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Abstract

Population ageing undermines traditional social security pension systems that combine
pay-as-you-go (PAYG) and defined benefits (DB). Indeed, demographic risk, if guaran-
teed benefits remain unaltered, will be borne entirely by workers through increases in the
contribution rate. To avoid a substantial increase of the contributions and in order to
maintain simultaneously the financial sustainability and the social adequacy of the public
pension system, risk sharing and automatic balancing mechanisms need to be put in place.
We present a two-step convex family of risk-sharing mechanisms. The first shares the risk
between contributors and retirees through adjustments in the contribution rate, used to
calculate the global covered wage bill, and the benefit ratio that represents the relation-
ship between average pensions and wages. The second step studies how the retirees’ risk
should be shared between the different retirees’ generations through adjustments in the
replacement rate and a sustainability factor that affects pension indexation during retire-
ment. We perform a detailed study of the effect of social planner’s targets and solidarity
weight between various generations in a deterministic and stochastic environment.
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1 Introduction

Population is ageing at a global scale. Life expectancy and fertility rate are expected to
further increase and decrease, respectively (United Nations, 2022). As a result of this, the
share of global population at ages 65 and above is projected to rise from 10 to 16 percent
by 2050. In Europe and Northern America it is even expected to rise to over 60 percent by
2050 (United Nations, 2023). Obviously, the increase in old-age to working-age ratio, that
is, the ratio of people over 65 over working age population, inevitably stresses the financial
sustainability of pay-as-you-go (PAYG) financed public pension schemes. As a consequence,
most countries enforce pension reforms that entail adjustments in retirement ages, benefits
and contributions (OCDE, 2023).

Some of these reforms introduce Risk-sharing mechanisms (RSMs), often known as Au-
tomatic Adjustment Mechanisms (AAMs) or Automatic Balancing Mechanisms (ABMs) to
restore sustainability. These RSMs are a set of predetermined measures setablished by law to
be applied immediately according to indicators that reflect the financial health of the system
(Vidal-Meliá et al., 2009). Indeed, about two-thirds of OECD countries have at least one
RSM in place (OCDE, 2021). Mechanisms include those embodied in notional DC schemes
(e.g. Sweden (Settergren, 2013)), links to the statutory retirement age to life expectancy (as
done in Finland and Portugal (Carmen Boado-Penas et al., 2020)) and benefit adjustments to
changes in demographic ratios or the wage bill (as done in Canada or Germany (Börsch-Supan
and Wilke, 2004)). However, to the best of the authors knowledge, the literature justifying
the particular RSM architecture is thin.

Intergenerational risk sharing has also gained interest in academic research. Generally,
the literature focuses on studying the sustainability of the PAYG pension scheme for a pre-
specified pension setting and subsequently apply RSMs to restore sustainability (Alonso-
Garćıa et al., 2018b; Alonso-Garćıa and Devolder, 2019).1 For instance Knell (2010) analyzes
the internal rate of return of generic pension schemes after incorporating adjustment mech-
anisms and find that the length of retirement period relative to the length of the working
period should be included in the adjustment parameter design whereas God́ınez-Olivares
et al. (2016a) and God́ınez-Olivares et al. (2016b) use nonlinear dynamic programming to
study ABMs strategies that vary the contribution rate, retirement age and indexation of pen-
sions to achieve financial health. More recently Alonso-Garćıa et al. (2018a) study tractable
RSMs that involve changes in the contribution rate to the pension system and indexation rate
of existing pensions to restore the sustainability of both Defined Benefit (DB) and Defined
Contribution (DC) pension schemes.

Our proposal, akin to what Holzmann et al. (2013) and Alonso-Garćıa and Devolder (2019)
do in a DC context, addresses the RSM question differently using a two step approach. In
the first step, we study which parameters can the social planner afford, as in which benefit
ratio – the ratio of global pensions to average wages – and contribution rate – the part of the
wages that is paid to the PAYG system –, given the PAYG sustainability constraint. This
philosophy aligns with the concept of hybrid pension schemes, as an intermediate solution
between a pure DB and DC, pioneered by Musgrave (1981) which has recently gained scholar
attention (Devolder and de Valeriola, 2019; Schokkaert et al., 2020; Torricelli, 2022). The
idea presented in Musgrave (1981) is that the contribution and benefit ratio should follow a

1An increasing interest in RSMs is present also in funded pension schemes, see for instance Cui et al. (2011);
Donnelly (2017) and Chen et al. (2023). However, the methodology differs from that used in pay-as-you-go
given the nature of the risks on scope.
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rational joint evolution. We achieve this goal through a quadratic loss function (Cairns, 2000)
whereby the optimal parameters are affected by a long-term target and demographic weights.
We call this the 1st level of risk-sharing.

In a second stage, we study how the risk related to benefit ratio changes should be shared
between the different retirees’ generations through adjustments in the replacement rate – the
factor used to calculate the pension for new retirees –, and a RSM that we denote the sus-
tainability factor that affects pre-specified pension indexation levels during retirement. The
latter has a structure that resembles the sustainability factor studied by Baurin and Hindriks
(2023) which is implemented in Germany (Börsch-Supan and Wilke, 2004). However, com-
pared to existing RSMs in place, we provide the scientific foundation to develop a flexible
hybrid family of PAYG pension systems based on a double RSM that can be seen as interme-
diate solutions between DB, where all risk is borne by contributors, and DC, where all risk is
borne by retirees.

The remainder of this paper is structured as follows. Section 2 presents the general stylized
pay-as-you-go pension system in which the RSM is studied. Section 3 presents basic RSMs
as intermediate solutions between pure DB and pure DC. We assess their suitability in terms
of risk sharing between workers and retirees in Subsection 3.1 or risk sharing among retirees
in Subsection 3.2. Optimal solutions in a deterministic context are presented in Section 4.
We devise the two levels of risk-sharing families and obtain the optimal parametrization for
chosen long-term social planner’s goals. We generalize in Section 5 our solutions to a context
where the dependency ratio is stochastic and present not only central estimates but also its
associated uncertainty and Section 6 concludes.

2 General model

This section presents the general stylized pay-as-you-go pension sytem in which the risk
sharing scheme is studied. We develop a general discrete model with time and age-dependent
parameters for which the risk sharing will be studied.

The principle of a pay-as-you-go (PAYG) system is that the current contributions cover
the current pension benefits. It means that at each moment, the global contributions should
equal the global benefits. In this work we denote the total income from contributions Ct as

Ct = πt StWt, (1)

with πt the contribution rate, St the mean salary and Wt the number of workers at time t.
The total pension expenditure is then given by

Et = P tRt = δt StRt, (2)

with P t the mean pension benefits, Rt the number of retirees and δt the benefit ratio rep-
resenting the mean pension benefits over the mean salary. In this setting retirement age is
constant and the same for everyone2. Similarly, we assume that the individual and mean
salary coincide. Then, the first individual pension benefit when retiring at age xr time t is

Pxr,t = δ̃t St, (3)

2We focus on a design with constant retirement age as we aim to compare risk sharing schemes on a like-
for-like basis. Indeed, linking retirement age to life expectancy has a limited effect on DC pension schemes
since pensions rely on actual life expectancy whereas it can be a tool to increase sustainability for DB schemes
under the assumption that the labour market absorbs the older workers fully (Alonso-Garćıa et al., 2018a).
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where St is the t value of the last salary and δ̃t is remplacement rate for a generation retiring
at time t. Unlike the cohort-specific replacement rate δ̃, the benefit ratio δ is a cross-sectional
measure on all retirees. During the retirement period, we assume that pensions are indexed
following the evolution of average wages adjusted by a sustainability factor as

Pxr+∆,t+∆ = Pxr,t
St+∆

St
β∆
t (4)

where β∆
t is the sustainability factor between retirement t and calculation t+ ∆. By conven-

tion, the sustainability factor for a duration of 0 is equal to 1, that is, β0
t = 1. As earlier stated,

PAYG rely on an equilibrium between income from contribution and pension expenditures:

Ct = Et, (5)

which, with a minor rewrite, corresponds to

πt =
Rt
Wt

δt = Dt δt (6)

with Dt the dependency ratio — the ratio between the number of retirees Rt to the number
of workers Wt. This dependency ratio is the risk factor representing the demographic trend.

Remark 1 (Cross-sectional benefit ratio δt). The cross-sectional benefit ratio δ represents, as
earlier stated, the weighted average of the cohort-specific replacement rates δ̃ reduced by the
sustainability factors β for all retirees. The corresponding equilibrium equation corresponds
to

δt =

ω∑
x=xr

δ̃t−(x−xr) β
x−xr
t−(x−xr) lx,t. (7)

where lx,t =
Lx,t

Rt
is the retired population density function with Lx,t the total population aged

x at time t and Rt the total number of retirees at time t.
Proof : The total pension expenditure is calculated as the sum of all pensions paid in the

system as follows:

Et =

ω∑
x=xr

Lx,tPx,t =

ω∑
x=xr

Lx,tPxr,t−(x−xr)
St

St−(x−xr)
βx−xrt−(x−xr),

where Lx,t represents the number of individuals aged x at time t. Since the initial and indexed
pension are given by Equations (3) and (4) respectively, we obtain:

Et =
ω∑

x=xr

Lx,tPxr,t−(x−xr)
St

St−(x−xr)
βx−xrt−(x−xr)

=

ω∑
x=xr

Lx,tδ̃t−(x−xr)St−(x−xr)
St

St−(x−xr)
βx−xrt−(x−xr).

Since the total number of retirees is given by Rt =
∑ω

x=xr
Lx,t we can rewrite the expression

above as follows:

Et = StRt

ω∑
x=xr

Lx,t
Rt

δ̃t−(x−xr) β
x−xr
t−(x−xr).
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Defining the retired population density as

lx,t =
Lx,t
Rt

, (8)

we obtain the expression (7) above. Note of course that l is well defined as a density since
l ≥ 0 ∀x, t and

∑ω
x=xr

lx,t = 1. �

Replacing (7) in (6) yields

πt = Dt

ω∑
x=xr

δ̃t−(x−xr) β
x−xr
t−(x−xr) lx,t . (9)

The expression (9) highlights the relationship between the contribution rate π, the replacement
rates δ̃ and sustainability sustainability factors β. The risk sharing mechanisms outlined in
Sections 3 and 4 propose adjustments of these parameters according to demographic risk Dt.

3 Risk sharing mechanisms: two levels

In this section we analyze classical pension schemes and risk-sharing mechanisms and discuss
how they fare in terms of adequacy. We assess their suitability in terms of risk sharing between
workers and retirees in Subsection 3.1 and risk sharing among retirees in Subsection 3.2.

3.1 First level: risk sharing between the workers and the retirees

Here we study three basic risk-sharing mechanisms: pure defined benefit (DB), pure defined
contribution (DC) and the so-called Musgrave rule that adapts either the contribution rate
πt and/or the benefit ratio δt depending on the mechanism. These parameters are adapted
to satify (5). For instance, in an ageing context, an increasing dependency ratio3 D implies
either an increase of the contribution rate π, a decrease of the benefit ratio δ, or both.

Pure DB

In pure DB pension schemes, the level of the real pension benefit is constant. This has
the natural implication that pensions for new retirees will be equivalent to those of older
generations. Hence, the replacement rate used to calculate the first pension needs to be
constant δ̃t−x+xr = δ̃t and indexation cannot divert from the wage-increase which implies
that the sustainability factor should be equal to 1 (βis = 1 ∀i, s):

Px,t = Pxr,t−x+xr

St
St−x+xr

=1︷ ︸︸ ︷
βx−xrt−x+xr = δ̃t−x+xrSt−x+xr

St
St−x+xr

= δ̃t−x+xrSt = δ̃ St,

Pxr,t = δ̃t St = δ̃ St.

In that case, the benefit ratio δt (7) is constant and simplifies to δt = δ̃ = δ. To maintain
sustainability (5) for varying Dt, the only degree of freedom left is the contribution rate πt:

πt = Dt · δ. (10)

3In case of decrease of the dependency ratio D, the presented mechanisms are exactly the same with opposite
variations of the adjustment variables.
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A change in the contribution rate impacts the workers through the level of their contributions.
The demographic risk is entirely borne by the workers’ contributions which in counterpart
will receive a fixed target level of real pension benefits.

Pure DC

On the contrary, for the pure DC system, the level of the contribution is constant, that is,
πt = π. The benefit ratio δt is adapted according to the change of the dependence ratio Dt

δt =
π

Dt
. (11)

A change in the benefit ratio impacts the retirees through the level of their benefits. Obviously,
the benefit ratio δt (7) is an aggregate figure that is dependent on the level of current and past
replacement rates δ̃ and sustainability factors βis. In a second stage, it would be necessary to
assess how the global change in δt stemming from the risk-sharing mechanism (11) translates
into the different generations. This will be addressed in detail in Subsection 3.2. In any case,
in this scenario, the demographic is entirely borne by the retirees’ benefits.

Musgrave

Ideally, the contribution rate π and benefit ratio δ should be adjusted simultaneously based
on (6). A possible intermediate between the DB and DC systems is the Musgrave rule (see
e.g. Musgrave (1981) and Schokkaert et al. (2020)). The idea is that the net replacement
rate denoted as M – the ratio between the pension and the salary net of contributions – is
constant:

M =
P t

St (1− πt)
=

δt
1− πt

. (12)

Remark 2 (Benefit ratio δ and contribution rate π under the Musgrave rule). We can obtain
δt and πt under the Musgrave rule by exploiting the cross-sectional PAYG equilibrium (6).
By doing so, we guarantee that the system is both fair under the Musgrave philosophy and
sustainable from a basic pure PAYG financing perspective.

Rewriting (12), we get

M =
δt

1− πt
⇔M(1− πt) = δt

(6)︷︸︸︷⇔ M(1− πt) =
πt
Dt
⇔M = πt(M +

1

Dt
),

which yields

πt =
M Dt

1 +M Dt
. (13)

Using a similar rationale for δt, we obtain:

δt =
M

1 +M Dt
. (14)

�
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The Musgrave rule can be interpreted as the same variation for the pension benefits and
for the salaries net of contributions

Mt = Mt+1 = M ⇔ P t
St (1− πt)

=
P t+1

St+1 (1− πt+1)
⇔ P t+1

P t
=
St+1 (1− πt+1)

St (1− πt)
. (15)

The Musgrave rule can be seen as a plausible intermediate between the extreme DB and DC
systems since both the contribution rate πt and benefit ratio δt are susceptible of change
under an adverse demographic scenario. However, any change is joint as to maintain a net
replacement rate M . Of course, the Musgrave rule is just one of an array of other possible
intermediate systems. Therefore, in Section 4 we develop a family of risk sharing mechanisms
that we will then compare to the pure DB, DC and Musgrave rule presented here.

3.2 Second level: risk sharing between retirees

Once the first level risk sharing is determined, the second level focuses on the retired genera-
tions. It determines how the change of pension expenditures is shared between newly retired
cohorts by adjusting their replacement rate δ̃ and older retirees through the sustainability
factor β. These parameters are adapted as to satify the pension expenditure equilibrium
through Equation (7). As in the previous level, we can consider various scenarios. First, we
consider the scenario where old pensions are fully wage-indexed (β = 1), and finally the case
where all retirees are affected in the same way (δ̃t = δt).

Stable pension for old retirees

For the first extreme, pension benefits are totally indexed according to the wage evolution. It
corresponds to a sustainability factor equal to 1:

β = 1 .

In this case, Equation (7) becomes:

δt =
ω∑

x=xr

δ̃t−(x−xr) lx,t, (16)

which, highlighting the difference between new retirees lxr,t at time t and old retirees, can be
rewritten as

δt = δ̃tlxr,t +

ω∑
x=xr+1

δ̃t−(x−xr) lx,t,

δ̃t =
δt −

∑ω
x=xr+1 δ̃t−(x−xr) lx,t

lxr,t
. (17)

In a scenario with an increasing dependency ratio Dt, the replacement rate δ̃ is adjusted
based on the reduced value of the benefit ratio δ (eq. 7), determined through the first-level
risk-sharing mechanism. In this scenario, the level of indexation for the older generation
remains unaltered despite potential costs to the PAYG system. A change in the replacement
rate impacts solely the newly retired generation. The demographic risk within the retiree
population is entirely borne by new retirees, who adjust their initial pension benefits.
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Solidarity between all retirees

A natural counterpart considers the same level of adjustment for new and old retirees by
fixing the replacement rate to the benefit ratio:

δ̃t = δt (18)

In that case, the corresponding sustainability factor that satisfies the benefit ratio equilibrium
(7) becomes:

δt =
ω∑

x=xr

δt−(x−xr) β
x−xr
t−(x−xr) lx,t ⇔ δt = δt lxr,t +

ω∑
x=xr+1

δt−(x−xr) β
x−xr
t−(x−xr) lx,t

⇔ 1 = lxr,t +

ω∑
x=xr+1

δt−(x−xr)

δt
βx−xrt−(x−xr) lx,t ⇔

ω∑
x=xr+1

lx,t =

ω∑
x=xr+1

δt−(x−xr)

δt
βx−xrt−(x−xr) lx,t.

Of course, for x > xr, when
δt−(x−xr)

δt
βx−xrt−(x−xr) = 1,

or alternatively

βx−xrt−(x−xr) =
δt

δt−(x−xr)
,

we obtain the sought equilibrium. The constraints in this scenario then become δ̃t = δt

β∆
t =

δt+∆

δt
.

(19)

The constraints given in (19) imply that the risk is balanced accross all retirees. Someone
who retired in t, sees their pension reduce in the course of ∆ = x − xr by β∆

t compared to
the base wage indexation:

Px,t+∆

Pxr,t
=
δ̃tSt

St+∆

St
β∆
t

δ̃tSt
=
St+∆

St
β∆
t =

St+∆

St

δt+∆

δt
.

For newly retirees, the expression is given by:

Pxr,t+∆

Pxr,t
=
δ̃t+∆ St+∆

δ̃t St
=
St+∆

St

δt+∆

δt
.

The evolution of pensions for all cohorts hence coincides.
In Section 4 we present a family of risk sharing mechanisms between these two extreme

scenarios.

4 Risk sharing mechanisms: optimal choice

Section 3 presented various basic risk-sharing options commonly used in practice or the lit-
erature. However, it is unclear to what extent these choices are made optimally. Hence,
this section proposes an optimal risk-sharing mechanism that is decomposed into two levels.
Firstly, we optimize the contribution rate π of the workers and the benefit ratio δ of the
retirees in Section 4.1. In a second stage, we analyze in Section 4.2 how the adaptation of the
benefit ratio generated by the first step can be shared among different generations of retirees
by optimizing the replacement rate δ̃ of new retirees and the sustainability factor β affecting
indexation of pensions paid to curent retirees.
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4.1 First level: risk sharing between the workers and the retirees

We propose a family of risk-sharing mechanisms that satisfy the pure PAYG equilibrium (6)
based on the optimization of a quadratic loss function as in Cairns (2000). Our objective
function measures the joint stability of the contribution rate π and the benefit ratio δ around
fixed target values respectively π and δ as in God́ınez-Olivares et al. (2016a,b). Relative
deviation from these target values is punished. We suppose a weight on each component ρ:
the relative deviation of the contribution rate π and the relative deviation of the benefit ratio δ.
This weight parameter characterizes the family of intermediate systems between the DB and
DC systems. Note that the weight parameter ρ is a choice that reflects the preferences of the
social planner, akin to the choice of the risk aversion parameter within an utility framework.
We let ρt be general and time-dependent as it could be used as a tool to study a transition
from pure DB to DC or viceversa.

We consider a quadratic objective function4 where the part linked to the contribution rate
is weighted by the number of individuals of working age Wt and the part linked to the benefit
ratio affecting retirees is weighted by the total number of retirees Rt. This is a proxy to the
voting weight every generation would have in negotiating the proposed pension reforms (Cetin
and Hindriks, 2023; Baurin and Hindriks, 2023). The objective function to be minimised is
then given by:

f(ρt, δt, πt) = ρtWt

(πt
π
− 1
)2

+ (1− ρt)Rt
(
δt

δ
− 1

)2

. (20)

Since the number of workers Wt > 0, the optimum value obtained through expression (20)

is equivalent to the optimum obtained through f(ρt,δt,πt)
Wt

. Rewriting it in the latter manner

allows to only deal with one demographic factor, namely Dt = Rt
Wt

as follows:

fδ,π(ρt, δt, πt) = ρt

(πt
π
− 1
)2

+ (1− ρt)Dt

(
δt

δ
− 1

)2

, (21)

where π and δ are the fixed target values and ρt ∈ [0, 1] is a given, potentially time-dependent,
weight parameter defining the intermediate system.

Proposition 1 (1st level: optimal benefit ratio and contribution rate). The optimal benefit
ratio δ?t and optimal contribution rate π?t of the objective function (21), for general δ̄ and π̄,
is given by:

δ?t = δ̄ π̄
ρt δ + (1− ρt)π

ρtDt δ
2

+ (1− ρt)π2
, (22)

π?t = Dt δ
?
t . (23)

Proof. The optimal benefit ratio δ and the optimal contribution rate π are obtained by sub-
stitution of the PAYG equilibrium equation (eq. 6) in the objective function

fδ,π(ρ, δt, Dt) = ρt

(
Dt δt
π
− 1

)2

+ (1− ρt)Dt

(
δt

δ
− 1

)2

.

4Other forms of objective function can be considered. For example, the exponential form

exp

[
−γ ρt

(πt

π
− 1

)
− γ (1− ρt)

(
δt

δ
− 1

)]
. In order to apply the proposed optimisation, the objective func-

tion has to be differentiable and convex. If it is convex but not differentiable, similar results can be numerically
obtained.
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Deriving with respect to δt, and cancelling the derivative yields:

∂

∂δ
fδ,π(ρt, δt, Dt) = 2 ρt

Dt

π

(
Dt δt
π
− 1

)
+ 2 (1− ρt)Dt

1

δ

(
δt

δ
− 1

)
= 0 .

The optimal processes are deduced from this last relation and equation (6):

δ?t = δ̄ π̄
ρt δ + (1− ρt)π

ρtDt δ
2

+ (1− ρt)π2
(24)

π?t = Dt δ
?
t . (25)

The second derivative of f is given by:

∂2

∂δ2
fδ,π(ρt, δt, Dt) = 2Dt

(
ρtDt

π̄2
+

1− ρt
δ̄2

)
(26)

which, for ρt ∈ [0, 1], is always positive indicating that the obtained δ?t and corresponding π?t
minimizes fδ,π.

The optimal processes δ?t and π?t depend on the dependency ratio Dt, the chosen risk-
sharing weight ρt as well as the target values π̄ and δ̄. In particular, δ?t can be expressed as
the target benefit ratio δ̄ multiplified by a time-dependent function

h(ρt, π̄, Dt) = π̄
ρt δ + (1− ρt)π

ρtDt δ
2

+ (1− ρt)π2
.

The function h is clearly decreasing with Dt indicating that, as the number of retirees with
respect to the workers increase, the benefit ratio will have to adjust downwards accordingly.
The function h depends on a convex transformation of the target benefit and contribution
rate, albeit in different order as in the original objective function fδ,π (21). Since δ̄, π̄, ρt and
Dt ∈ [0, 1], the denominator will always be substantially smaller than the numerator yielding
h(ρt, π̄, Dt) ≥ π̄ ∀t.

Corollary 1 (Optimal δ?t and π?t when D̄ = π̄
δ̄
). Let D̄ = π̄

δ̄
be the implicit dependency ratio

that results from applying (6) to the targets π̄ and δ̄. Then, the optimal benefit ratio δ?t (22)
and contribution rate π?t (23) can be rewritten as:

δ?t = δ̄
ρt + (1− ρt)D̄

ρt
Dt

D̄
+ (1− ρt)D̄

, (27)

π?t = π̄
Dt

D̄

ρt + (1− ρt)D̄
ρt

Dt

D̄
+ (1− ρt)D̄

. (28)

Proof. Obviously, taking δ as common factor in the numerator and denominator of δ?t , and
letting D̄ = π̄

δ̄
we find

δ?t = δ̄ π̄ δ̄
ρt + (1− ρt)πδ

δ
2
(
ρtDt + (1− ρt)

(
π
δ

)2
) = π̄

ρt + (1− ρt)D̄
ρtDt + (1− ρt)D̄2

=
π̄

D̄

ρt + (1− ρt)D̄
ρt

Dt

D̄
+ (1− ρt)D̄

= δ̄
ρt + (1− ρt)D̄

ρt
Dt

D̄
+ (1− ρt)D̄
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The expression for the optimal contribution rate follows from (23):

π?t = π̄
Dt

D̄

ρt + (1− ρt)D̄
ρt

Dt

D̄
+ (1− ρt)D̄

Note that D̄ does not necessarily coincide with an actual observed dependency ratio. It
simply results of the PAYG equilibrium (6) applied to our target variables. Obviously, the
simplified expression of Corollary 1 implies that{

δ?t < δ̄ if Dt > D̄,
δ?t > δ̄ if Dt < D̄.

(29)

Proposition 1 provides the optimal benefit ratio δ?t and contribution rate π?t for general
targets π̄ and δ̄ and weights ρt. Our base case analysis that follows, which we denote canonical
choice, is given by the particular choice of δ = δ0 and π = π0. Remark 3 shows that this
canonical choice of targets yields naturally the pure DB and pure DC scenarios when ρ is
either equal to 1 or 0, respectively. Equation (29) shows that, since D̄ = D0, the optimal
benefit ratio will decrease in an ageing environment since Dt > D0. We further assess the
effect of the targets and weight parameters in two examples. Example 1 below investigates the
effect of the chosen targets for a given weight parameter ρ = 1

2 corresponding to a democratic
choice giving equal importance to workers and retirees’ needs whereas Example 2 analyses
the effect of varying ρ ∈ [0, 1].

Remark 3 (DB, DC vs intermediate). The extreme cases of pure DB and DC can be found
by simplifying (22) and (23) through ρt. Indeed, if ρt = 1, that is, we are solely interested
in studying the evolution of the contribution rate affecting the working age population, we
obtain

δ?t = δ̄ π̄
δ

Dt δ
2 =

π̄

Dt
,

π?t = π̄.

If π̄ = π0 this corresponds to a pure DC scheme where contribution rate remains unchanged
and the benefit ratio is adjusted through (6) as shown in Equation (11) from Subsection 3.1.
If, on the other hand, ρt = 0, we focus on the retirees benefit ratio and Proposition 1 yields

δ?t = δ̄ π̄
π

π2 = δ̄,

π?t = Dt δ̄.

Then, we have a pure DB scheme if δ̄ = δ0. The optimal contribution rate π?t simply corre-
sponds to Equation (6). Finally, let us consider the case where equal weight is given to the π
and δ stability, ρt = 1

2 ∀t. In this case, the optimal δ?t and π?t become:

δ?t = δ̄
1
2 + 1

2D̄
1
2
Dt

D̄
+ 1

2)D̄
= δ̄

1 + D̄
Dt

D̄
+ D̄

,

π?t = Dt δ
?
t = π̄

Dt

D̄

1 + D̄
Dt

D̄
+ D̄

.
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Table 1: Target values for S1–S4 when D0 = 0.3, D∞ = 0.5, δ0 = 0.5 and π0 = 0.15.

Scenario S1 S2 S3 S4

δ̄ 0.50 0.30 0.50 0.40
π̄ 0.15 0.15 0.25 0.20
D̄ 0.30 0.50 0.50 0.50

Of course, this further simplifies to

δ?t = δ0
1 +D0

Dt
D0

+D0

, (30)

π?t = π0
Dt

D0

1 +D0

Dt
D0

+D0

. (31)

for our canonical choice of targets. Further sensitivities to the choice of ρ are presented in
Example 2. �

Example 1 (Evolution of δ?t and π?t for scenarios S1–S4 (32)). To assess the effect of the choice
of target, let us consider four possible cases (S1–S4) for our study:

(S1) δ̄ = δ0 and π̄ = π0,
(S2) δ̄ = π0

D∞
and π̄ = π0,

(S3) δ̄ = δ0 and π̄ = δ̄ D∞,
(S4) δ̄ = δ∗ and π̄ = π∗,

(32)

where D∞ is the long term dependency ratio. The first scenario, S1, aims at varying the
contribution and benefit ratio without diverting too much from the initial PAYG equilibrium
state at t = 0. This corresponds to our canonical choice. On the other hand, scenario S2
and S3 target either the initial contribution rate or initial benefit ratio respectively despite
anticipated future costs under an ageing environment. The benefit ratio and contribution
rate result from (6). On the other hand, S4 represents a scenario where the social planner
would choose δ̄ and π̄ not based on PAYG equilibrium arguments but on political choices.
Note that D∞ is equal to D̄ in (S2) and (S3) by construction, but not necessarily equals D̄ in
general. For instance, in S1 we have D̄ = D0 whereas D∞ is the dependency ratio at the end
of our studied horizon. These clearly do not coincide in an ageing environment. The weight
parameter is given by ρ = 1

2 for the four studied scenarios.
Let D0 = 0.3 and D∞ = 0.5, that is, we are in an ageing scenario. We choose δ0 = 0.5

without loss of generality.5 This yields the t = 0 PAYG equilibrium initial parameters π0 =
0.15 and δ0 = 0.5. S1 has hence π̄ = π0 = 0.15 and δ̄ = δ0 = 0.5, S2 has π̄ = π0 = 0.15 and
δ̄ = π0

D∞
= 0.3 and S3 has δ̄ = δ0 = 0.5 and π̄ = δ0D∞ = 0.25. The planner’s choice in S4

is δ̄ = 0.4 and π̄ = 0.2 which corresponds to π∞ and δ∞ from Equations (14) and (13) when
replacing Dt = D∞ under the Musgrave rule for a choice of M = 0.5. Anticipating ageing,
the government chooses to target a lower than current benefit ratio and simultaneously a
greater long-term contribution rate. The corresponding implied target dependency ratios are
D̄ = 0.3, 0.5, 0.5, 0.5 for S1–S4 respectively. Table 1 provides an overview of the target values
for S1–S4.

5We have assessed other values of δ0 and obtain the same reasoning, albeit on a difference scale. This follows
from calculating π0 using the PAYG equilibrum (6) for a given δ0. Of course, using this equivalence, greater
δ0 yield a greater π0 for a given initial dependency ratio D0.
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Figure 1: Optimal benefit ratio δ?t (22) and contribution rate π?t (23) for Scenarios S1–S4 (32)

(a) δ?t (b) π?
t

Notes: S1–S4 represent scenarios given in Equation (32) for ρ = 0.5, D0 = 0.3, D∞ = 0.5, π0 = 0.15 and
δ0 = 0.5. Relevant parameters are given in Table 1.

Figure 1 shows the great effect of the targets in the short and long-term evolution of δ?t
and π?t . All scenarios yield to a decreasing benefit rate and increasing contribution rate in
an ageing environment. However, as expected, the starting and final level vary substantially
depending on the chosen targets. Let us start analysing S1 (blue line) which targets the
initial equilibrium values of the PAYG system. In this case Figures 1(a) and 1(b) show that
we indeed start at δ?t = δ0 = 0.5 and π?t = π0 = 0.15 as expected. Obviously, in this case
D̄ = D0 and at time t = 0 Equations (27) and (28) yield δ0 and π0 respectively.

It is interesting to note that changing the targets dramatically alters the levels of benefits
and contributions despite the initial δ0 = 0.5 and the corresponding π0. For instance, in
S2, we target 0.3 since we anticipate a significant increase in Dt and aim to adjust the
benefit level accordingly without impacting contributions much. Of course, the pension system
adapts to converge to 0.3 when Dt = 0.5. However, the initial payment level is no longer 0.5
but slightly above 0.4. Targeting lower long-term benefits adapts the system downwards,
making it simultaneously less generous and relatively less expensive. This of course stems
from the PAYG equilibrium (6): δ?0 being lower than 0.5, for D0 = 0.3 we obtain necessarily
π?0 < π0 = 0.15. On the other hand, S3’s philosophy is different. Anticipating an ageing
society, it aims to adapt contributions as to guarantee a level similar to δ0 = 0.5 in the long-
term. By doing so, it increases the initial benefit ratio to slightly under 0.7 and increases
the contribution rate to 20% instead of 15% to maintain PAYG equilibrium and optimality.
Finally, S4 shows that, affecting contributors and retirees simultaneously in the long-term
through the chosen targets, yields reasonable benefits and contributions in the short-term as
well. Figure 1 shows clearly that δ?t > δ̄ for S2–S4 since D̄ ≥ Dt ∀t whereas δ?t < δ̄ since
D̄ = D0 ≤ Dt as discussed in Equation (29). �

Example 2 (Benefit ratio δ?t and contribution rate π?t as a function of the weight parameter ρ
for scenarios S1 and S4 (32)). Figure 2 shows the optimal benefit ratio δ?t (22) and contribution
rate π?t (23) for varying ρ and scenarios S1 and S4.6 Firstly, we observe that the benefit ratio
decreases and the contribution rate increases under an ageing scenario where Dt goes from

6Scenarios 2 and 3 are omitted from the main analysis as they resemble Scenario 4, albeit with a different
scale given the different targets.
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Figure 2: Optimal benefit ratio δ?t (22) and contribution rate π?t (23) for varying ρ and
scenarios S1 and S4
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(a) δ?t for S1 and varying ρ
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(b) π?
t for S1 and varying ρ
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(c) δ?t for S4 and varying ρ
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0.30
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(d) π?
t for S4 and varying ρ

Notes: S1–S4 parameters are given in Table 1. The parameter weight parameter ρ ∈ [0, 1].

D0 = 0.3 to D∞ = 0.5. The level and speed of change heavily depends on the chosen targets
as discussed in detail in Example 1.

We know that δ?t = δ̄ when ρ = 0 and π?t = π̄ when ρ = 1 from Remark 3. In particular,
in S1, we recover the pure DB case (ρ = 0) and pure DC case (ρ = 1) since δ̄ = δ0 and π̄ = π0.
The level of ρ indicates the level and speed at which we move from a pure DB to a pure DC.
Since D̄ = D0 < Dt ∀ t > 0 we find that δ?t < δ0 as given in (29). The benefit ratio decreases
up to 20% and the contribution rate increases up to 10% over the studied horizon.

On the other hand, the implicit dependency ratio D̄ is equal to D∞ in S4, yielding for all ρ
δ?t > δ̄. The extreme cases yield here also a DB and DC scenario but for different initial values
of the optimal benefit and contribution rate. Indeed, in the “pessimistic” DC, we target 20%
and for ρ = 1 this is also the level of the initial contribution rate. Of course, since D0 = 0.3,
the corresponding benefit rate that renders the PAYG system sustainable exceeds δ0 = 0.5.
Hence, in this pure DC we start higher than currently aimed but in the long term decrease
the global benefit payments by 30%. However, the level of benefits is still higher than in S1
because the target contribution rate in this DC is 5% greater than the one aimed in S1. In
summary, the level of D̄, and how it compares to Dt is the main driver of the level of decrease
from the chosen targets. �
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4.2 Second level: risk sharing between retirees

This Subsection focuses on finding the optimal sustainability factor β and replacement rate at
retirement age δ̃ such that the effect of PAYG equilibrium imbalances (6) are shared between
new and old retirees. We assume that the sustainability factor β can be rewritten as a product
of past cumulated sustainability factors by the one-year sustainability factor β̃t = β1

t−1 that
affects all old retirees at time t:

β∆
t = β∆−1

t β̃t+∆ =
t+∆−1∏
s=t

β1
s =

t+∆∏
s=t+1

β̃s, (33)

where β̃s represents the sustainability factor applied to year s. Then, the replacement rate δ̃t
for the cohort retiring in t can be found by rewriting the benefit ratio (7):

δt = δ̃t lxr,t β
0
t +

ω∑
x=xr+1

δ̃t−(x−xr) β
x−xr−1
t−(x−xr) β̃t lx,t ⇔

δ̃t =
δt −

∑ω
x=xr+1 δ̃t−(x−xr) β

x−xr−1
t−(x−xr) β̃t lx,t

lxr,t
=
δt − β̃t αt
lxr,t

, (34)

where αt represents the sum of pensions to old retirees before year t β̃t adjustment and is
given by

αt =
ω∑

x=xr+1

δ̃t−(x−xr) β
x−xr−1
t−(x−xr) lx,t. (35)

The replacement rate δ̃t (34) is a function of the benefit ratio δt obtained in the first level,
the level of pensions for old retirees, the sustainability factor β̃t corresponding to year t and
the density corresponding to new retirees lxr,t. Alternatively, rewriting the benefit ratio (7)
to highlight the one-year sustainability factor β̃t yields

β̃t =
δt − δ̃t lxr,t

αt
. (36)

Following the same approach as the first level, we want to minimize the following objective
function

g(ηt, δ̃t, β̃t) = ηt

ω∑
xr+1

Lx,t

(
β̃t

βt
− 1

)2

+ (1− ηt)Lxr,t

(
δ̃t

δt
− 1

)2

(37)

Since
∑ω

xr+1 Lx,t > 0, the optimum obtained through (37) is equivalent to the optimum

obtained through g(ηt,δ̃t,β̃t)∑ω
xr+1 Lx,t

. Let us denote

Dxr,t =
Lxr,t∑ω
xr+1 Lx,t

, (38)

as the dependency ratio of newly retirees towards old retirees. Recall that Lx,t denotes the
number of individuals whereas lx,t represents the density. Then, (37) can be rewritten as
follows:

gδ̃,β̃(ηt, δ̃t, β̃t) = ηt

(
β̃t

βt
− 1

)2

+ (1− ηt)Dxr,t

(
δ̃t

δt
− 1

)2

. (39)
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Proposition 2 (2nd level: optimal replacement rate δ̃ and sustainability factor β̃ for target βt
and δt). The optimal replacement rate δ̃?t and sustainability factor β̃?t of the objective function
(39) is given by:

β̃?t = βt
ηt δ

2

t l
2
xr,t + (1− ηt)αt βtDxr,t(δt − δt lxr,t)

ηtδ
2

t l
2
xr,t + (1− ηt)α2

t β
2
t Dxr,t

, (40)

δ̃?t = δt
ηt δt lxr,t(δt − αtβt) + (1− ηt)α2

t β̄
2
t Dxr,t

ηtδ
2

t l
2
xr,t + (1− ηt)α2

t β̄
2
t Dxr,t

. (41)

Proof. The optimal sustainability factor β̃ and the optimal replacement rate δ̃ are obtained
by substituting δ̃t by (34) in the objective function

gδ̃,β̃(η, δ̃t, β̃t) = ηt

(
β̃t

βt
− 1

)2

+ (1− ηt)Dxr,t

(
δt − β̃tαt
lxr,tδt

− 1

)2

Deriving with respect to β̃t, and cancelling the derivative yields:

∂

∂β̃t
gδ̃,β̃(η, δ̃t, β̃t) = 2 ηt

β̃t − βt
β

2
t

+ 2 (1− ηt)αtDxr,t

αtβ̃t − δt + δtlxr,t

δ
2

t l
2
xr,t

 = 0.

The optimal processes are deduced from this last relation and equation (34):

β̃?t = βt
ηt δ

2

t l
2
xr,t + (1− ηt)αt βtDxr,t(δt − δt lxr,t)

ηtδ
2

t l
2
xr,t + (1− ηt)α2

t β̄
2
t Dxr,t

δ̃?t = δt
ηt δt lxr,t(δt − αtβt) + (1− ηt)α2

t β̄
2
t Dxr,t

ηtδ
2

t l
2
xr,t + (1− ηt)α2

t β̄
2
t Dxr,t

The second derivative of f is given by:

∂2

∂β̃2
t

gδ̃,β̃(ηt, δ̃t, β̃t) = 2

 ηt
β̄2
t

+
(1− ηt)α2

tDxr,t

δ
2

t l
2
xr,t

 (42)

which, for ηt ∈ [0, 1], is always positive indicating that the obtained β̃?t and corresponding δ̃?t
minimizes gδ̃,β̃.

As in Proposition 1, the choice of the targets is important. Our canonical choice in the
2nd level corresponds to the following two objectives: letting the target replacement rate be
equal to the benefit ratio stemming from the 1st level, and the target sustainability factor to
be equal to 1 as follows: {

δt = δt,

βt = 1.
(43)
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This choice corresponds to the cases studied in Subsection 3.2. Under this choice, our optimal
β̃t and δ̃t simplify as follows:

β̃?t = δt
ηt δt l

2
xr,t + (1− ηt)αtDxr,t (1− lxr,t)
ηt δ2

t l
2
xr,t + (1− ηt)α2

t Dxr,t
, (44)

δ̃?t = δt
ηt δt lxr,t(δt − αt) + (1− ηt)α2

t Dxr,t

ηt δ2
t l

2
xr,t + (1− ηt)α2

t Dxr,t
. (45)

Remark 4 (Simplifying β̃?t (44) under the canonical choice). Let us rewrite αt, the sum of
pensions to older retirees before adjusting with β̃t to simplify (44) and (45) further:

αt =

ω∑
x=xr+1

δ̃t−(x−xr) β
x−xr−1
t−(x−xr) lx,t =

lxr,t
lxr,t

ω∑
x=xr+1

δ̃t−(x−xr) β
x−xr−1
t−(x−xr) lx,t

= lxr,t

ω∑
x=xr+1

δ̃t−(x−xr) β
x−xr−1
t−(x−xr)

lx,t
lxr,t

= lxr,tα
∗
t , (46)

where
lx,t
lxr,t

is only equal to a survival probability7 if there is no time-dependence. Note that α∗t
resembles an indexed lifelong annuity factor where indexation corresponds to the β cumulative
sustainability factor and δ̃ to the level of benefits. The dependency ratio Dxr,t can also be
written with regards to lxr,t as follows:

Dxr,t =
Lxr,t∑ω
xr+1 Lx,t

=

∑ω
x=xr

lx,t∑ω
x=xr

lx,t

Lxr,t∑ω
xr+1 Lx,t

=
lxr,t∑ω
xr+1 lx,t

. (47)

Furthermore, note that
∑ω

x=xr
lx,t = 1 and hence 1− lxr,t =

∑ω
xr+1 lx,t. Considering this, we

obtain the simplified optimal sustainability factor:

β̃?t = δt
ηt δt + (1− ηt)α∗t

ηt δ2
t + (1− ηt) (α∗t )

2Dxr,t
. (48)

The sustainability factor corresponds to the benefit level of the 1st level adjusted by a convex
transformation of the benefit ratio one should provide on an aggregate base and the total
ex-ante sustainability benefits for old retirees relative to new retirees. �

Remark 5 (Limit cases when ηt = 0 and ηt = 1). We are interested in seeing what our risk-
sharing mechanism entails whenever ηt takes the extreme values 0 and 1. When ηt = 0, that
is, we are solely interested in studying the evolution of the replacement rate, we obtain

β̃?t =
δt − δt lxr,t

αt
,

δ̃?t = δt ,

whereby β̃?t is given by (36) with δ̃t = δt. In particular, for the canonical choice (43), we
obtain

β̃?t =
δt (1− lxr,t)

αt
=
δt (1− lxr,t)
α∗t lxr,t

=
δt
α∗t

∑ω
x=xr+1 lx,t

lxr,t
,

δ̃?t = δt.

7The survival probability from xr in t to x in t− xr + x would be x−xrpxr (t) =
lx,t+(x−xr)

lxr,t
.
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This scenario is comparable to providing a replacement rate that is sustainable on a PAYG
equilibrium basis to new retirees and obtain the sustainability factor that is able to finance
this. Indeed, the canonical choice makes obvious that the sustainability rate will be equal to
the relationship between the payment capacity from the 1st level (benefit ratio times current
retirees) and the actual level of pensions to current retirees before any adjustment. This
corresponds to Subsection 3.2 where solidarity is assumed within all retirees (Equation (18)).

On the other hand, if ηt = 1, that is, we are solely interested in studying the sustainability
factor, we obtain

β̃?t = βt,

δ̃?t =
δt − αtβt
lxr,t

.

As in the previous case, δ̃?t = δ̃t given by Equation (34) for β̃t = βt. For the canonical choice
(43), yields exactly

β̃?t = 1,

δ̃?t =
δt − αt
lxr,t

.

This scenario corresponds to the newly retirees bearing all the risk as presented in (17)
in Subsection 3.2. Of course, as discussed then, we see that the replacement rate will be
equal to the remaining payment capacity δt after providing full indexation to current retirees
proportional to new retirees. Our framework presents possible intermediate cases between the
extreme solidarity scenarios presented in Subsection 3.2. �

Remark 6 (Democratic choice when η = 1
2). We now focus on the sustainability factor β̃?t and

replacement rate δ̃?t when equal weight is given to the two objectives, i.e., η = 1
2 . In this case,

Equations (40) and (41), for general targets, become:

β̃?t = βt
δ

2

t l
2
xr,t + αt βtDxr,t(δt − δt lxr,t)

δ
2

t l
2
xr,t + α2

t β
2
t Dxr,t

, (49)

δ̃?t = δt
δt lxr,t(δt − αtβt) + α2

t β̄
2
t Dxr,t

δ
2

t l
2
xr,t + α2

t β̄
2
t Dxr,t

. (50)
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In particular, for our canonical choice, using (35) and (47), we obtain:

β̃?t =
δ2
t l

2
xr,t + αtDxr,t δt (1− lxr,t)
δ2
t l

2
xr,t + α2

t Dxr,t
=

δ2
t l

2
xr,t + αt δt lxr,t

δ2
t l

2
xr,t + α2

t
lxr,t

(1−lxr,t)

=
δ2
t lxr,t
δ2
t lxr,t

lxr,t + αt
δt

lxr,t +
(
αt
δt

)2
1

(1−lxr,t)

=
lxr,t + αt

δt

lxr,t +
(
αt
δt

)2
1

(1−lxr,t)

=
1 +

α∗t
δt

1 +
(
α∗t
δt

)2
Dxr,t

(51)

δ̃?t = δt
δt lxr,t(δt − αt) + α2

t Dxr,t

δ2
t l

2
xr,t + α2

t Dxr,t
= δt

δt lxr,t
δ2
t lxr,t

δt − αt +
(
α2
t
δt

)
Dxr,t

lxr,t

lxr,t +
(
αt
δt

)2 Dxr,t

lxr,t

= δt
1− αt

δt
+
(
αt
δt

)2
1

1−lxr,t

lxr,t +
(
αt
δt

)2
1

1−lxr,t

= δt

1
lxr,t
− α∗t

δt
+
(
α∗t
δt

)2
Dxr,t

1 +
(
α∗t
δt

)2
Dxr,t

. (52)

We observe that, δ̃?t ≥ δt if and only if:

1− αt
δt
≥ lxr,t ⇔ δt − αt ≥ lxr,t δt, (53)

that is, if the benefit ratio reduced by the pre-adjustment old retirees benefits is greater or
equal than the benefit ratio weighted by the new retirees density.

Example 3 (Optimal replacement rate δ̃?t (41) and sustainability factor (40) β̃?t for varying
η). Let ω = 130, Lxr,t = 1 and Lx,t = 0.96x−xr . This yields

∑ω
x=xr

Lx,t = 23.31. Since the
population densities are given by (8), then lxr,t = 4.29 · 10−2 and Dxr,t = 4.49 · 10−2. In this
case, if δ̃t−(x−xr) = δ̃ = 0.5 and βx−xrt−(x−xr) = 1 for all old retirees, αt becomes:

αt =
ω∑

x=xr+1

δ̃t−(x−xr) β
x−xr−1
t−(x−xr) lx,t = δ̃

ω∑
x=xr+1

lx,t = δ̃(1− lxr,t)

= 0.5 · 0.9571 = 0.4786

We work in a scenario where the past was virtually steady state, providing stable δ̃ = 0.5
and full wage indexation β̃ = 1. Assume that, in year t, the 1st level analysis yields an average
benefit ratio δt ∈ [0.45, 0.55]. Recall that the canonical δ?t is given by (30):

δ?t = δ0
1 +D0

Dt
D0

+D0

.

Note that, since δ0 = 0.5 and D0 = 0.3, the only way to reach after one year the lower
bound δ?1 = 0.45 is to have a 14.4% increase of the dependency ratio to D1 = 0.34. This of
course implies that, for a constant level of workers, retirees increase by 14.4% as well. Such a
one-year change in the dependency would be not realistic, even in a rapidly ageing context.8

First, we observe that for δt = 0.5 we maintain δ̃t = 0.5 and β̃t = 1 ∀η. Indeed, this is where
the curves cross.

8For instance, in our data, we observe an increase of the dependency ratio from 30% to 34% over a 7-year
horizon.
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Figure 3: Optimal replacement rate δ̃?t (40) and sustainability factor β̃?t (40) for η ∈ [0, 1] and
δt ∈ [0.45, 0.55]
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Notes: We assume ω = 130, Lxr,t = 1 and Lx,t = 0.96x−xr . The needed parameters then correspond to
lxr,t = 4.29 · 10−2 and Dxr,t = 4.49 · 10−2. Assuming that old retirees all had β̃t−(x−xr) = δ̃ = 0.5 and
βx−xr
t−(x−xr) = 1, αt becomes 0.4786.

Let us assess the extreme cases η = 0 and η = 1 discussed in Remark 5. If η = 1
our optimal sustainability factor equals the target of full pension indexation. Of course, in
counterpart, the replacement rate for new retirees is greatly affected by small changes in δt.
In particular, the pension for new retirees becomes negative if δ1 < 0.48 which corresponds
to a realistic one-year increase in retirees of 5.42%. It is clear that solely targeting stable
indexation is not a feasible extreme scenario. On the other hand, when η = 0, we target a
replacement rate equal to δt and the sustainability factor results from the equilibrium equation
(7). In this case, a value of δ1 = 0.48 yields a replacement rate of δ̃1 = 0.48 and sustainability
factor of β̃1 = 0.97. Both parties see their benefits decrease but in a reasonable manner given
the demographic change.

If δt < δ̃, then necessarily the replacement rate needs to decrease and full indexation
cannot be guaranteed anymore. Interestingly, δ̃?t is more affected by the choice of η than
the sustainability factor β. Of course, demographic change yields additional (δt > 0.5) or
diminished indexation if δt < 0.5. Indeed, abstracting from η = 0 and η = 1, we observe that
the β̃ lines are much closer to each other than the corresponding δ̃. Note that our 2nd level
optimization compares the needs of one generation that represents around 4.5% of the total
retirees versus the remaining 95.5%. In order words, it is intuitive that the variable that affects
only one generation (δ̃) is more sensitive to 1st level changes than β̃ which virtually affects all
current retirees. Indeed, the marginal effect of ±0.1 in the benefit ratio will be much greater
for the newly retirees as they absorb in a great proportion the existing surplus or deficit.
In other words, a small change in the sustainability factor β̃ can render an adequate initial
replacement rate possible. Therefore we can conculde that the introduction of a sustainability
factor adjusting the indexation of pension is a valuable automatic adjustment mechanism. �
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4.3 Initializing the risk-sharing mechanism

The expressions in Subsection 4.1 and 4.2 have been obtained for general pension and de-
mographic structures. This concluding Subsection focuses on the first time application of
the risk-sharing mechanism when the pension system goes from steady state to a dynamic
scenario under the canonical choice with ρ = η = 1

2 . Our aim is to understand the main
risk-sharing mechanism under simplified expressions.

Let us assume that the system was initially in steady state, that is,

Ds =
Rs
Ws

= D,

Dxr,s =
lxr,s∑ω

x=xr+1 lx,s
= Dxr .

The system facing no demographic risk provides both stable indexation β̃s = 1 and replace-
ment rate δ̃s = δ̃ for s < t. Of course, Equation (7) then simplifies to

δs = δ̃

ω∑
x=xr

lx,s = δ̃ = δ0. (54)

In that case, Equation (6) yields πs = D δ = π. The system runs in relative steady state
for some years until t, where Dt > Dt−1 = Dt−2 = . . . = D0 = D. On the first level, the
demographic change will yield, rewriting Equations (22) and (23):

δ?t = δ̃
1 +D
Dt
D +D

, (55)

π?t = π
Dt

D

1 +D
Dt
D +D

. (56)

Of course, in our ageing scenario we have Dt
D > 1 and hence δ?t < δ̃ and π?t > π. It is obvious

that if Dt = D the optimal 1st level would simplify to δ?t = δ̃ and π?t = π. The variation in
the 1st level needs to be translated in adjusted δ̃t and β̃t. First, let us simplify αt (35):

αt =

ω∑
x=xr+1

δ̃t−(x−xr) β
x−xr−1
t−(x−xr) lx,t = δ̃

ω∑
x=xr+1

lx,t = δ̃ (1− lxr,t). (57)

Then, Equation (51) simplifies to:

β̃?t =
lxr,t + αt

δ?t

lxr,t +
(
αt
δ?t

)2
1

(1−lxr,t)

=
lxr,t + δ̃

δ?t
(1− lxr,t)

lxr,t +
(
δ̃(1−lxr,t)

δ?t

)2
1

(1−lxr,t)

=
lxr,t + δ̃

δ?t
(1− lxr,t)

lxr,t +
(
δ̃
δ?t

)2
(1− lxr,t)

=
(1− lxr,t)
(1− lxr,t)

Dxr,t + δ̃
δ?t

Dxr,t +
(
δ̃
δ?t

)2 =
Dxr,t + δ̃

δ?t

Dxr,t +
(
δ̃
δ?t

)2

=
Dxr,t +

Dt
D

+D

1+D

Dxr,t +

(
Dt
D

+D

1+D

)2 , (58)
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which is a function of lxr,t and Dt exclusively. If Dt > D naturally yields β?t < 1. Of course,
if Dt = D the expression (58) yields β?t = 1. Finally, Equation (34) further simplifies to:

δ̃?t = δ?t

1− αt
δ?t

+
(
αt
δ?t

)2
1

1−lxr,t

lxr,t +
(
αt
δ?t

)2
1

1−lxr,t

= δ?t

1− δ̃
δ?t

(1− lxr,t) +
(
δ̃
δ?t

)2
(1− lxr,t)

lxr,t +
(
δ̃
δ?t

)2
(1− lxr,t)

= δ?t

1
1−lxr,t

− δ̃
δ?t

+
(
δ̃
δ?t

)2

Dxr,t +
(
δ̃
δ?t

)2 = δ?t

1
1−lxr,t

−
Dt
D

+D

1+D +

(
Dt
D

+D

1+D

)2

Dxr,t +

(
Dt
D

+D

1+D

)2

= δ̃
1 +D
Dt
D +D

1
1−lxr,t

−
Dt
D

+D

1+D +

(
Dt
D

+D

1+D

)2

Dxr,t +

(
Dt
D

+D

1+D

)2 , (59)

which, again, is an expression that solely depends on lxr,t and Dt. If Dt = D, Equation (59)
simplifies to

δ̃?t = δ̃

1
1−lxr,t

− 1 + 12

Dxr,t + 12
= δ̃

1
1−lxr,t
lxr,t

1−lxr,t
+ 1

= δ̃

1
1−lxr,t

lxr,t+1−lxr,t
1−lxr,t

= δ̃.

5 Numerical application

We apply the obtained results for both proposed risk sharing levels: sharing of the demo-
graphic risk between the workers and the retirees and, further, sharing of this risk between
the different generations of retirees. Therefore, we begin with the calibration of the depen-
dency ratio process on data of the Belgian population.

5.1 Dependency ratio

We consider that the dependence ratio process D follows a Black-Karasinski model (Black
and Karasinski, 1991) with a constant reverting value. With this model, the logarithm of the
dependence ratio follows a mean-reversion process

d lnDt = α (lnD∞ − lnDt) dt+ σ dWt

where α, D∞ and σ are strictly positive constants and Wt is a Brownian motion. α is the
mean reversion rate, D∞ is the long term mean reverting value of the dependence ratio and
σ is the instantaneous volatility. With this model, the dependence ratio follows a log-normal
distribution and is strictly positive, as expected for this ratio.

The dependency ratio in the Black-Karasinski model satisfies the following stochastic
differential equation

dDt =

(
α lnD∞ +

σ2

2
− α lnDt

)
Dtdt+ σDtdWt

whose the solution is

Dt = exp

(
lnD0 e

−αt + lnD∞
(
1− e−αt

)
+ σ

∫ t

0
e−α(t−u) dWu)

)
.
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Figure 4: Projection of the dependency ratio under Black-Karasinski and Dxr proportion of
new retirees with respect to all retired population
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This process follows a log-normal distribution

Dt ∼ LogN
(
µt, σ

2
t

)
with mean and variance given by:

E[Dt] = exp

(
µt +

σ2
t

2

)
Var[Dt] = exp

(
2µt + σ2

t

) (
eσ

2
t − 1

)
with

µt = lnD0 e
−αt + lnD∞

(
1− e−αt

)
σ2
t =

σ2

2α

(
1− e−2αt

)
.

When t =∞, the drift µt and volatility σ2
t become:

µ∞ = lnD0 e
−α∞ + lnD∞

(
1− e−α∞

)
= lnD∞

σ2
∞ =

σ2

2α

(
1− e−2α∞) =

σ2

2α
.

And the asymptotic mean and variance are

lim
t→∞

E[Dt] = exp

(
µ∞ +

σ2
∞
2

)
= exp

(
lnD∞ +

σ2

4α

)
lim
t→∞

Var[Dt] = exp
(
2µ∞ + σ2

∞
) (
eσ

2
∞ − 1

)
= exp

(
2 lnD∞ +

σ2

2α

)(
exp

(
σ2

2α

)
− 1

)
.
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Table 2: Target values for S1–S4 when D0 = 0.32, D∞ = 0.48, δ0 = 0.5 and π0 = 0.16.

Scenario DB Canonical Musgrave DC

ρ 0 1
2

1
2 1

δ̄ 0.50 0.50 0.39 0.50
π̄ 0.16 0.16 0.19 0.16
D̄ 0.32 0.32 0.48 0.32

We work on data of the annual projection of the Belgian population9 (from 2019 to 2061)
to estimate the projection of the dependence ratio. We suppose a constant retirement age
and a complete career (from 20 to 65 years) for each worker. We calibrate our model with
the least squares method and we obtain the following parameters for the mean reversion rate
α = 0.059, the long term mean value D∞ = 0.47 and the instantaneous volatility σ = 0.0046.
The maximum likelihood calibration provides very similar results. Figure 4 presents the
projection of the dependency ratio and its 90 % and 99.5% confidence intervals and the
proportion of new with respect to all retirees. The baby-boom effect is clearly present until
2045.

5.2 1st level: Risk-sharing between workers and retirees

For the risk sharing between the workers and the retirees, we analyse the impact of this
dependency ratio process on the contributions of the workers and the benefits of the retirees
trough respectively the increase of the contribution rate π and the decrease of the benefit
ratio δ. These both variables are determined by the optimisation proposed on Section 4.1.

We study scenarios that align with those shown in Table 1 albeit with parameters that fit
our Belgian data. Indeed, since D2019 = D0 = 0.32 and δ0 = 0.5 we obtain π0 = 0.16 through
the PAYG equilibrium Equation (5). We perform our calibration and basic projection until
2061, last available date in our calibration set. We denote in what follows canonical the
combination of the canonical target choice of δ̄ = δ0 and π̄ = π0 together with the democratic
weight parameter ρ = 1

2 . The DB, DC and canonical scenarios all share the same targets and
only differ in the weight parameter ρ. The Musgrave scenario, on the other hand, is selected
using the same rationale as S4 in Example 1 but with our calibrated data. Indeed, δ̄ = 0.39
and π̄ = 0.19 that result from π∞ and δ∞ from Equations (14) and (13) when replacing
Dt = D∞ = D2061 = 0.48 under the Musgrave rule for a choice of M = 0.4773. This choice
yields initial equivalence between the different plans, ensuring comparability.

Figure 5 shows the mean and confidence intervals of the optimal benefit ratio δ?t (22)
(Subfigure 5(a)) and contribution rate π?t (23) (Subfigure 5(b)) for scenarios in Table 2. In
contrast to the results shown in Example 1, we made parameter choices to ensure starting
at the same benefit and contribution level in 2019. The results obtained, while variable,
exhibit tight confidence intervals, as expected. With the dependency ratio’s low volatility and
anticipation of a smooth transition to an aged society, little deviation from the predetermined
path is expected.

The benefit ratio shows comparable variability, whereas a higher risk can be detected in
the contribution rate. The variability of the canonical or Musgrave rule is limited, whereas
the contribution rate of the DB case has wider bounds with up to ±0.5% absolute deviation

9Belgian Federal Planning Bureau.
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Figure 5: Mean and confidence intervals of the optimal benefit ratio δ?t (22) and contribution
rate π?t (23) for scenarios in Table 2.

2020 2030 2040 2050 2060

0.
35

0.
40

0.
45

0.
50

t

δ t

DB
ρ = 0.5
Musgrave
DC

(a) δ?t

2020 2030 2040 2050 2060

0.
16

0.
18

0.
20

0.
22

0.
24

t

π t

DB
ρ = 0.5
Musgrave
DC

(b) π?
t

Notes: Confidence intervals depicted are (0.5%,99.5%) [light] and (1%,99%) [dark].

from the mean. Clearly, for the benefit ratio of the DB, it becomes deterministic, as well as
the contribution rate of the DC.

Let us initially focus on the DB, canonical, and DC scenarios. Despite targeting the same
long-term δ̄, the choice of ρ of 0, 1

2 , and 1 respectively yield substantially different benefit
levels in both the short and long term. Since Dt > D0 = 0.32, we observe that δ?t < δ̄ per
the relationship shown in Equation (29). The level of δ̄ = 0.5 is only attained in the pure DB
scenario, as expected. In the DB case, we obtain a fixed level of δ?t for all t at the expense of a
contribution level that increases from π2019 = 0.16 to π2060 = 0.24 at the end of our projection
horizon. On the other hand, in the DC scheme, we fix the contribution rate at the initial level
and reduce the aggregate benefit rate from 0.50 to approximately 0.35. Our canonical choice
yields an intermediate solution with a higher long-term δt than in a pure DC scenario, with
a contribution rate increase from 16% to 17.5% over a 40-year horizon. We believe such an
increase would be bearable even in high-tax countries.

Now, let us shift our focus to the Musgrave rule. It has been calibrated to have the same
initial conditions, but given its structure, it necessarily has a different long-term target π̄ and
δ̄. We target a long-term contribution rate of π̄ = 0.19 and a benefit ratio δ̄ = 0.39, and
these values are exactly attained at the end of our simulation since D̄ = D∞. Again, per
the dichotomy shown in Equation (29), δ?t > δ̄ for all t since D̄ > Dt for all t. Note that,
despite the choice of targets, the benefit ratio (contribution rate) will decrease (increase) in
all scenarios. The level of decrease will primarily depend on the long-term financing capacity
through δ̄. If we allow the system to increase the contribution rate to 19%, as in the Musgrave
case, then, by PAYG equilibrium (6), a benefit ratio of 39% will be attained. On the other
hand, if we want to either keep finances or benefits fixed, aggregate benefit levels will have to
decrease (DC) or contributions will have to increase (DB) substantially.

We would like to briefly compare the effect of the targets for a given weight parameter ρ.
The canonical and Musgrave scenarios both have the demographic weight ρ = 1

2 but different
targets. This is natural as the demographic weight simply indicates that equal weight is given
between the variation allowed with respect to the targets. If the targets differ, the trajectories
towards that target will differ as well. However, it is clear that these two scenarios provide
similar outcomes, both in benefit and contribution rate evolution.
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Finally, we would like to highlight that δt always decreases as our population ages. This
means that, on a relative level, lower pensions are paid out compared to current salaries.
However, this does not imply, as shown in Subsection 5.3, that the nominal level of pensions
will decrease over time.

5.3 2nd level: Risk sharing between the different generations of retirees

In the second level, we are interested in sharing the effect of a decreasing aggregate benefit
ratio δt among new and old retirees through δ̃t and β̃t, respectively. We assume that our

targets correspond to δt = δt and βt = 1 as indicated in Equation (43). According to Remark

5, our optimal replacement rate when η = 0 corresponds to δt, while η = 1 yields perfect wage
indexation with β̃t = 1. It is noteworthy that a general family of risk-sharing mechanisms,
depending on η, arises after obtaining the first-level optima for each of our four scenarios.
Furthermore, we assume that the proportion of newly retired individuals to the total retiree
population corresponds to the projected population distribution given by the Belgian Federal
Planning Bureau.

Figure 6 shows the mean and confidence intervals of the optimal replacement rate δ̃?t (45)
and optimal yearly sustainability factor β?t (44) for η = 0, 0.5, 0.95, 1 for scenarios in Table
2. A quick look at the Figure shows that the variability of our optima is greater than in the
1st level, especially regarding the yearly sustainability factor for η < 1. Obviously, for η = 1,
we obtain total wage indexation and hence no uncertainty. Similarly, the DB scenario yields
a constant benefit ratio and full indexation. As seen in Figure 5, this is only possible since
the contribution rate increases substantially over the studied horizon.

Now, let us analyze the global trends of β̃t for η < 1. We observe that the sustainability
factor decreases significantly when Dt deviates for the first time from the steady-state past.
As illustrated in Example 3, a small change in the first-level δt results in a substantial change
in the sustainability factor. Moreover, our population distribution anticipates a substantial
influx of retirees until 2040, corresponding to the baby-boom generation (Figure 4(b)). The
combination of these factors leads to a considerable initial decrease in the sustainability ratio,
aiming to maintain a reasonable level of benefits for all retirees.

However, as the first level yields increasingly smaller δt as a consequence of aging and
pensions globally start to decrease relative to wages, higher indexation becomes affordable.
By the end of our projection horizon, the sustainability factors in the canonical, Musgrave,
and DC converge towards 1, the same level as the DB scheme, irrespective of the long-term
targets β̄t and π̄t. Furthermore, similar to Baurin and Hindriks (2023), we observe that a
small decrease in indexation is sufficient to maintain the sought equilibrium.

Now, let us shift our focus to η values closer to or equal to 1. We observe that for
this parameter, the benefit ratio, which follows a steady decreasing trend for other η values,
starts to exhibit erratic behavior. As we approach η = 1, full indexation of older retirees’
pensions becomes a priority. Consequently, the replacement rate is determined based on the
remaining financing capacity after providing full indexation to existing retirees. For instance,
when η = 0.95, there is a one-time decrease from 50% to 37% between 2019 and 2020. Due
to a substantial and steady influx of new retirees, the pension system undergoes further
corrections, resulting in replacement rates dropping below 30%. Despite these significant
adjustments, the system can still afford high indexation, albeit on much lower pensions for
those who have recently retired.

After reaching a record low in 2025, the replacement rate starts to increase, reaching values

26



Figure 6: Mean and confidence intervals of the optimal replacement rate δ̃?t (45) and optimal
yearly sustainability factor β?t (44) for η = 0, 0.5, 0.95, 1 for scenarios in Table 2.
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Figure 7: Indexed pension with adjustments δ̃2019β
x−65
2019 (1 + g)x−65 (mean and CI) for the

cohort retiring in 2019 for η = 0, 0.95, 1 for scenarios in Table 2. Scenarios with no wage
growth (g = 0%) and wage growth (g = 1.5%).
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Notes: Confidence intervals are (0.5%,99.5%) and (1%,99%).

close to 45% in 2050 in the canonical, Musgrave, and DC scenarios before decreasing again.
This increase, despite the aging environment, is driven by the sustainability factor exceeding
1, made possible by the very low new pensions paid during the baby-boom shock. Once the
sustainability factor surpasses 1, the pension volume starts to exceed what is affordable, and
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new replacement rates need to decrease again. This trend becomes more evident when η = 1,
and full indexation is promised. In this case, we even observe negative replacement rates
after 3 years. Guaranteeing full wage indexation to all existing retirees, regardless of the new
retirees’ benefits, comes at a high cost. In this scenario, the replacement rate remains negative
until 2043 when it turns positive again. These aberrant low and even negative new pensions
lead, at a certain moment, to aberrant high replacement rates as the funding capacity of the
state is substantial. It has been paying negative pensions for over 20 years, and when the
inflow of the baby-boom generation stops, there is suddenly such a surplus that it can even
afford over a 300% replacement rate.

In summary, guaranteeing full indexation is simply too expensive and unreasonable in an
aging society experiencing a demographic shock like the baby-boom. On the other hand, we
observe that a small decrease in indexation (β̃t < 1) guarantees global replacement rate to
new retirees and and aggregate benefit ratio stability. The only downside is that, despite the
low volatility observed in the first level, the values on a year-to-year basis are less predictable
and have wider bounds. Nevertheless, the maximum variability amounts to ±2%.

Finally, we highlight that despite sustainability factors become lower than 1, pensions are
very likely to increase on a nominal basis for a representative retiree. Figure 7 shows the
mean and confidence interval of the indexed pension δ̃2019β

x−65
2019 (1 + g)x−65 with adjustments

for the cohort retiring in 2019 for η = 0, 0.95, 1 for scenarios in Table 2. The scenario η = 0.5
is omitted as it yields similar values to η = 0, as given in Figure 6. Two hypotheses for the
wage growth are shown: g = 0%, indicating no wage growth in the general economy, and
g = 1.5%. We choose the cohort retiring in 2019 as it is the one that will bear the highest
effect of the baby-boom generation depicted in Figure 4(b) and is the first one to move out of
the relative steady-state.

Subfigures 7(a), 7(c), and 7(e) show the effect when no wage growth is present. For η = 0,
the replacement rate is equal to the aggregate benefit ratio, which at this stage is still 50%.
Subsequent β̃t < 1 yields, unfortunately, a decreasing purchasing power of pensions over time,
despite the initially high replacement rate. When η = 0.95, the initially lower and then
higher indexation provided over time (Subfigure 6(f)) allows for an increasing nominal trend
despite no wage growth. However, this growth is attained after reaching the age of 90, so few
retirees from the 2019 cohort would be able, under this scenario, to benefit from the increasing
nominal pensions. When η = 1 and full indexation is guaranteed, we observe that the cohort
would receive a fixed nominal pension level throughout their lifetime under all scenarios from
Table 2. Of course, this results in very high deficits and negative replacement rates for new
subsequent retirees, as depicted in Figure 6(g).

No wage growth, although realistic for short periods of time, is neither a desirable nor a
realistic assumption. If wage growth is supposed to be 1.5%, we observe that pensions for
all η values grow over time, albeit at a lower pace than in a classical (but expensive for the
workers) DB scenario. Nominal pensions would increase from 0.5 to 0.8 over time under the
Musgrave rule and to 0.7 for the DC scheme. The canonical would yield around 0.75 for the
considered cohort.

6 Conclusion

Our study focuses on two levels of risk-sharing in the context of a social security pay-as-you-go
pension system. In the first level, we analyze the impact of demographic risk, emphasizing
the dependency ratio, measuring the proportion of retirees to the working-age population.
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We develop an optimization scheme based on Cairns (2000), penalizing deviations from a
pre-specified target with a weight ρ characterizing intermediate systems between DB and DC.
We demonstrate mathematically that the long-term evolution of the contribution rate and
benefit ratio is primarily influenced by the mismatch between the observed dependency ratio
Dt and the ratio implied by our chosen long-term targets D̄.

To assess uncertainty, we model the dependency ratio with a Black-Karasinski model
incorporating mean reversion observed in empirical Belgian data. We find tight confidence
intervals for contribution and benefit ratios. Considering four risk-sharing rules (DB, DC,
canonical, Musgrave), we observe a consistent decrease in the benefit ratio as our population
ages, implying lower pensions relative to current salaries. However, the actual amount paid
depends on the chosen risk-sharing mechanism; for example, higher pensions under a DB
scenario would require a 50% increase in contribution rates.

In the second level, the focus shifts to risk-sharing between different generations of retirees,
studying the replacement rate for new retirees and the sustainability factor that multiplies
salary-linked pension indexation affecting all existing retirees. Similar to the first level, we
develop a general family of risk-sharing mechanisms identified by the weight parameter η.
Our analysis reveals the offering full salary-linked indexation to retirees and affecting only
the replacement rate of new retirees is often unrealistic, especially during demographic shocks
like the baby-boom. Compared to the first level, the confidence interval of sustainability factors
is greater, indicating a policy mechanism to share remaining risk after fixing benefit levels.
A slight decrease in indexation provides stability in replacement rates and benefit ratios,
offering a more feasible approach to demographic challenges. Despite sustainability factors
falling below 1, we show that nominal pensions are likely to increase for retirees, ensuring
financial support in an aging society.

With this in mind, we identify a few avenues for future research. Our paper focuses on a
pure pay-as-you-go system that is self-financing, with current contributions expected to cover
current pension expenditures. A natural extension involves exploring the role of funding
elements invested in financial markets to alleviate the impact of the increasing dependency
ratio. Secondly, our optimization scheme relies on long-term targets and a specific time
horizon, which is justified given the primary aim of mitigating the effect of a known, relatively
stable demographic trend associated with overall aging and the baby-boom shock. A potential
area for future research could involve exploring time-consistent strategies that incorporate
the complexity of considering the welfare of multiple (current and future, yet-to-be-born)
generations, independent of a pre-specified horizon.
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