa,1
t (a, H, y) and H′ = σH,1

t (a, H, y). The additional term Θt+1 is a
multiplier denoting the continuation marginal value of the housing stock if the time t +
1 stock is not adjusted. For a set of recursive t + 1 recursive policy functions, we can
compute Θt as a function of the states as follows:

Θt(a, H, y) = EyIt+1(a′, H′, y′) + u2(c, H′)

+ βEy(1− It+1(a′, H′, y′))
[
Θt+1(a′, H′, y′) + u2(c′, H′)

]
(26)

The functional Euler equation for the liquid assets stock becomes:

u1(c, H′) ≥ β(1 + r)Eyu1(c′, H′′) (27)

with c, c′ H′ defined analogously to (23) and (24), and where if the time t discrete choice

9See Section 4.1 in Kaplan and Violante (2014) for a similar intuition, and Appendix C.3 in Dobrescu
et al. (2022) for a formal treatment.
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is not to adjust, then d = 0.

2.2.3 Computation using EGM and FUES

Suppose we know Vt+1, {σa,d
t+1, σH,d

t+1}d∈{0,1}, It+1 and Θt+1. We can first apply standard
EGM with FUES to evaluate σa,0

t for non-adjusters since only one Euler equation - i.e.,
equation (27) - will hold. For each possible time t housing state Ht in the housing grid and
exogenous state yt, we can approximate σa,0

t (·, Ht, yt) by first setting an exogenous grid
of a′ values (holding H′ = Ht fixed since no adjustment takes place) and then creating an
endogenous grid of t period liquid assets using Equation (27) and the budget constraint
(16). FUES can then be applied as described in Section 2.1.3 to eliminate the sub-optimal
points, allowing us to obtain an approximation of the policy function σa,0

t .10

Let us now calculate the housing policy functions for adjusters. First, note we can evalu-
ate consumption today c, for a given value of H′ and a′ as follows:

c = u−1
1 ((1 + r)βEyu1(c′, H′′), H′) (28)

where u−1
1 is the analytical inverse of u1 in its first argument. The procedure to evaluate

the policy functions for adjusters is as follows:

10Once again, to address occasionally binding constraints, we follow the approach Iskhakov et al. (2017).
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Box 2: FUES and EGM for adjuster policy function

1. Fix y, fix an exogenous grid over H′, H̃′ and initialise empty arrays for the
housing policy (Ĥ′), current period value (V̂), liquid assets policy function
(Â′) and endogenous wealth grid (X̂).

2. For each ĥi ∈ H̃′:
(i) Evaluate the P multiple roots to Equation (22) in terms of a′, with c eval-

uated by Equation (28) and H′ fixed as ĥi; collect the roots in a tuple
(â′,0, . . . , â′,p, . . . â′,P).

(ii) For each root in (â′,0, . . . , â′,p, . . . , â′,P), evaluate the endogenous grid
points of wealth (x̂0, . . . , x̂p, . . . , x̂P) using the budget constraint:a

x̂p = â′,p + (1 + τ)ĥi + c

and evaluate the current period values (v̂′,0, . . . , v̂′,p, . . . v̂′,P) as:

v̂′,p = u(c, ĥi) + EyVt+1(â′,p, ĥi)

(iii) Append the P multiple roots (â′,0, . . . , â′,p, . . . â′,P) to Â′, the time t values
to V̂, the endogenous grid points to X̂, and P copies of ĥi to Ĥ′.

3. Apply FUES (Box 1, Section 2.1.3) to the grids V̂, X̂ and Ĥ to recover the
refined endogenous grid points X, value grid V, and policy grids A′ and H′.

aTo save computation time, the endogenous grid for adjusters is defined in terms of cash-on-
hand x, where x = (1 + r)a + H + y since once housing is liquidated, only total wealth will affect
the agent’s decision.

We can apply the above steps to each y in the exogenous shock grid. With σH,1
t and σa,1

t

approximated on a uniform grid, we can then construct σH
t and σa

t in the standard way
by comparing the value function for adjusters and non-adjusters at each point on the
uniform grid of current period states.

Before we turn to the numerical example, let us discuss how the non-monotonicity of
the endogenous grid points arises for the housing-adjusting policy functions. The EGM
above generates an exogenous grid Ĥ′, and an endogenous grid X̂ that satisfy:

u1(ĉ, Ĥ′) = βEyIt+1(ψ̂t(x̂, Ĥ′), Ĥ′, y′)u1(c′, H′′) + u2(c, H′)

+ (1− It+1(ψ̂t(x̂, Ĥ′), Ĥ′, y′))βEy
[
Θt+1(ψ̂t(x̂, Ĥ′), Ĥ′, y′) + u2(c′, H′)

]
(29)
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where:
ĉ = x̂− ψ̂t(x̂, Ĥ′)− (1 + τ)Ĥ′ (30)

and the terms c′ and H′′ are defined as in equations (23) - (25). The function ψ̂t gives
the value of a′ that satisfies the liquid asset Euler equation (27), for a given value of x̂
and Ĥ′. To see the source of the non-monotoncity of H′ in terms of the x̂ above, first
note how holding ψ̂t fixed, the term on the LHS of Equation (29) above falls as wealth
x̂ increases, resulting in a higher level of housing investment. However, allowing ψ̂t to
also adjust alongside x̂ implies that ψ̂t may experience a discontinuous jump up, causing
a discontinuous rise in the marginal utility of consumption today and a discontinuous
fall in housing investment. Such a discontinuous jump in ψ̂t occurs because ψ̂t is not
evaluated for a fixed future path of discrete choices. If in a future period the agent reaches
a threshold level of wealth and upgrades their housing stock, they will discontinuously
decrease their non-housing consumption, causing a jump in the RHS of Equation (27).11

Numerical example. To parametrise the model, we use a separable specification for
non-housing consumption and housing as follows:

u(c, H) =
cγ−1 − 1

γ− 1
+ α log(H) (31)

and define the bequest function as θ(c) = θ̄u(c, 0). To parametrize the model, we set
γ = 3, α = 0.66, β = .93, τ = .18, r = 0.01, θ̄ = 1.34 and T = 60. For simplicity, we
assume i.i.d income shocks with a random variable z̃ taking values in [0.1, 1] with equal
probability, and assume yt = ỹt(z̃) where ỹt is the wage function for females in Dobrescu
et al. (2016).

We implement VFI with a combination of Nelder-Mead and Brent’s method to perform
numerical optimization at each point on the state space for adjusters and non-adjusters.
Discretizing the model on a 300 × 300 grid, despite the intermediate root-finding step,
still shows EGM with FUES outperforming VFI. The map of endogenous grid points to
the exogenous grid Ĥ′ for a 59 year old is shown in Figure 6. Additionally, Figure 14 in
the Appendix compares the policy function computed via VFI with the one computed via
FUES and EGM.12 First note that there are multiple endogenous grid points for each value

11In terms of the monotone comparative static arguments given by Iskhakov et al. (2017) in Theorem 4.,
allowing a′ to adjust implicitly as a function H′ implies that the continuation value no longer enjoys the
single crossing property since now the per-period payoff u also exhibits a jump and is not concave.

12On a single core CPU, VFI used approx. 260 secs/iteration; EGM + FUES used approx. 7 secs.
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Figure 6: EGM wealth points plotted on a uniform exogenous
grid in the housing model with frictions.

of the exogenous grid. Also, the endogenous grid has no discernible monotone segments
that can be identified by the DC-EGM procedure suggested by Iskhakov et al. (2017).
Moreover, the optimal endogenous grid ‘jumps down’, implying the policy function is
not monotone. We can see, however, how FUES recovers the optimal points by zooming
in on the top right-hand section of the exogenous grid in Figure 7. Once again, we see
our method successfully recovering the upper envelope by eliminating all jumps in the
policy function that do not result in a left turn on the value function.

2.3 Application 3: Infinite horizon housing choice model

In our final example, we turn to the discrete choice model of housing decisions posed
by Fella (2014). Unlike the previous example, the housing choice grid itself is discrete.
Because of this, we no longer have to use root-finding procedures in addition to the EGM.

2.3.1 Model environment

Consider an agent who draws an infinite sequence of bounded, stationary, Markov labor
income shocks (yt)∞

t=0. Each period the agent decides how much to consume of durable
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Figure 7: Value function and optimal housing policy function
for the top right-hand section of the endogenous grid in the
housing model with frictions.

goods ct, how much to save in liquid assets at+1, and how much to save in housing assets
Ht+1. Similar to Application 2, housing assets serve a dual role, namely they are a form of
investment good but also provide consumption services. Moreover, housing can only be
purchased in discrete amounts on a finite grid H, and adjusting the housing stock each
period incurs a fixed transaction cost τHt+1, with τ ∈ [0, 1). We assume no borrowing
and so, at ≥ 0 must hold.

Formally, the budget constraint for each household can be stated as:

at+1 = (1 + r)at + yt − (Ht+1 − Ht)− τ1Ht+1 ̸=Ht Ht+1 − ct (32)

with the per-period utility function defined as:

u(c, H) = α log(c) + (1− α) log(H) (33)

The agent’s maximization problem yields the following value function:

V0(a, y, H) = max
(at,Ht)∞

t=0

E
∞

∑
t=0

βtu(ct, Ht+1) (34)
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such that (32) and (33) hold, Ht ∈H and at ≥ 0 for each t, and a0, y0, h0 = a, y, H. We can
write the Bellman equation as:

V(a, y, H) = max
c,H′

{
u(c, H′) + EyV′(a′, y′, H′)

}
(35)

such that a′ satisfies the feasibility condition. Since this is an infinite horizon problem, re-
call the fixed point to the Bellman equation yields the value function, and the maximizing
correspondence yields the policy functions.

2.3.2 The Euler equation

Let us write down the necessary Euler equation. Consider time t + 1 policy functions
σa

t+1 and σH
t+1, which map the time t + 1 states (i.e., liquid assets at+1 and housing Ht+1)

to time t + 2 states. We then have at+2 = σa
t+1(at+1, Ht+1) and Ht+2 = σH

t+1(at+1, Ht+1). A
necessary condition is for at+1 to solve the Euler equation in terms of a′ as follows:

u′((1 + r)at + yt −Φ(Ht, Ht+1)− a′)

≥ Eyt(1 + r)βu′((1 + r)a′ + yt+1 −Φ(Ht+1, Ht+2)− σa
t+1(a′, Ht+1)) (36)

where we let Φ(Ht, Ht+1) = (Ht+1 − Ht)− τ1Ht+1 ̸=Ht Ht+1 to ease the notation.

Once again, to state the source of the non-concavity here, recall that the standard ap-
proach in concave models is to solve a′, then approximate σt, σt−1, σt−2 and so on until
σt converges. However, in the case of discrete choices, even if the choices Ht+1 and Ht+2

are held fixed or calculated to maximize the value function, the difficulty arises when we
try to compute the policy functions recursively. Given the time t + 1 asset policy function
σa

t+1, ct+1 may not be monotone and there may be multiple roots to the above equation in
a′ because σa

t+1 has implicitly inherited discrete choices from future periods. As a result,
we may implicitly select a sub-optimal discrete choice for periods after time t + 2 and
hence select a sub-optimal local turning point a′.

2.3.3 Computation using EGM and FUES

In light of our discussion in Section 2.1, the use of FUES to the application here is straight-
forward. To proceed with computation using EGM and FUES, we can start with an initial
guess for the value function and policy functions, VT, σa

T and σH
T . Since there is only one

Euler equation, we can use EGM without any root-finding steps and calculate the endoge-
nous grid for each H, H′ choice fixed. We then follow the procedure detailed in Section
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2.1.3 to remove sub-optimal grid points and evaluate the discrete choice policy function.
Once approximations of VT−1, σa

T−1 and σH
T−1 are obtained, we continue to iterate until

∥VT−i − VT−i−1∥∞ < ϵ for some pre-determined ϵ > 0. We use the same parameters as
Fella (2014), except we set the lower bound on assets to zero, we use 2-state i.i.d income
shocks, and work with a housing grid size of 4 points. Figure 15 in the Appendix shows
the asset policy functions for different beginning-of-period housing levels (but allowing
the end-of-period housing choice H′ to be endogenous). Once again, we see that FUES
is able to recover the optimal policy function. Note that while the infinite horizon pol-
icy function implicitly defines infinitely many future discrete housing choices, the policy
functions only contain finitely many jumps.13

3 Theoretical foundation

In this section, we formally define a general discrete-continuous optimization problem,
apply the EGM and state the FUES method as a formal pseudo-code. Once we have
stated the formal version of FUES, we provide the proof that FUES recovers the optimal
endogenous grid points.

3.1 The general discrete-continuous optimization problem

Let the set D be a finite family of discrete choices and let
{

Gd}
d∈D

be a family of con-
tinuously differentiable, increasing and strictly concave functions indexed by the discrete
choices. Assume that Gd : S× Z → R ∪ {−∞} for each d, with S ⊂ R and Z ⊂ R, and
that S and Z are compact. In the context of a dynamic programming problem, each ele-
ment in the choice set D will be a future sequence of history-dependent choices (and not
a single discrete choice at a given time), or a set of maps from future sequences of shocks
to discrete choices. However, for simplicity, going forward we refer to each d as a discrete
choice. The function Gd will be the maximand on the right hand side of the Bellman op-
erator, holding the discrete choice fixed (see discussion in context of applications below).
Now, consider the following problem of maximizing the upper envelope, U, of the choice
specific functions with respect to a continuous choice variable z:

V(x) = max
z

U(x, z) (37)

13Nonetheless, in a general infinite horizon model, we have not been able to define conditions that guar-
antee only finitely many jumps.
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where:
U(x, z) = max

d
Gd(x, z) (38)

such that x is fixed. Next, define I(x, z) = arg max
d

Gd(x, z) as the optimal discrete choice

holding the arguments of each Gd fixed. Also, define the optimal policy function as:

σ(x) = arg max
z

U(x, z) (39)

and the choice-specific policy function and choice-specific value function as:

σd(x) = arg max
z

Gd(x, z), Qd(x) = max
z

Gd(x, z) (40)

Finally, define a twice differentiable and invertible transition function f : S× Z → S that
maps the current period choice and state to next period state in a dynamic programming
problem. We set x′ to denote the next period state, where x′ will obey x′ = f (x, z).

Note that the mapping between our discrete-continuous optimization problem as stated
above and the three applications we tackle is as follows:

Application 1, Section 2.1. Fix t and consider workers making a decision to continue work
in time t + 1. Each d, with d ∈ D, corresponds to a future path of feasible discrete choices
made from t + 1 to T. Formally, we can write D = {0, 1}T−t. The choice-specific payoff
Gd(x, z) corresponds to u((1 + r)x + y− z) + Vd

t+1(z), where x is the liquid asset, z is the
choice of next period assets, and Vd

t+1 is the value function for those who work in t + 1
conditional on the future path of discrete choices made from t + 1 to T.

Application 2, Section 2.2. Fix t, recall our discussion at Section 2.2.3 and consider those
making a decision to adjust their housing stock at time t. Each d, with d ∈ D, corresponds
to a future history-dependent path of housing stock adjustment choices from t + 1 to T.
The choice-specific payoff Gd corresponds to:

Gd(x, z) = u(x− ψ̂d
t (x, z)− (1 + τ)z, z) + EytV

d
t+1(ψ̂

d
t (x, z), z, y′)

where x is the total cash-on-hand, z represents the t + 1 housing choice, and Vd
t+1 is the

t + 1 choice-specific value function. For a fixed discrete choice, the function ψ̂d
t maps the

wealth and housing choice to the optimal value of next period liquid assets defined by
the Euler equation (22).
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Application 3, Section 2.3. Fix t and consider those making a decision to adjust their hous-
ing stock at time t. Each d, with d ∈ D, corresponds to an infinite history-dependent path
of future housing choices. The choice specific payoff Gd corresponds to the continuation
payoff:

Gd(x, z) = u((1 + r)x + yt + (1− δ)H − z− (1 + τ)H′, H′) + Ey′Vd,′(z, y′) (41)

where z represents the next period liquid assets choice, Vd,′ the next period choice-specific
value function, and H and H′ are the fixed beginning- and end-of-period housing assets.

Since we have stated the above examples as reduced form dynamic programming prob-
lems, we have x′ = f (x, z) = z.

3.1.1 The EGM and formal FUES pseudo-code

Let X̂′ be the exogenous grid of values x′, with |X̂′| = N, where N is the exogenous
grid size. We assume grids are sequences, that is X̂′ = {x̂′0, x̂′1 . . . x̂′i . . . }. Recall that a
necessary FOC for an interior solution to the problem is that:

GI(x,z)
2 (x, z) = 0 (42)

where the subscript ‘2’ denotes the partial derivative with respect to the second argument
of Gd. Recall that if a continuous choice satisfies the FOC, it will be optimal conditional
on the discrete choice (although, the discrete choice may not optimal). Formally:

Remark 1 For x ∈ S, consider z̃ that satisfies GI(x,z̃)
2 (x, z̃) = 0. If d = I(x, z̃) is fixed, then z̃

will satisfy:
z̃ = arg max

z
Gd(x, z) (43)

We now define the unrefined endogenous grid of values x̂ as:

X̂ : =
{

x̂ ∈ S
∣∣ x̂′ = f (x̂, z), GI(x̂,z)

2 (x̂, z) = 0, x̂′ ∈ X′, z ∈ Z
}

(44)

and we can also calculate unrefined grids containing candidate policies and values as:

Ẑ : =
{

ẑ ∈ Z
∣∣ x̂′ = f (x, ẑ), GI(x,ẑ)

2 (x, ẑ) = 0, x̂′ ∈ X′, x ∈ S
}

(45)

V̂ : = GI(X̂,Ẑ)(X̂′) (46)
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Note the definition of the endogenous grid values above does not necessarily imply the
values of X̂ can be calculated analytically. Rather, we leave open the possibility that the
endogenous grid is a general grid (computed analytically or numerically) of points that
satisfy the necessary FOCs of a discrete-continuous optimization problem.

The endogenous grid will be initially ordered in ascending order according to the order
of X̂′. We now order the grids by the values in X̂ and, through a slight abuse of notation,
continue to denote the reordered grids as X̂′, Ẑ, V̂ and X̂. For each of these grids, the
FUES method will generate a subsequence of refined grids X′, Z, V and X indexed by ik,
for instance, X =

{
x̂0, x̂1, . . . , x̂ik , . . .

}
.

In the Algorithm below, we let N = |X̂|. Moreover, let M̄ be chosen by the researcher.
The constant M̄ represents the threshold at which FUES registers a jump between policy
functions. Finally, Cl+1 denotes a Boolean value that is true if point a xl+1 is optimal and
Dl denotes a Boolean value that is true if xk is not optimal and should be deleted. With
this notation, we are ready to formally state the FUES method.
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Algorithm 1: Fast upper envelope scan

Data: N > 0, M̄ > 0, X̂′, Ẑ,V̂,X̂
Result: X′, Z, X and V

1 k← 1, l ← 1;
2 x̂′iq ← x̂′q, v̂iq ← v̂q, x̂iq ← x̂q q ≤ 1 ; /* Init. first two points. */

3 while l < N do

4 gv
k ←

v̂ik
−v̂ik−1

x̂ik
−x̂ik−1

, gv
l+1 ←

v̂l+1−v̂ik
x̂l+1−x̂ik

, gx
l+1 ←

x̂′l+1−x̂′ik
x̂l+1−x̂ik

;

5 if If gv
l+1 ≤ gv

k and |gx
l+1| > M̄ ; /* Right turn, jump */

6 then
7 Cl+1 ← False;
8 Cl+1 ← Forward scan ; /* Optional fwd. scan (Fig. 5) */

9 else if gv
l+1 > gv

k ; /* Left turn */

10 then
11 Cl+1 ← True ;
12 Dl ← Backward scan ; /* Optional bwd. scan (Fig. 5) */

13 else
14 Cl+1 ← True ; /* Right turn, no jump */

15 end
16 if Dl then
17 x̂′ik ← x̂′l+1, v̂ik ← v̂l+1;
18 x̂ik ← x̂l+1, ẑik ← ẑl+1 ; /* Replace ik sub-opt. point. */

19 else if Cl+1 then
20 x̂′ik+1

← x̂′l+1, v̂ik+1 ← v̂l+1;
21 x̂ik+1 ← x̂l+1, ẑik+1 ← ẑl+1; /* Add point; keep ik opt. point. */

22 k = k + 1
23 else
24 Pass
25 end
26 l ← l + 1;
27 end

3.2 Proof FUES recovers optimal points

Under certain conditions, FUES can be guaranteed to recover the optimal points on the
endogenous grid. To prove this result, let us start with some definitions and also state the
required assumptions on the problem structure and on the endogenous grid.
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3.2.1 Preliminaries and assumptions

The optimal subset of points, X⋆, of the endogenous grid can be defined as:

X⋆ : =
{

x̂i ∈ X̂
∣∣ v̂i = V(x̂i)

}
(47)

The following formalises the definition of the points on the space S where choice-specific
value functions intersect.

Definition 1 Let TP ⊂ S be the set of ‘crossing points’ between the choice specific value functions.
That is, the set of x ∈ S such that for some m, q ∈ D, Qm(x) = Qq(x) and for some ϵ with ϵ > 0,
V(x + ϵ) = Qq(x + ϵ) > Qm(x + ϵ) and V(x− ϵ) = Qm(x− ϵ) > Qq(x− ϵ).

Turning now to the required assumptions, we first assume that the distance between
choice-specific policy functions is bounded below.

Assumption 1 The term | f (x, σd(x))− f (x, σs(x))| is bounded below by a constant D for all
d, s ∈ D, d ̸= s and x ∈ S.

Second, we assume that the rate of change of the next period states mapped by the tran-
sition and policy functions is uniformly bounded above by a common constant.

Assumption 2 The family of functions x 7→ f (x, σd(x)) for d ∈ D have a common Lipshitz
constant M.

Third and fourth, we also assume the distance between the endogenous grid points is
small enough and the jump detection threshold is chosen such that FUES is able to use the
previous assumptions to differentiate between a jump and a movement along a choice-
specific policy function.

Assumption 3 There exists δ > 0 such that for all x⋆j+1, x⋆j ∈ X⋆ we have |x⋆j+1 − x⋆j | ≤ δ and
D
δ > 2M.

Assumption 4 The jump detection threshold satisfies M̄ = D
δ −M.

Finally, we place some assumptions on the grid points around crossing points. The as-
sumption below uses the notation from Definition 1 and says that the crossing points are
included in the endogenous grid, and that the next period policy associated with a cross-
ing point is associated with the choice specific value function that ‘crosses’ the optimal
value function from below.

Assumption 5 We have TP ⊂ X⋆ and for each x̂i ∈ X⋆ such that x̂i ∈ TP, x̂′i = f (x̂i, σm(x̂i)).
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Next, we place conditions on the crossing points between choice-specific value functions.
Item 1. states that the first point after a crossing is an optimal point and item 2. states that
an optimal point after a crossing is sufficiently close to the previous grid point to make a
large enough left turn in the value function.

Assumption 6 Fix x̃ ∈ TP and let x⋆k be the largest element in X⋆ such that x⋆k ≤ x̃ and x⋆k+1 be
the smallest element in X⋆ such that x⋆k+1 > x̃. The following hold:

1. We have v̂k+1 = Qq(x̂k+1) where Qq is identified by Definition 1 as the value function
crossing at point x̃ from below.

2. We have:

Qq(x⋆k+1)−Qq(x⋆k )
δ

>
Qm(x⋆k+1)−Qq(x⋆k )

x⋆k+1 − x⋆k
+

Qm(x⋆k )−Qm(x⋆k−1)

x⋆k − x⋆k−1
(48)

3.2.2 Main result

Proposition 1 Let Assumptions 1-6 hold and let (X, X′, Z, V) be the tuple of outputs of Algo-
rithm 1 without the forward and backward scans. If v̂i = V(x̂i) for i = 1, 2, then X = X⋆.

Proof. We can prove the proposition above by proving the following claim holds:

x̂i ∈ X⇐⇒ x̂i ∈ X⋆, i ≤ l, x̂i ∈ X (49)

for l = |X|. We will show that if the claim holds for all i with i ≤ l for some l, then it
will hold for all i with i ≤ l + 1. Thus, by the principle of induction, the claim will hold
for all i with i ≤ l for any l. In particular, the claim will hold for l = |X|. As such, begin
the proof by making the inductive assumption that the claim at (49) holds for all i with
i ≤ l for some l ≤ |X|. Moreover, let {x̂i0 , . . . , x̂ij , . . . , x̂ik} denote the first k points of the
sub-sequence X such that ik satisfies ik ≤ l.

Part 1: Proof that x̂i ∈ X =⇒ x̂i ∈ X⋆ holds for all i with i ≤ l + 1.

If ik+1 > l + 1, then the proof of this part is complete since x̂i ∈ X =⇒ x̂i ∈ X⋆ continues
to hold for all i < l + 1 by the inductive assumption. On the other hand, suppose ik+1 =

l + 1 and the point x̂ik+1 satisfies x̂ik+1 ∈ X. There are two cases. The first case arises if

a right turn is made on the value correspondence,
v̂ik+1

−v̂ik
x̂ik+1

−x̂ik
≤

v̂ik
−v̂ik−1

xik
−x̂ik−1

. The second case

arises if a left turn is made on the value correspondence,
v̂ik+1

−v̂ik
x̂ik+1

−x̂ik
>

v̂ik
−v̂ik−1

x̂ik
−x̂ik−1

.
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[Part 1, Case I: Right turn]

Let
v̂ik+1

−v̂ik
x̂ik+1

−x̂ik
≤

v̂ik
−v̂ik−1

xik
−x̂ik−1

and let x̃ be the smallest value in Tp such that x̃ > x̂ik . Note that

by Claim 2 in the Appendix, we will have x̂ik ̸∈ TP. There will be two sub-cases. First,
that x̂ik+1 ≤ x̃ and second, that x̂ik+1 > x̃.

[Part 1, Case I.A: Right turn and candidate weakly less than next T.P.]

Consider the sub-case where x̂ik+1 ≤ x̃. We will show that V(x̂ik+1) = U(x̂ik+1 , ẑik+1).
Assume by contradiction V(x̂ik+1) ̸= U(x̂ik+1 , ẑik+1) and let m ∈ D be such that V(x̂ik+1) =

Gm(x̂ik+1 , σm(x̂ik+1)). Since x̃ ≥ x̂ik+1 , we have:

V(x̂ik) = Gm(x̂ik , ẑik)

x̂′ik+1
= f (x̂ik+1 , σq(x̂ik+1))

for some q such that m ̸= q. Now, by Assumption 1, Assumption 2 and using the reverse
triangle inequality, we have:

|x̂′ik+1
− x̂′ik | ≥

∣∣∣|x̂′ik+1
− f (σm(x̂ik+1), x̂ik+1)| − |x̂

′
ik − f (σm(x̂ik+1), x̂ik+1)|

∣∣∣
≥ |D−M(x̂ik+1 − x̂ik)|

Dividing through, and noting Assumption 3, we get:

|x̂′ik+1
− x̂′ik |

x̂ik+1 − x̂ik
≥ | D

x̂ik+1 − x̂ik
−M| > D

δ
−M

However, this yields a contradiction to x̂ik+1 ∈ X by line 14 of Algorithm 1, implying
U(x̂ik+1 , ẑik+1) = V(x̂ik+1) .

[Part 1, Case I.B: Right turn and candidate strictly greater than next T.P.]

Now consider the sub-case where x̂ik+1 > x̃. If x̂ik+1 is the first point in X̂ such that
x̂ik+1 > x̃, then x̂ik+1 will be optimal and x̂ik+1 ∈ X⋆ by Assumption 6- item 1. On the
other hand, suppose there exists xs such that x̂ik+1 > xs > x̃ and xs is the smallest point
in X̂ strictly greater than x̃. By Assumption 6 - item 1., x̂s > x̃ is optimal. Moreover, by
Assumption 6 - item 2., we have:

v̂s − v̂ik
x̂s − x̂ik

≥
Qq(xs)−Qm(x̂ik)

δ
=

v̂s − v̂ik
δ

>
v̂xik
− v̂xik−1

x̂ik − x̂ik−1

(50)
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where the first equality follows from Assumption 3. However, the above inequality im-
plies that xs ∈ X, which is a contradiction to the assumption of this case that x̂ik+1 > x̃.

[Part 1, Case II: Left turn]

Let
v̂ik+1

−v̂ik
x̂ik+1

−x̂ik
>

v̂ik
−v̂ik−1

x̂ik
−x̂ik−1

. Then by Claim 1 in the Appendix, we must have that U(x̂ik+1 , ẑik+1) =

V(x̂ik+1), which implies x̂ik+1 ∈ X⋆.

Part 2: Proof that x̂i ∈ X⇐= x̂i ∈ X⋆ holds for i with i ≤ l + 1.

Now we show that if a candidate point x̂l+1, with x̂l+1 ∈ X⋆ and V(x̂l+1) = Q(x̂l+1, ẑl+1),
then x̂l+1 ∈ X. Consider the first case of a right turn.

[Part 2, Case I: Right turn]

Let
v̂l+1−v̂ik
x̂l+1−x̂ik

≤
v̂ik
−v̂ik−1

x̂ik
−x̂ik−1

. By Claim 3 in the Appendix, we must have that x̂ik ̸∈ TP. Suppose

we have:
V(x̂ik) = Gm(x̂ik , ẑik)

x̂′l+1 = f (x̂l+1, σq(x̂l+1))

V(x̂l+1) = Gq(x̂l+1, σm(x̂l+1))

and m = q. By Assumption 2 and Assumption 3, we have:

|x̂′l+1 − x̂′ik |
|x̂l+1 − x̂ik |

≤ M <
D
δ
−M

Thus, by Algorithm 1, Line 14, we must have x̂l+1 ∈ X.

Alternatively, suppose m ̸= q, then there exists x̃ such that x̂l+1 > x̃ > x̂ik . By Assumption
6 - item 2., Equation (50) will hold. However, this contradicts the assumption of this case

that
v̂l+1−v̂ik
x̂l+1−x̂ik

≤
v̂ik
−v̂ik−1

x̂ik
−x̂ik−1

.

[Part 2, Case II: Left turn]

Let
v̂l+1−v̂ik
x̂l+1−x̂ik

>
v̂ik
−v̂ik−1

x̂ik
−x̂ik−1

. By line 16 of Algorithm 1, we immediately have x̂l+1 ∈ X.

To conclude the proof, we have shown that if the claim given by (49) holds for all i with
i ≤ l, then it will hold for all i with i ≤ l + 1. Finally, note that by the assumption stated
by the Proposition, V(x̂i) = Q(x̂i, ẑi) for i = 1, 2 and x̂i ∈ X for i ∈ {0, 1}, thus the claim
is true for l = 2. By the principle of induction, the claim given by (49) holds for all l,
completing the proof
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3.2.3 Discussion of assumptions

While the proof above guarantees recovery of the optimal points using FUES, some of
the required assumptions may be rather abstract to verify in practice. Assumptions 1
- 2 are straightforward to satisfy if there are finitely many periods and the problem is
smooth – as is the case in the first two applications we have considered. Assumption 3
implies that grid sizes play an important role in allowing one to identify discontinuities
(as is the case with any discrete-continuous EGM method), and large grid points may be
required to pick up the correct location of discontinuities. Assumptions 5 - 6 are more
abstract, although the forward and backward scans (see Figure 5 and subsequent discus-
sion) implemented by FUES and the inclusion of approximate crossing points serve as
good approximations of these assumptions as demonstrated in Section 2.1. In particular,
the forward scan addresses the violation of Assumption 6 - item 2., while the backward
scan addresses the violation of Assumption 6 - item 1. Finally, note that Assumption, item
2. will be satisfied for a fine enough grid size.14

4 Conclusions

This paper provides a fast upper envelope scan (FUES) method to compute the opti-
mal value function for a dynamic optimization problems with discrete and continuous
choices. FUES uses the fact that the upper envelope of the value correspondence gen-
erated by EGM is only convex in regions where concave choice-specific value functions
intersect. Accordingly, it removes all points that cause a jump in the policy function and
do not form a convex region of the value correspondence.

FUES is a general, easy-to-code method that can be applied efficiently to dynamic pro-
gramming problems without assuming policy function monotonicity - a key assump-
tion in previous discrete continuous EGM methods (Fella, 2014; Iskhakov et al., 2017).
We prove this method can accurately recover the optimal policy if the grid size is large
enough relative to the smallest jump size between choice-specific value functions. This as-
sumption is straightforward to satisfy in finite horizon models with finitely many choices.
The infinite horizon models and the models with infinitely many choices due to tastes
shocks we considered here also displayed finitely many jumps in the policy functions.
Nonetheless, the formal conditions under which an infinite state space produces only
finitely many discontinuities remain an area for further work.

14For x⋆k+1 and x⋆k close enough,
Qm(x⋆k+1)−Qq(x⋆k )

x⋆k+1−x⋆k
< 0. Taking the limit δ → 0 will yield the inequality in

Equation (48), since Qm,′(x⋆k ) < Qq,′(x⋆k ).
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Finally, we also identify a few other directions of future work. First, up to our best knowl-
edge, the formal error bounds for EGM are not known, also limiting any formal error anal-
ysis for FUES. Moreover, without an analytical example as worked out by Iskhakov et al.
(2017) and computed in Application 1 in this paper, it is difficult to verify whether or not
FUES - or any EGM method - applied to a discrete-continuous problem recovers the opti-
mal solution. And Euler equation errors are not suitable to evaluate accuracy since Euler
equations are only a necessary condition along smooth sections of a value function (Görtz
and Mirza, 2018). Additionally, similar to Iskhakov et al. (2017), we also detail FUES in a
one-dimensional context. FUES can be, however, applied to multiple dimensions by de-
constructing the problem into one-dimensional EGM steps and/or combining them with
some root-finding on a reduced state space. Beyond this, there remains scope for a for-
mal multidimensional FUES method that takes into account the geometric structure of the
value correspondence, and uses the appropriate multidimensional interpolation method.
Progress on such a multidimensional FUES method requires, however, further advances
in the general understanding of EGM when the conditions set by Iskhakov (2015) fail.
This is a very interesting area of research that we plan to tackle next.
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Online Appendix

A Intermediate proofs

The first intermediate result says that if a point makes a left turn from an optimal point,
then it is also optimal.

Claim 1 Fix the triple x̂i, x̂i+1, x̂i+2 for some i and assume x̂i, x̂i+1 ∈ X⋆. If we have:

v̂i+1 − v̂i

x̂i+1 − x̂i
<

v̂i+2 − v̂i+1

x̂i+2 − x̂i+1
(51)

then x̂i+2 ∈ X⋆.

Proof. Fix l, with l ∈ D and such that V(x̂i+1) = Gl(x̂i+1, σl(x̂i+1)). Suppose by contra-
diction that x̂i+2 ̸∈ X⋆. Suppose first that V(x̂i) = Gl(x̂i, σl(x̂i)). Since x̂i+2 ̸∈ X⋆, we must
have v̂i+2 = Gm(x̂i+2, σm(x̂i+2)) and m ̸= l. By concavity and Equation (51), we must have
Gm(x̂i+2, σm(x̂i+2)) > Gl(x̂i+2, σl(x̂i+2)). This implies that V(x̂i+2) = Gp(x̂i+2, σp(x̂i+2))

for p ̸= l and p ̸= m. Moreover, the functions Gp and Gl must cross at some point x̃i ∈ Tp

with x̃i ∈ [x̂i+1, x̂i+2). However, we have now violated Assumption 6 - item 1., since x̂i+2

is the first point after a crossing point and must be optimal.

Now suppose V(x̂i) = Gb(x̂i, σb(x̂i)) for some b ̸= l. This implies a crossing point x̃ satis-
fies x̃ ∈ (x̂i, x̂i+1). However, x̃ ∈ (x̂i, x̂i+1) also yields a contradiction since by Assumption
5, we must have x̃ ∈ X⋆.

Claim 2 Consider the setting of Part 1 of the proof of Proposition 1. Let x̃ be the smallest value

in Tp such that x̃ > x̂ik . If
v̂ik+1

−v̂ik
x̂ik+1

−x̂ik
≤

v̂ik
−v̂ik−1

xik
−x̂ik−1

, then x̂ik ̸∈ TP.

Proof.

Suppose by contradiction that x̂ik ∈ TP, by Assumption 6, item 2., we must have that
x̂ik+1 ∈ X⋆. Moreover, by Assumption 6, Item 2, we must have:

v̂ik+1 − v̂ik
x̂ik+1 − x̂ik

≥
Qq(xik+1)−Qm(xik)

δ
=

v̂ik+1 − v̂ik
δ

>
v̂xik
− v̂xik−1

xik − xik−1

(52)

where q and m are elements of D that satisfy the notation from Definition 1 with x̂ik as
the turning point. To complete the proof, note that since the above equation implies ik + 1
makes a left turn from the point ik and ik−1 on the value correspondence, by Line 9 of
Algorithm 1, x̂ik+1 ∈ X and x̂ik+1 ∈ X⋆ and that ik+1 = ik, however, this is a contradiction
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to the Assumption of the claim that xik makes a right turn on the value correspondence.
Thus, x̂ik ̸∈ TP.

The proof for the following claim is analogous to the previous claim, replacing ik + 1 with
l + 1.

Claim 3 Consider the setting of Part 1 of the proof of Proposition 1. Let x̂l+1, with x̂l+1 ∈ X⋆

and V(x̂l+1) = G(x̂l+1, ẑl+1). If x̃ is the smallest value in Tp such that x̃ > x̂ik , then x̂ik ̸∈ TP.

If
v̂l+1−v̂ik
xl+1−x̂ik

≤
v̂ik
−v̂ik−1

xik
−x̂ik−1

, then x̂il+1 ̸∈ TP.

B Additional figures

Figure 8: Value correspondence and optimal points for t = 17.
Parameters from Iskhakov et al. (2017), Figure 4 with smooth-
ing parameter σ = 0.5.
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Figure 9: Optimal consumption functions with smoothing for
workers.

Figure 10: DC-EGM and FUES value correspondence and
optimal points for t = 17 and 200 grid points. Parameters
from Iskhakov et al. (2017).

41

Electronic copy available at: https://ssrn.com/abstract=4181302



Figure 11: DC-EGM and FUES value correspondence and
optimal points for t = 17 and 300 grid points. Parameters
from Iskhakov et al. (2017).

Figure 12: DC-EGM and FUES value correspondence and
optimal points for t = 17 and 1000 grid points. Parameters
from Iskhakov et al. (2017).
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Figure 13: DC-EGM and FUES value correspondence and
optimal points for t = 17 and 2,000 grid points. Parame-
ters from Iskhakov et al. (2017).

Figure 14: Housing policy function for age 59 in Applica-
tion 2 using FUES vs. VFI. The plot uses the lowest income
shock and three housing capital stock levels at the start of
period t.
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Figure 15: Liquid asset policy function in the infinite horizon hous-
ing choice model (Application 3) using FUES compared to VFI. The
plot uses the lowest income shock and three housing capital stock
levels at the start of period t.
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