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Abstract

With increasing numbers of Australians in or entering retirement, the modelling
of functional disability and health status is critical to the insuring and financing of
retirement risks for both governments and individuals. The multi-state modelling
of these risks underlie projections of the population by functional disability status,
the estimation of healthy life expectancy, the sustainable financing of public aged
care and innovations in private long-term care insurance. Developing a model
for the Australian population is challenging because of the lack of longitudinal
health and mortality data for older Australians. We use the cross-sectional data
in the Survey of Disability, Ageing and Carers for years 1998, 2003, 2009, 2012,
2015 and 2018, providing prevalence of functional disability and illness across 20
years, to estimate a multi-state transitions model that best explain the observed
changes of prevalence in Australia. We develop and estimate for the first time an
Australian model for transitions between five states (healthy, disabled but not ill,
ill but not disabled, disabled and ill, and dead) using age, sex and trend factors
for those aged 60 or greater. Functional disability is defined by autonomy of
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activities of daily living. Illness is defined by chronic illness conditions including
heart problems, diabetes, lung disease, and stroke. Model estimation is done
numerically. Using the fitted model, we estimate yearly transition probabilities,
life expectancy of retirees and projected population distributions by functional
disability and health states. We also provide a comparison of the results with
previous studies.

Keywords: functional disability, activities of daily living, multiple state model,
cross-sectional data, life expectancy, long-term care insurance

1 Introduction

Population ageing is currently a global phenomenon arising from declining fertility

and mortality rates and accelerated by the baby boomer generation entering retire-

ment (Karlsson et al, 2006; Fong et al, 2015). As the older aged population more prone

to ill health and disability, the ageing of the population will require increased amounts

of aged care including health and long-term care (Christensen et al, 2009; Engberg

et al, 2009).

The experiences and expectations in Australia are no different. Fertility has

dropped by 19.1% in ten years to 2020 (Australian Bureau of Statistics, 2020) and

the median age at death has increased by 0.8 years for males and 0.4 years for

females in the same period (Australian Bureau of Statistics, 2000). Health and aged

care are the government spending areas projected to increase at the fastest rate over

the next 40 years being, as a proportion of GDP, 4.6% to 6.2% and 1.2% to 2.1%,

respectively (Department of the Treasury, Australia, 2021).

The burden of public aged care in Australia is already significant. At mid 2021,

residential aged care and home care were used by approximately 191,000 and 176,000

people, respectively (Australian Institute of Health and Welfare, 2022). In addition,

during the 2020-21 financial year, the Commonwealth Home Support Program assisted

over 825,000 people (Australian Institute of Health and Welfare, 2022). While the
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demand for private long-term care (LTC) insurance is shown to exist, there is little

on offer (Wu et al, 2017).

To better understand the needs for public aged care and development of LTC

insurance in Australia, both the prevalence of disability and illness and dynamics

of the transitions between states based on functional disability and health status of

individuals need to be estimated. Transition rates are important since they determine

the length of time an individual spends in each state that aged care needs are required

for.

To conveniently represent the transition dynamics, multi-state models on different

health states have been widely used (Olivieri and Pitacco, 2001; Rickayzen and Walsh,

2002; Pritchard, 2006; Stallard, 2011; Fong et al, 2015; Shao et al, 2017; Sherris and

Wei, 2021; Biessy, 2015). For example, Pritchard (2006) presented the method to

estimate transition intensities for a seven-state Markov model of disability status using

interval-censored longitudinal data and applied the identified transition dynamics to

calculate the costs of LTC insurance. Sherris and Wei (2021), based on a five-state

model of both functional disability and health status, showed that transitions within

disability model depend significantly on health status as well as disability, trend and

systematic uncertainty. Biessy (2015) introduced the method of fitting a semi-Markov

multi-state model of disability whose transition probabilities not only depend on the

current state but also on the time spent in that state, to add further flexibility.

While accurate estimation of transition rates requires longitudinal data provid-

ing relevant covariates and transitions between states (Spiers et al, 2005; Khoman

et al, 2008), what is available in Australia is only cross-sectional data, as is often the

case with medical and social science data (Davis et al, 2001). There have been sev-

eral attempts to estimate the transition rates without transition data (Leung, 2004;

Hariyanto et al, 2014; Fleischmann, 2015). For example, Leung (2004) estimated the
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transition rates for a multi-state disability model using Australian data of single-

year disability prevalence - the Survey of Disability, Ageing and Carers, Australia

(SDAC) 1998 - assuming equations for transitions and mortality with stationary dis-

ability prevalence. Hariyanto et al (2014) estimated the transition probabilities using

two (unlinked) cross-sectional data, SDAC 1998 and SDAC 2003 using the method

in Leung (2004) (as an initial fitting procedure), Iterative Proportional Fitting (IPF)

procedure, refinements and graduation.

We have two objectives. The first is to estimate the multi-state model of both

functional disability and chronic illness status for Australians aged 60 or greater with

a minimum possible set of assumptions using a series of SDAC data sets to 2018.

We fit the model of five states including Healthy, Disabled, Ill, Disabled and ill, and

Dead so that the model best explains the observed changes of disability and illness

prevalence across time based on the assumption of proportional hazard equation with

linear predictor of age, sex and optional trend factors. The second is, using the esti-

mated model, to examine the transition probabilities, to estimate life expectancies of

retirees with time spent in different states, and to project the prevalence of functional

disability and chronic illness, with comparisons to previous studies. While motivated

(particularly) by Leung (2004) and Sherris and Wei (2021), we are the first in fitting

the model using more than two sets of the SDAC data (hence capturing longer-term

changes of disability and illness prevalence), and also the first in including a separate

illness state for the model for Australians.

We found that the transition parameters estimated using our method reasonably

explain the observed changes of disability and illness prevalence in Australia, although

some instability is observed with the parameters related to the transitions from dis-

ability. From the estimated model, we see gradual increases of disability and illness

incidence rates by age. For mortality rates, exponential increases are seen by show-

ing prominently rapid increases at older ages. Compared to males, females have lower
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mortality rate but higher disability incidence rate. Our projection for the population

distribution shows that the consistent increase in aged population will be dominated

by an increased number of ill people rather than healthy or disabled people. With-

out a trend factor, our estimates for the remaining life expectancy of retirees at age

65 are 19.77 and 22.43 years for males and females, respectively, similar to previous

studies. Inclusion of the trend factor results in the remaining life expectancy of those

in 2018 of 24.42 and 26.87 years (for males and females, respectively), driven by on

average a greater time spent in the ill health state. These estimates include average

non-disabled time of 23.20 and 24.97 years (for males and females, respectively) and

non-ill time of 10.06 and 11.72 years (for males and females, respectively).

In recognition of the influential contributions of Prof Ermanno Pitacco to mortality,

disability, health, and life insurance studies, this paper holds a significant place within

the special edition dedicated to honouring his work. Drawing insights from Pitacco’s

notable research, such as Pitacco (1995, 2015); Olivieri and Pitacco (2001), our study

embarks on the development of an applicable model to project health status of the

Australian population. Focused on developing a comprehensive multi-state transitions

model for Australians aged 60 and above, we address the complexity arising from

the absence of longitudinal health and mortality data for this demographic. By utilis-

ing cross-sectional data from the SDAC, our model estimates transitions between five

distinct states encompassing various health and disability scenarios. While our study

does not immediately apply these findings, it establishes a foundational framework

with the potential to inform diverse decision-making processes. Our research serves

as a pivotal resource for informed policy making in the field of aged care, catering to

the unique needs of the nation’s elderly population. Moreover, our study presents an

opportunity for innovative insurance product design, especially in the realm of long-

term care insurance, factoring in projected costs and solvency capital requirements

while addressing the risks associated with potential adverse shifts in future transition
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mechanisms. By forging new avenues in aged care policy, insurance product offer-

ings, and risk assessment, our research contributes to the betterment of government

initiatives, corporate strategies, and individual well-being alike.

2 Data

Data include the records from Survey of Disability, Ageing and Carers, Australia

(SDAC) 1998, SDAC 2003, SDAC 2009, SDAC 2013, SDAC 2015 and SDAC 2018,

sourced from Australian Bureau of Statistics; Estimated Resident Population By Sin-

gle Year Of Age, Australia 2019 (ERP) (Australian Bureau of Statistics, 2019); and

Deaths, Year of registration, Age at death, Age-specific death rates, Sex, States, Terri-

tories and Australia (Death Rates Australia) (Australian Bureau of Statistics, 2022).

Note that the multiple SDAC data sets are not linked across different years and hence

do not present health status transitions.

The cross-sectional SDAC data sets were used to determine the prevalence of func-

tional disability (disability) and chronic illness conditions (illness) by age and sex in

different years from the records at individual level. An earlier existing SDAC data set,

SDAC 1993, was not included because the information was not consistent with later

data sets. The extracted variables for each individual from the SDAC data sets are

summarised in Table 1. For our analyses, disability and illness were defined using the

extracted variables as follows.

• Disability: Needing aid(s) for at least two areas of six daily living activities (ADLs),

showering/ bathing, dressing, eating, toileting, incontinence and meal preparation.

Having difficulties in at least two ADLs is consistent with Li et al (2017) and Sherris

and Wei (2021).

• Illness: having conditions including heart problems, diabetes, lung disease and

stroke. The criteria was also used in Brown and Warshawsky (2013) and Sherris and
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Wei (2021) to capture the major illnesses that would affect a likelihood of obtaining

LTC insurance and claiming benefits.

Table 1 Extracted variables from SDAC data

Variable Description Variable name from data set
Identifier Identifier ABSHID, ABSFID, ABSIID and

ABSPID (concatenated)
Weight Person weight showing the extent

of representativeness of each record
WT401 (SDAC 1998), PERS WT

(SDAC 2003 to 2009) and
FINWTP (SDAC 2012 to 2018)

Age group Age group at last birthday: 0-4
years, 5-9 years, ..., 80-84 years

and 85 years and over

PSN401 (SDAC 1998), AGEHB
(SDAC 2009 to 2012) and AGEPC

(SDAC 2003, 2015 to 2018)
Sex Whether individual is male or

female
PSN402 (SDAC 1998) and SEX

(SDAC 2003 to 2018)
Illness Whether individual has conditions

including heart problems, diabetes,
lung disease and stroke

CND4210A-Z (SDAC 1998),
CODECODC (SDAC 2003),

CONCODEB (SDAC 2009 to 2015)
and CONCODL (SDAC 2018)

Bath limit Whether individual needs aid(s)
for showering/ bathing because of

disability

AID581 (SDAC 1998) and
AIDABLUT (SDAC 2003 to 2018)

Dress limit Whether individual needs aid(s)
for dressing because of disability

AID584 (SDAC 1998) and
AIDDRESS (SDAC 2003 to 2018)

Eat limit Whether individual needs aid(s)
for eating because of disability

AID580 (SDAC 1998) and
AIDEAT (SDAC 2003 to 2018)

Toilet limit Whether individual needs aid(s)
for toileting because of disability

AID582 (SDAC 1998), AIDTOILT
(SDAC 2003) and TOILAID

(SDAC 2009 to 2018)
Bladder limit Whether individual needs aid(s) for

incontinence because of disability
AID583 (SDAC 1998) and

AIDCONT (SDAC 2003 to 2018)
Bladder limit Whether individual needs aid(s)

for meal preparation because of
disability

AID585 (SDAC 1998), AIDMEAL
(SDAC 2003) and MEALAID

(SDAC 2009 to 2018)

From the ERP and Death Rates Australia, we extracted the estimated residential

population and mortality rates, respectively, by single year of age (0 to 99) in each

single year (1998 to 2018) for each sex.

3 Method

Here we outline the multi-state Markov model, parameter estimation, constraints for

estimation, sensitivity test and the method of projections.
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3.1 Multi-state Markov model and parameter estimation

Fig. 1 Five-state model

To model how the disability and illness conditions of an individual aged 60 or above

changes over time, we use the multi-state Markov model, proposed by Sherris and Wei

(2021). Illness is used as a health measure, in addition to disability, for defining the

states since illness is known to be a factor impacting disability incidence and recovery,

and a consideration for issuing LTC insurance (Brown and Warshawsky, 2013; Sherris

and Wei, 2021). Figure 1 and Table 2 describe the numbered transitions between the

states based on disability and illness status.
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Table 2 Transition numbering for five-state model

Destination state
State 1
Healthy

State 2
Disabled

State 3
Ill

State 4
Disabled and ill

State 5
Dead

State 1
Healthy

1 2 3 4

State 2
Disabled

5 6 7 8

State 3
Ill

9 10

State 4
Disabled and ill

11 12

There are several transition assumptions in our model, following Sherris and Wei

(2021) 1. First, our model does not allow a recovery from the illness given that the

included illnesses are chronic. Second, the model permits a transition involving changes

in disability and illness status at the same time, applicable to the transition 3 (Healthy

to Disabled and ill) and transition 6 (Disabled to Ill). This is because our estimation

is based on discrete yearly transitions rather than continuous transitions as shown

in Section 3.2. Third, our model distinguishes between transition rates for disability

incidence in different states (transitions 1 and 9), as it does for recovery from disability

(transitions 5 and 11) and the incidence of illness (transitions 2 and 7). This is because

these transition rates would not be empirically the same. For instance, a stroke patient

(one type of ill individuals in our research) has greater possibility of disability incidence

than others, given that a stroke may cause the death of brain cells and potential brain

damage leading to needs to support their activities of daily living.

We use proportional hazard models (Shao et al, 2017; Sherris and Wei, 2021)

with the factors including age, sex and trend to model the transition intensity. The

transition intensity of the transition type s (s=1, 2, ..., 12) for individual k (at time

t) is modelled by the Equations (1) and (2) for the models without the trend factor

(static model) and with the trend factor (trend model), respectively. We estimate the

1We have taken the model structure of Sherris and Wei (2021) as it is, to utilise their findings for our
estimation that was conducted without any transition data. In particular, we have used their estimates
in setting numerical boundaries for parameter estimates as shown in Section 3.2. Any simplification or
adjustment of the model structure was considered to rather complicate our referencing to their study.
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two models to examine the impact of trend factor on applications of the models such

as an estimation of life expectancy.

ln{λk,s} = βs + γage
s xk + γfemale

s Fk (1)

ln{λk,s (t)} = βs + γage
s xk (t) + γfemale

s Fk + ϕtrend
s t (2)

where s is transition type, xk (t) is age of individual k at time t, Fk is indication that

individual k is female, and β, γ and ϕ are regression coefficients.

3.2 Parameter estimation

We numerically estimate the coefficients of Equation (1) and Equation (2) by min-

imising the difference between the population distributions for those aged 60 to 99 by

age, sex and state in years from 1998 to 2018 identified in the data (actual distribu-

tions) and those according to the model for the same period (modelled distributions).

Note that the conventional maximum likelihood estimation for the coefficients can-

not be used here, in the absence of transition information in the data. This difference

to be minimised is named ”deviation” and defined by Equation (3). The calculation

methods for actual and modelled distributions are given in Section 3.2.1.

Deviation =
∑
All

(
(distributionmodelled

x(t),F,t − distributionactual
x(t),F,t)

2

distributionactual
x(t),F,t

)
(3)

where distribution is the proportion of individuals of specific age, sex, and health state

in a given year.

The definition for the deviation in Equation (3) was chosen to complement the

alternative definitions in Equation (4) and Equation (5). We observed that the devi-

ation of the relative difference in Equation (4) provided poor model fitting results for

relatively large groups within the population (e.g., healthy people at young ages). In
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contrast, with the deviation of absolute difference in Equation (5), poor results only

occurred for relatively small groups (e.g., disabled people at young ages).

Deviation′ =
∑
All

(
distributionmodelled

x(t),F,t − distributionactual
x(t),F,t

distributionactual
x(t),F,t

)2

(4)

Deviation′′ =
∑
All

(
distributionmodelled

x(t),F,t − distributionactual
x(t),F,t

)2
(5)

To ensure a reasonable fitting procedure, our numerical estimation involves spec-

ifying several input values including initial coefficient values (i.e., dummy coefficient

values to begin the estimation procedure with), upper and lower bounds for each esti-

mated value, and other constraints. The initial coefficient values were set using the

48 coefficient values estimated for the trend model in Sherris and Wei (2021) (i.e., β,

γage, γfemale and ϕ for the 12 transition types). For our static model, the 36 initial

coefficient values were the estimated values of β, γage and γfemale in Sherris and Wei

(2021). For the 48 initial coefficient values to estimate our trend model, we used the

estimated values from our static model for β, γage and γfemale coefficient values (36

values), and the estimated values of ϕ in Sherris and Wei (2021).

The upper and lower bounds are set around the initial coefficient values by adding

and subtracting 30% of the magnitudes of those values, respectively. These bounds

are considered useful in keeping overall transition structures identified in the pre-

vious study (that used better data set containing health status transitions) where

those structures are expected to be similar between developed countries. The other

constraints are shown in Section 3.3.

The estimation uses the function, solnl, in the R package, NlcOptim (Chen and

Yin, 2019), installed on R version 4.1.2. We provide the R codes for the trend model

in Appendix A.
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3.2.1 Calculation method for actual and modelled distributions

Actual distributions

For estimation of actual distributions, we used the ERP 1998 to 2018, and the disability

and illness prevalence by state from SDAC 1998 to 2018. To begin the estimation,

using the variables extracted from the SDAC data, the prevalence by state except

Dead state for each available year, age group and sex was estimated. For example, in

2018, 52.8%, 1.1%, 44.5% and 1.6% of males aged between 60 and 64 were in Healthy,

Disabled, Ill and Disabled and ill states, respectively.

We then linearly approximated the prevalence by state for each single year and age

group, as required for the model estimation based on yearly transitions. The procedure

involves two steps. First, we linearly filled the data of missing years using available

data sets. For example, the proportion of people in the Disabled state among males

aged between 60 and 64 in 2017 (i.e., 0.958%) was estimated by the proportion in

2015 (i.e., 0.739%) plus two third of the difference between the proportions in 2015

and 2018 (i.e., 0.739% in 2015 and 1.067% in 2018).

Second, for each single year, we linearly approximated the prevalence by state for

each single age. The procedure involves linking available prevalence figures for each age

group to the average age weighted by population (using ERP data) for that age group,

and estimating the prevalence rates for each single age using linear approximation

with two available prevalence figures around that age. For example, the proportion of

people in Disabled state among males aged 65 (i.e., 0.814%) in 2018 was estimated

using a linear approximation with such proportions at the weighted average ages for

the age groups 60-64 (i.e., 1.067% at age 61.941) and 65-69 (i.e., 0.651% at age 66.956).

Actual populations for each year across different states, aged between 60 to 99 and

for both sexes were estimated by multiplying the prevalence by state and correspond-

ing ERP. For example, the number of males aged 65 in Disabled state in 2018 (i.e.,

1,002.11408) is calculated by its prevalence (i.e., 0.814%) times the ERP (i.e., 123,185).
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Finally, the actual distributions were estimated for each year by finding the

proportions of individuals of specific age, sex, and health state.

Modelled distributions

The modelled distributions are calculated dependent on the coefficients in Equation

(1) and (2) for the static and trend models, respectively. The calculation starts from

the values of actual populations (by age, sex and state) in 1998. The values for later

year populations are estimated sequentially (i.e., year by year) primarily using the

yearly transition matrix in Equation (6) and Equation (7), adopting the method in

Fu et al (2021), adjusted for the rate of migration (i.e., migrations from or to over-

seas countries). This discrete-year transition matrix, when multiplied by the numbers

of individuals (of specified age and sex) in different states, provides their estimated

populations across the states in the subsequent year. The adjustments for migration

use the percentage changes of population observed in ERP data, net of deaths shown

in the Death Rates Australia. While the migration rate differs by age, sex and year, it

is assumed to be uniform across the states due to lack of more detailed information.

As the populations of those aged 60 cannot be projected in this way - due to absence

of the information for them in the previous year (i.e., when they are 59) -, these are

taken from the actual populations.

Mk = eAk =



µ∗
a µk,1 µk,2 µk,3 µk,4

µk,5 µ∗
b µk,6 µk,7 µk,8

0 0 µ∗
c µk,9 µk,10

0 0 µk,11 µ∗
d µk,12

0 0 0 0 0


, Ak =



λ∗
a λk,1 λk,2 λk,3 λk,4

λk,5 λ∗
b λk,6 λk,7 λk,8

0 0 λ∗
c λk,9 λk,10

0 0 λk,11 λ∗
d λk,12

0 0 0 0 0


(6)

where λ∗
a to λ∗

d are computed to make each row sum zero.
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Mk,t =eAk,t =



µ∗
a µk,1 (t) µk,2 (t) µk,3 (t) µk,4 (t)

µk,5 (t) µ∗
b µk,6 (t) µk,7 (t) µk,8 (t)

0 0 µ∗
c µk,9 (t) µk,10 (t)

0 0 µk,11 (t) µ∗
d µk,12 (t)

0 0 0 0 0


,

Ak,t =



λ∗
a λk,1 (t) λk,2 (t) λk,3 (t) λk,4 (t)

λk,5 (t) λ∗
b λk,6 (t) λk,7 (t) λk,8 (t)

0 0 λ∗
c λk,9 (t) λk,10 (t)

0 0 λk,11 (t) λ∗
d λk,12 (t)

0 0 0 0 0



(7)

where λ∗
a to λ∗

d are computed to make each row sum zero.

From the modelled populations, the modelled distributions are estimated for each

year by finding the proportions of individuals of specific age, sex, and health state.

3.3 Constraints for estimation

Estimation of the coefficients in the static model specified by Equation (1) was by

minimising the value of the deviation in Equation (3), with several constraints and

assumptions implied by mortality data, practical reasons and results from previous

studies as shown below.

• Based on the mortality data, overall mortality of males at age 70 lies between 0.013

to 0.026 and that at age 90 between 0.160 and 0.204. The overall mortality of females

at age 70 lies between 0.009 to 0.014 and that at age 90 between 0.128 and 0.153.

These values correspond to the mortality rates in 1998 (upper bound) and 2018

(lower bound) on the fitted linear regression line for the mortality rates between

1998 and 2018.
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• µk,8 > µk,4, µk,10 > µk,4, and µk,12 > µk,10 for any k. These conditions mean that

the mortality rate is greater for those disabled or ill than healthy.

• Mortality rates increase with age.

• Transition probabilities other than those to dead state are less than the probability

of non-transition for any k. These conditions include: (in Equation (6)), µ∗
a is greater

than µk,1, µk,2 and µk,3; µ
∗
b is greater than µk,5, µk,6 and µk,7; µ

∗
c is greater than

µk,9; and µ∗
d is greater than µk,11.

• µk,7 > µk,6 for any k. This condition implies that disabled individual is more likely

to become disabled and ill than just ill in the next year.

For the estimation of coefficients in the trend model specified by Equation (2), the

same set of constraints (for all t) was used except that the first constraint (for the

ranges of mortality rates) was adjusted considering the inclusion of trend factor.

• Based on the mortality data, overall mortality of males at age 70 in 1998 lies between

0.023 to 0.028 and that in 2018 between 0.012 and 0.015. The overall mortality of

males at age 90 in 1998 lies between 0.184 to 0.225 and that in 2018 between 0.144

and 0.176. The overall mortality of females at age 70 in 1998 lies between 0.013 to

0.015 and that in 2018 between 0.008 and 0.010. The overall mortality of females at

age 90 in 1998 lies between 0.138 to 0.169 and that in 2018 between 0.115 and 0.140.

These values are set by having 10% margins around the corresponding mortality

rates on the fitted regression line for the mortality rates between 1998 and 2018.

3.4 Sensitivity testing

Sensitivity testing was performed for each estimated coefficient to assess the signifi-

cance of the resulting parameter estimates in the form of numerical reasonableness.

This significance is related to how well each estimated coefficient corresponds to the

observed changes of prevalence of disability and illness. Conventional significance sta-

tistical tests (e.g., p-values) can not be estimated in the absence of actual transition
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information in the data and statistical parameter estimates based on log-likelihood.

The sensitivity test computed the deviation when the respective value was varied from

its estimated value. The range of the variation was set to be -50% to 50% of the abso-

lute value of the parameter estimate. This range is sufficiently wide to capture the

behaviour around the estimate.

3.5 Projection

The projections include estimation of remaining life expectancy with time spent in

different states for healthy retirees aged 65, and estimation of populations in the future.

These were performed with the static and trend models to see the impact of the trend

factor on model applications.

The remaining life expectancies for healthy retirees aged 65 were estimated by

simulation using the transition matrix in Equation (6) based on the estimated coeffi-

cients, for healthy males and females in 2018. Each simulation is comprised of 10,000

independent runs of estimating the time spent in each state until death when the

state in the next year is randomly determined based on the probabilities in the tran-

sition matrix. The maximum age was set at 99. We then estimated the averages of

the time spent in each state to calculate the average time until death (i.e., remaining

life expectancy), average time spent in each state (including Healthy state for healthy

life expectancy), and the average time spent in several combined states (including the

time spent in Healthy and Ill states for non-disabled life expectancy).

The populations by age, sex and state from 2019 to 2038 were sequentially (i.e.,

year by year) projected. As a starting point, we used the actual populations in 2018

estimated by multiplying the prevalence by state (from SDAC 2018) and ERP in 2018

for each age-sex combination. The method of projection is different for those aged 61

to 99 and those aged 60.
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For the projection for those aged between 61 to 99, we applied a transition matrix

in Equation (6) computed using the estimated coefficients to the previous year’s popu-

lations, followed by adjustments for the migration rate uniformly applied for all states.

The migration rate was estimated specific to each age-sex combination by calculating

averages of the corresponding rates in the period from 1998 to 2018 using ERP and

mortality rates. The rates do not show an increasing or decreasing pattern during the

period, and we did not consider a trend.

We needed a different approach to project the populations for the youngest indi-

viduals each year (i.e., those aged 60), because their populations in the previous year,

when they were 59, are not included in the model. The populations by state for those

aged 60 in each year were projected by multiplying two components to be explained fur-

ther, “the projected prevalence of each state in age 60” and “the projected population

combined for all states in age 60”.

The projected prevalence of each state in age 60 was estimated using the prevalence

by state for those aged 61 projected for that year, adjusted by the average ratio

between prevalence by state for those aged 60 and 61 (averaged for the period 1998

to 2018). The projected population combined for all states in age 60 was estimated

by adding average annual increase in the number of those aged 60 (averaged value for

the period 1998 to 2018) to previous year’s population for those aged 60.

4 Results and findings

4.1 Coefficient estimation and sensitivity test

The estimated coefficients for the static model and the trend model are shown in Table

3 and Table 4, respectively. Table 5 shows the coefficients for the trend model esti-

mated by Sherris and Wei (2021) that were used as initial coefficient values to start

our numerical estimation with. Note that the trend coefficients are for the transformed

variable, “(actual year - 1990)/2”, to match with the time indices used in Sherris and
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Wei (2021). At these estimated coefficients, the deviation, the difference between preva-

lence shown by the data and that captured by a model, is minimised at 0.00035655

for the static model and at a smaller value of 0.00029250 for the trend model. This

suggests that the observed change in prevalence of disability and illness over time is

captured better by including the trend factor. The presented deviation figures are one

hundredths of that in Equation (3) in order to avoid numerical instability.

Results of the sensitivity test for each coefficient in the trend model with respect

to the deviation are shown by Figures 2, 3, 4, and 5. Findings from the results for

the static model (for the baseline, age and sex coefficients) are similar and are not

reported.

The majority of estimated βs and age coefficients are significant given that the

deviance value is approximately minimised at the estimated coefficient value. For

example, the estimated βs coefficient for mortality of disabled individual of -9.83

results in a clearly lower deviance value than its initial value of -9.29. Values resulting

in a lower deviation value than the estimated value violate the estimation constraints.

From the sensitivity test results for the sex and trend coefficients (as well as a few

for the βs and age coefficients), we see many cases not reaching the local minimum

points due to the constraints imposed. Although not minimised, these estimations

explain the observed changes of prevalence in the Australian data better than the

initial coefficient values. In addition, these cases have very small variations in the

deviation value, and have little impact on the overall model fit as a result, and are

not expected to have a significant impact on our applications of the estimated model

including projections of life expectancy and for the population.

In particular, of these cases, several graphs exhibit a linear pattern but with only

a small change in the y-axis values. The observed patterns are found for relatively

rare transition types (e.g., Disabled and ill to Ill, Disabled to Healthy, Disabled to Ill)

or for the cases with relatively small impact on the change of prevalence of disability
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and illness over time (e.g., some γfemale and γtrend coefficients). Unlike more common

transition types or more influential factors, optimised values for these coefficients could

not be effectively found because varying a value of these coefficients does not improve

overall fit of the model. For the estimation of these coefficients, the procedure relied

on the initial coefficient value and the lower and upper bounds.

Table 3 Estimated coefficients for static model

Transition type βs γage
s γfemale

s

1. Healthy-Disabled -9.9141 0.0731 0.2982
2. Healthy-Ill -4.8888 0.0311 -0.2226
3. Healthy-Disabled and ill -12.3765 0.1058 0.0999
4. Healthy-Dead -11.2459 0.0493 -0.7203
5. Disabled-Healthy 0.4314 -0.0206 -0.0369
6. Disabled-Ill -1.9802 -0.0387 -0.1670
7. Disabled-Disabled and ill -4.307 0.0125 0.1100
8. Disabled-Dead -7.952 0.0670 -0.5199
9. Ill-Disabled and ill -8.1472 0.0665 0.2055
10. Ill-Dead -9.8289 0.0886 -0.4590
11. Disabled and ill-Ill -0.0072 -0.0148 0.0027
12. Disabled and ill-Dead -6.3056 0.0641 -0.4436

Value of the deviation: 0.00035655

Table 4 Estimated coefficients for trend model

Transition type βs γage
s γfemale

s ϕtrend
s

1. Healthy-Disabled -9.9146 0.0864 0.2996 -0.0503
2. Healthy-Ill -4.8911 0.0287 -0.2244 0.0214
3. Healthy-Disabled and ill -12.3769 0.1060 0.1002 -0.0596
4. Healthy-Dead -11.2459 0.0511 -0.7205 -0.0722
5. Disabled-Healthy 0.4348 -0.0144 -0.0334 -0.0090
6. Disabled-Ill -1.9804 -0.0485 -0.1670 -0.0255
7. Disabled-Disabled and ill -4.3065 0.0148 0.1097 0.0046
8. Disabled-Dead -7.9519 0.0833 -0.5209 -0.0120
9. Ill-Disabled and ill -8.1506 0.0717 0.2015 -0.0367
10. Ill-Dead -9.8309 0.0964 -0.4723 -0.0691
11. Disabled and ill-Ill -0.0050 -0.0131 0.0019 0.0071
12. Disabled and ill-Dead -6.3062 0.0630 -0.4465 -0.0127

Value of the deviation: 0.00029250

Some large differences were found between the coefficients estimated for the static

and trend models for the transitions from the Disabled state. Of these, the difference

in the age coefficient for Disabled to Dead (estimated to be 0.067 in the static model
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Table 5 Estimated coefficients for trend model in Sherris and Wei
(2021)

Transition type βs γage
s γfemale

s ϕtrend
s

1. Healthy-Disabled -9.88 0.08 0.27 -0.0475
2. Healthy-Ill -4.86 0.03 -0.32 0.0306
3. Healthy-Disabled and ill -12.29 0.10 0.14 -0.0558
4. Healthy-Dead -11.13 0.10 -0.55 -0.0721
5. Disabled-Healthy 0.40 -0.03 -0.03 -0.0128
6. Disabled-Ill -1.98 -0.02 -0.17 -0.0220
7. Disabled-Disabled and ill -4.30 0.01 0.15 0.0035
8. Disabled-Dead -7.94 0.07 -0.47 -0.0092
9. Ill-Disabled and ill -7.23 0.05 0.38 -0.0282
10. Ill-Dead -9.29 0.09 -0.27 -0.0719
11. Disabled and ill-Ill -0.02 -0.03 0.00 0.0101
12. Disabled and ill-Dead -6.24 0.06 -0.31 -0.0182

Fig. 2 Sensitivity test for βs coefficients

Note: The deviation value (y-axis) has been calculated for each coefficient changed by
-50% to 50% of the absolute value of the estimated figure with an increment of 5%.

and 0.083 in the trend model) results in a significant impact. That is, the mortality

rates of disabled individuals in the trend model are much higher than those in the

static model.
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Fig. 3 Sensitivity test for γage
s coefficients

Note: The deviation value (y-axis) has been calculated for each coefficient changed by
-50% to 50% of the absolute value of the estimated figure with an increment of 5%.

4.2 Transition probabilities

The estimated yearly transition probabilities for those aged 65, 80 and 95 using the

static and trend models are shown in Table 6 and Table 7, for males and females,

respectively. The probabilities based on the trend model were calculated for 2018.

Those based on the static model show the averaged probabilities across the period

from 1998 to 2018, as the trend effect is not included. General patterns found are as

follows.

• The mortality rate increases by age, is higher for poorer health status, and higher

for males than females.

• The probabilities of transitions to poorer health status, i.e., Healthy to Ill, Healthy

to Disabled, Healthy to Disabled and Ill, Disabled to Disabled and ill, and Ill to

Disabled and ill, are higher for older ages. Of these probabilities, only those for

Healthy to Ill are greater for male than female. The other probabilities are greater
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Fig. 4 Sensitivity test for γfemale
s coefficients

Note: The deviation value (y-axis) has been calculated for each coefficient changed by
-50% to 50% of the absolute value of the estimated figure with an increment of 5%.

for female than male. A shorter life expectancy of males compared to females is

impacted by higher transitions to the ill health state.

• The probabilities of transitions from Disabled to Healthy are higher for younger ages.

The probability is also higher for females at older ages especially in the trend model.

Probabilities of transitions from Disabled and ill to Ill are higher for younger ages

and females. This indicates that a longer life expectancy of females is contributed

to by the higher disability recovery rate for females.

• The probabilities of transitions from Disabled to Ill are higher for younger ages and

males. This is impacted by the interaction of disability recovery (higher for young

ages and females) and becoming ill (higher for older ages and males).

• In the trend model (compared to the static model), we can clearly see that mortality

rates are lower and the probabilities of health recovery are higher. These two factors

contribute to an increasing life expectancy over future years.
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Fig. 5 Sensitivity test for ϕtrend
s coefficients

Note: The deviation value (y-axis) has been calculated for each coefficient changed by
-50% to 50% of the absolute value of the estimated figure with an increment of 5%.

• The mortality rate for Disabled is higher than that for Ill at the age 65, but lower

at older ages, likely because increasing severity of illness occurs for older ages.

• In the trend model, compared to the static model, there are higher disability inci-

dence rates and higher mortality rates of disabled people. There is a difficulty in

computing exact transition intensities for the disabled population. However, as this

group is small, the impact of this on the applications of our model (e.g., projections

of life expectancy and populations) is expected to be minimal.

4.3 Transition probability by age

Figure 6 and 7 show the yearly transition probabilities by age based on the estimated

static model for males and females, respectively. Figure 8 and 9 are based on the

trend model, and for the transition probabilities for 2018. General findings from the

estimations are summarised as follows.

23



• In all cases, mortality rates increase at an increasing rate by age and are higher in

males than females. The increasing rate is the highest for healthy populations and

lowest for disabled populations. At relatively young ages, the rate is in the ascending

order of Disabled and ill, Disabled, Ill and Healthy states. At older ages, the pattern

moves towards the order of Ill, Disabled and ill, Disabled and Healthy states. This

implies that the impact of disability on mortality does not increase by age as much

as that of illness.

• Healthy individual’s probability of transition to Disabled and ill state increases at

increasing rate by age and is similar between males than females. The probability of

transition to Ill state increases at slightly decreasing rate by age. These probabilities

are higher in the trend model at 2018 than the static model, with a positive trend

coefficient for this type of transition. This is as a result of preserving the signs

of trend coefficients identified in Sherris and Wei (2021). However, the estimated

coefficients show that this trend is much lower in the Australian data.

• For healthy people, the probability of transition to the Disabled state gradually

increases at slightly increasing rate by age and is slightly greater for females than

males and for the trend model compared to the static model.

• For disabled people, in all cases, the probability of transition to the Healthy state

gradually decreases by age, and probability of transition to the Ill state stays at

a very low rate. The probability of transition to Disabled and ill states gradually

increases by age except for males in the trend model where it stays at very low rate.

• In all cases, the probability of transition from Ill state to Disabled and ill states

gradually increases by age, and that from Disabled and ill state to Ill state gradually

decreases by age.
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Fig. 6 Transition probability by age for male (static model)

Fig. 7 Transition probability by age for female (static model)

4.4 Life expectancy and average time spent in states

Using the projection of 10,000 homogeneous healthy retirees aged 65, we estimate the

averaged remaining life expectancy and average time spent in the different states as

summarised in Table 8. The table shows both results using the static and trend models.
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Fig. 8 Transition probability by age for male in 2018 (trend model)

Fig. 9 Transition probability by age for female in 2018 (trend model)

We assume the retirees enter retirement in 2018 for the trend model. The findings are

as follows.

• The static model estimated the remaining life expectancy of 19.77 years with a

standard deviation (SD) of 7.45 for males and 22.43 years with SD of 7.69 for females.
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• The trend model estimated the remaining life expectancy of 24.42 years with SD of

8.65 for males and 26.87 years with SD of 8.32 for females. These correspond to 24%

and 20% increases in life expectancy, when including the estimated trend factor, for

males and females, respectively.

• The trend showing increased life expectancy is driven by the reduction in mortality

rates. More specifically, these increases are attributable to the reduction in mortality

rates for Healthy and Ill individuals (the trend coefficients estimated at -0.0722

and -0.0691, respectively). We can check this from the finding that the trend has

made the non-disabled remaining life expectancy to increase as much as the overall

increase in remaining life expectancy. The impact from the trend associated with

healthy recovery is not clear given that the estimated trend coefficients for Disabled

- Healthy is negative (-0.0090) while that for Disable and ill - Ill is positive (0.0071).

• Both non-ill and healthy remaining life expectancy are smaller in the trend model

compared to the static model due to the estimated trend of increasing transitions

from Healthy to Ill.

• Females spend more time in all states on average compared to males, with the

largest proportional gap in the average time spent with disability.

• Our trend analysis shows increased life expectancies with a worsening health condi-

tion where this effect is amplified for females with longer life expectancy compared

to males.

Our estimates can be compared with the Australian official estimates. Australian

Bureau of Statistics (2021) estimated the life expectancy at age 65 of 20.29 and 22.96

years for males and females, respectively, which are comparable to our estimates using

the static model. Department of the Treasury, Australia (2021) estimated the increases

in life expectancy at birth of 5.9 and 4.3 years for the period 2018 to 2061 for males and

females, respectively, comparable to the differences identified between our static and

trend models. These comparisons are only indicative. Our estimation used simulations
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accounting for future improvements in mortality (for the trend model) while the official

life expectancy estimations assume that prevailing patterns of mortality at a given

time stay the same throughout a 65 year old or a newborn’s life.

Our estimates for the static model can also be directly compared with those using

US data and similar simulation methods in Sherris and Wei (2021) and Li et al (2017).

Compared to Sherris and Wei (2021), our estimates are greater than their estimates

using the static model (i.e., 17.02 and 19.60 years for males and females, respectively)

but less than those using the trend model (i.e, 21.70 and 23.85 years for males and

females, respectively), similarly for the average time spent with disability. These stud-

ies used US Health and Retirement Study (HRS) 1998 to 2014 data. Compared to

Li et al (2017) that used HRS 1998 to 2012, our estimates for the static model are

greater than both of their estimates using the static and trend models. These differ-

ences reflect differences in expected future mortality and disability between Australia

and the US based on the data.

Our estimates of the remaining life expectancy using the trend model are signifi-

cantly higher than the corresponding estimates in Sherris and Wei (2021) and Li et al

(2017). The higher estimates reflect the use of more recent data and a later year of

entering retirement in the simulation setting 2. To assess the sensitivity of the result

to the data period, we carried out the estimation using the Australian data since 2009

only and the result is presented in Table 9. This shows that the result is not very

sensitive to the data period.

The gender differences for the remaining life expectancy in our estimates (13% and

10% higher for females than males with the static and trend models, respectively) are

similar to Sherris and Wei (2021) (15% and 10% higher, respectively) and lower than

Li et al (2017) (17% for both the static and trend models). However, we estimated

greater gender differences for the average time spent with disability (76% and 60%

2The years of entering retirement are 2018, 2012 and 2010 for our study, Sherris and Wei (2021) and Li
et al (2017), respectively
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higher, respectively) than Sherris and Wei (2021) (14% and 8% higher, respectively).

These suggest differences in mortality and disability between the US and Australia.

Our models produce a longer average lifetime of females more with lower mortality

for those with disability.

4.5 Projected populations by health and disability state

Figure 10, Figure 11, Figure 12 and Figure 13 present the plots for projected pop-

ulations by state for those aged 60, 70, 80 and 90 to 2038 (along with the observed

populations) using the estimated static model for males, static model for females, trend

model for males and trend model for females, respectively. The observed populations

were identified using the disability and illness prevalence by state and ERP for each

age-sex combination in 1998 to 2018, and the projections were computed starting in

2019. The findings from these observations and projections are as follows.

• In all cases, there is an overall continuous increase in the aged population, dominated

by a gradual and fast increase in the number of ill people. The increase is much

greater in the trend model than the static model.

• In the static model, a gradual increase in the number of healthy people is seen where

the extent of increase is greater for younger people. However, the increase is not

obvious in the trend model, reflecting the trend of higher transitions from Healthy

to Ill.

• In all cases, the number of people in Disabled is low and steady across years, as is

the number of younger people in Disabled and ill. The number of older people in

Disabled and ill is slightly increasing.

• For people aged 60 or more, the proportions of people in the states other than

Healthy are always in the order of Ill, Disabled and Ill, and Disabled. The proportion

of people in Healthy is decreasing by age - e.g., in most cases, Healthy has the
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greatest proportion at age 60 but only has a proportion as large as that of Disabled

and Ill at age 90.

• In the trend model, for 60 year old’s, the number of people in Ill overtakes those in

Healthy for both males (at around 2026) and females (at around 2031).

• There are clearly more females than males aged 70 or above where such gap (as a

proportion) becomes greater for older ages.

Note that some humps in the figures are seen due to the population differences

by birth cohorts. For instance, in Figure 10, the clearest humps are observed among

individuals who were around 60 years old in 2007 and were born in approximately

1957. These individuals also create humps in other plots.

Fig. 10 Projected populations by state for male (static model)

4.6 Comparison with Sherris and Wei (2021) and Leung (2004)

We compare our results to Sherris and Wei (2021) and Leung (2004) that have some

components in common with our study. One applied to US data and the other to

Australian data.
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Fig. 11 Projected populations by state for female (static model)

Fig. 12 Projected populations by state for male (trend model)

The specifications of our five-state model follow those in Sherris and Wei (2021).

They estimated a static model using age and sex factors to explain the twelve transi-

tions between similarly defined states, and also estimated a trend model additionally
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Fig. 13 Projected populations by state for female (trend model)

using a trend factor. They also estimated the model with a ”Frailty” factor to cap-

ture systematic uncertainty. However, they used longitudinal transition data from the

Health and Retirement Study (HRS) 1998 to 2014 (for the population in the US) to

fit the model. Similar data is not available for Australia, so the Australian studies use

cross-sectional data.

The comparison between Sherris and Wei (2021) and our study highlights the

different observations between the US and Australia. Differences in the results also

reflect differences in the data period (1998 to 2018 in our study and 1998 to 2014 in

their study) and differences in the measurement of the covariates.

The estimates of coefficients and the projected remaining life expectancy of retirees

of the US study can be compared with ours. The comparison of estimated coefficients

can also be informed by referring to the sensitivity test results for our model

For example, the value of βs coefficient for Healthy to Ill is significant based on

Figure 2, and is slightly lower than but similar to the corresponding value in Sherris

and Wei (2021) (-4.89 versus -4.86). This shows that the overall intensity of this

transition type is similar between Australia and the US. On the other hand, the gender

32



coefficient for this transition type is also significant (based on Figure 4) but is much

higher in our study (-0.22 versus -0.32). This shows that there is a smaller gender

effect for this type of transition in Australia compared to the US.

The comparison for projected remaining life expectancy of retirees is presented in

Section 4.4 along with comparisons to several other studies.

Leung (2004) used SDAC 1998 to fit the multi-state disability model based on

core activity restriction (CAR) status directly identifiable from the data. The model

is comprised of six states including Able, Mild CAR, Moderate CAR, Severe CAR,

Profound CAR and Dead. They used the data of single-year disability prevalence and

assumed stationary disability prevalence across time. They then used several equations

(containing both predefined and to-be-estimated parameters) for the estimation of

transition probabilities using the methodology in Rickayzen and Walsh (2002). The

predefined parameters include transition probabilities of health state recovery and

overall mortality rates by age and sex. With these equations, they estimated the

parameter values so that the model generates proportionally the same population

structure (by disability, age and sex) in the following year. Note that, in contrast, we

used more data - disability (and illness) prevalence data of “multiple” years -, and

used a less restrictive estimation with a minimal set of assumptions.

To compare our study with Leung (2004), and also to check our methodology in

a different setting, we re-estimated a static model of the six states in their study,

using our method and data. We obtained results comparable to Leung (2004), but

with values that are more reasonable, for example values differing by health status,

especially for the mortality and recovery rates - these rates were mostly assumed in

Leung (2004). Some results for yearly transition probabilities for those aged 80 - are

presented in Table 10.
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5 Limitations of our estimation methods

There are several limitations of our approach to estimation of transition probabilities

for the Australian SDAC data. First, model fitting through the estimation of transition

coefficients is based on cross-sectional data and statistical evaluation of the model fit is

limited and relies on a goodness of fit criteria. We compare the population prevalence

distributions at differing times estimated from the model with actual distributions

found in the data (by age, sex, state and year). We then use sensitivity tests for the

estimated coefficients (see 4.1), and by some comparisons with previous studies (see

4.6).

Second, our estimation assumed uniform rates of population change due to migra-

tion for different states because of the limitations of available data. While the error

caused by this restriction is low given generally small numbers of aged migrants,

migration will differ by states.

Third, a potential issue of our method is the large difference found between the

age coefficients on Disabled to Dead estimated for the static and trend model. This

large difference caused the estimated mortality rates of disabled people in the trend

model to be much higher than those in the static model. While the difference between

mortality rates in the two models is worth noting, its impact on the applications of

the models (such as projections of lifetime and populations by state) is small because

of the small size of the disabled population and the slightly higher transition rate for

Healthy to Disabled in the trend model than the static model.

Fourth, our model estimation relies on the structures of health state transitions

identified in Sherris and Wei (2021). In particular, using these references, we find

a positive trend coefficient for Healthy to Ill transition probabilities implying an

increase of ill incidence (and, combined with the decrease in mortality, an extension

of life expectancy with worsening health condition) across time. This phenomenon is

observed in the US driven by increasing prevalence of diabetes (Lin et al, 2018; Tönnies
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et al, 2022). This trend is known to be not as significant in Australia, as also shown

by the coefficient value estimated in this study much lower than that in Sherris and

Wei (2021).

Last, our study does not consider the impact of the COVID-19 pandemic in pro-

jecting life expectancy and population by different health states. The pandemic has

yet to resolve and may impact both short-term or long-term mortality and disability

trends.

6 Conclusion

We estimate a joint model of health and disability using Australian SDAC data. We

estimate a five-state model of functional disability and chronic illness status using six

cross-sectional data sets with prevalence of disability and illness across 20 years to

2018 in Australia. We present the results of the estimation and discuss the patterns

and trends in the data as highlighted by the model. We estimate the multi-state

model, in the absence of longitudinal data, utilising cross-sectional data of multiple

years along with minimal assumptions. Using the model to project the Australian

aged population we show the impact of an increased number of ill people compared

to healthy or disabled people, and an increase in life expectancy, primarily due to

a decreasing mortality rate for ill people. The model has applications to a range of

public policy and private insurance issues including financing public aged care policy

and the development of private LTC insurance for Australians.
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Table 8 Averaged remaining life of retirees aged 65 by state in years

Static model Trend model

Male Female Male Female
Time spent in each state
Healthy 10.66 (7.78) 11.91 (8.25) 9.89 (7.45) 11.36 (8.25)
Disabled 0.29 (1.19) 0.52 (1.63) 0.17 (0.71) 0.35 (1.10)
Ill 7.79 (6.85) 8.27 (7.23) 13.31 (9.07) 13.6 (9.33)
Disabled and ill 0.94 (1.54) 1.65 (2.20) 0.98 (1.56) 1.49 (2.03)
Total 19.77 (7.45) 22.43 (7.69) 24.42 (8.65) 26.87 (8.32)
Time spent in combined states
Non-disabled 18.45 (7.3) 20.18 (7.37) 23.2 (8.55) 24.97 (8.19)
Non-ill 10.95 (8.06) 12.43 (8.76) 10.06 (7.59) 11.72 (8.53)

Note: Standard deviations are in parentheses.

Table 9 Averaged remaining life of retirees aged 65 by state in years based on
data since 2009

Static model Trend model

Male Female Male Female
Time spent in each state
Healthy 12.93 (8.88) 14.9 (9.48) 11.43 (8.32) 13.74 (9.40)
Disabled 0.34 (0.80) 0.64 (1.23) 0.17 (0.61) 0.29 (0.86)
Ill 7.49 (7.38) 7.29 (7.68) 11.72 (8.76) 11.72 (9.17)
Disabled and ill 0.74 (1.76) 1.16 (2.29) 0.78 (1.69) 1.18 (2.15)
Total 21.58 (7.54) 24.07 (7.70) 24.17 (8.27) 27 (7.99)
Time spent in combined state
Non-disabled 20.42 (7.43) 22.19 (7.50) 23.15 (8.13) 25.47 (7.86)
Non-ill 13.27 (9.08) 15.54 (9.84) 11.6 (8.43) 14.03 (9.58)

Note: Standard deviations are in parentheses.
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Appendix A R codes for estimation of coefficients

in the trend model

This section provides the R codes used for the estimation of coefficients in the trend

model (see Equation 3).

1 ## The codes use the following prerequisite input data.

2

3 # "transition_numbers" : A table showing transition numbers

. See Table \ref{transitionnumbering }.

4 # "transitionno" : The number of transition types - i.e.,

12

5 # "DATA" : A table showing actual population by state , age ,

sex and year. It is a wide table where the populations

by year are recorded in different columns (in

ascending order of years). The rows are sorted first by

sex (in order of 0 and 1 for male and female ,

respectively), second by age (in ascending order) and

then last by state (in ascending order using the state

numbers). To leave necessary information only , the

columns specifying age , sex and state are removed.

6 # "NONDEATH" : A table showing population change rate not

due to death (i.e., due to migration) with columns

indicating age , sex and year.

7 # "ages" : A vector of ages - i.e., [60, 61, ...... , 99]

8 # "sexs" : A vector of sexes - i.e., [0, 1]

9 # "datayears" : A vector of years - i.e., [1998 , 1999,

...... , 2018]

10 # "init_year" : The first year - i.e., 1998

11 # "stateno" : The number of states in the model except

death state - i.e., 4

12 # "jump" : The number of rows in "DATA" for each sex - i.e

., 160
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13 # "init_para" : A vector of initial coefficient values (

dummy values) to start the estimation with. It

comprised of those for 12 baseline coefficients , 12 age

coefficients , 12 sex coefficients and 12 trend

coefficients where each 12 coefficients are in the

order of the transition number ordering.

14 # "prob_70_1998_0" : Proportions of males aged 70 in 1998

by state in the order of state using the state numbers.

15 # "mortrange_lower_70_1998_0" : The lower bound of

mortality rate for males aged 70 in 1998.

16 # "mortrange_upper_70_1998_0" : The upper bound of

mortality rate for males aged 70 in 1998.

17 # "prob_90_1998_0" : Proportions of males aged 90 in 1998

by state in the order of state using the state numbers.

18 # "mortrange_lower_90_1998_0" : The lower bound of

mortality rate for males aged 90 in 1998.

19 # "mortrange_upper_90_1998_0" : The upper bound of

mortality rate for males aged 90 in 1998.

20 # "prob_70_2018_0" : Proportions of males aged 70 in 2018

by state in the order of state using the state numbers.

21 # "mortrange_lower_70_2018_0" : The lower bound of

mortality rate for males aged 70 in 2018.

22 # "mortrange_upper_70_2018_0" : The upper bound of

mortality rate for males aged 70 in 2018.

23 # "prob_90_2018_0" : Proportions of males aged 90 in 2018

by state in the order of state using the state numbers.

24 # "mortrange_lower_90_2018_0" : The lower bound of

mortality rate for males aged 90 in 2018.

25 # "mortrange_upper_90_2018_0" : The upper bound of

mortality rate for males aged 90 in 2018.

26 # "prob_70_1998_1" : Proportions of females aged 70 in 1998

by state in the order of state using the state numbers

.

27 # "mortrange_lower_70_1998_1" : The lower bound of

mortality rate for females aged 70 in 1998.
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28 # "mortrange_upper_70_1998_1" : The upper bound of

mortality rate for females aged 70 in 1998.

29 # "prob_90_1998_1" : Proportions of females aged 90 in 1998

by state in the order of state using the state numbers

.

30 # "mortrange_lower_90_1998_1" : The lower bound of

mortality rate for females aged 90 in 1998.

31 # "mortrange_upper_90_1998_1" : The upper bound of

mortality rate for females aged 90 in 1998.

32 # "prob_70_2018_1" : Proportions of females aged 70 in 2018

by state in the order of state using the state numbers

.

33 # "mortrange_lower_70_2018_1" : The lower bound of

mortality rate for females aged 70 in 2018.

34 # "mortrange_upper_70_2018_1" : The upper bound of

mortality rate for females aged 70 in 2018.

35 # "prob_90_2018_1" : Proportions of females aged 90 in 2018

by state in the order of state using the state numbers

.

36 # "mortrange_lower_90_2018_1" : The lower bound of

mortality rate for females aged 90 in 2018.

37 # "mortrange_upper_90_2018_1" : The upper bound of

mortality rate for females aged 90 in 2018.

38

39

40 ## The codes use the following functions.

41

42 # 1. The function to estimate transition matrix for given

age , sex and year

43 transition_eachagesexyear = function(age ,sex ,year ,para){

44

45 transition = matrix(nrow=stateno+1,ncol=stateno +1)

46

47 for (k in 1: transitionno){

48 position=which(transition_numbers ==k, arr.ind = TRUE)
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49 transition[position [1], position [2]]= exp(sum(para[c(k,

transitionno+k,transitionno*2+k,transitionno*3+k)]*

c(1,age ,sex ,(year -1990)/2)))

50 }

51

52 stay = apply(transition ,1,sum ,na.rm=TRUE)

53 diag(transition) = - stay

54 transition[is.na(transition)]=0

55 transition = expm(transition)

56 transition = transition [1: stateno ,]

57 return(transition)

58 }

59

60 # 2. The function to estimate multiple transition matrices

for all ages , sexes and years

61 transition_eachagesexyear_calculated = function(para){

62 tmpdata = data.frame()

63 for (k in datayears){

64 for (j in sexs){

65 for (i in ages){

66 tmp = transition_eachagesexyear(i,j,k,para)

67 tmpdata = rbind(tmpdata ,tmp)

68 }

69 }

70 }

71 return(tmpdata)

72 }

73

74 # 3. The function to estimate modelled prevalence

75 trans_optim_base <- function(para){

76

77 transition = as.matrix(transition_eachagesexyear_

calculated(para))

78 for (i in 1:( ncol(DATA) -1)){

79 for (k in c(0,1)){

80 tmp2=vector ()
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81 for (j in 1:( nrow(DATA)/(stateno*2) -1)){

82 start = j*stateno -(stateno -1) + jump*k

83 end = j*stateno + jump*k

84 adj = NONDEATH[NONDEATH$AGE ==(60.5+j) & NONDEATH$

SEX==k & NONDEATH$YEAR==init_year+i,c("NONDEATH

_CHANGE_RATE")]

85 tmp = DATA[start:end ,i]

86 transition_mat = transition [(jump*2*(i-1)+start):(

jump*2*(i-1)+end) ,]

87 tmp = (tmp %*% transition_mat)[1: stateno] * (1+adj)

88 tmp2 = c(tmp2 ,tmp)

89 }

90 DATA[( stateno +1+ jump*k):(jump+jump*k),i+1] = tmp2

91 }

92 }

93 return(DATA_proj)

94 }

95

96 # 4. The function to estimate deviance

97 trans_optim <- function(para){

98

99 DATA_proj = trans_optim_base(para)

100 DATA_proj = t(t(DATA_proj)/apply(DATA_proj ,2,sum))

101 DATA_orig = t(t(DATA)/apply(DATA ,2,sum))

102

103 deviation = ((DATA_proj -DATA_orig)/DATA_orig)^2 * DATA_

orig

104 deviation[!is.finite(deviation)] <- 0

105 deviation = sum(deviation)/100

106

107 return(deviation)

108 }

109

110 ## The estimation uses the following constraints and upper/

lower bounds for parameters.

111
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112 # 1. Constraints

113 constraint = function(para){

114 transition1=transition_eachagesexyear (70.5 ,0 ,1998 , para)

115 transition2=transition_eachagesexyear (90.5 ,0 ,1998 , para)

116 transition3=transition_eachagesexyear (70.5 ,0 ,2018 , para)

117 transition4=transition_eachagesexyear (90.5 ,0 ,2018 , para)

118 transition1_1= transition_eachagesexyear (70.5 ,1 ,1998 ,

para)

119 transition2_1= transition_eachagesexyear (90.5 ,1 ,1998 ,

para)

120 transition3_1= transition_eachagesexyear (70.5 ,1 ,2018 ,

para)

121 transition4_1= transition_eachagesexyear (90.5 ,1 ,2018 ,

para)

122

123 f = rbind(

124

125 #Mortality conditions

126 transition1 [1,5]- transition1 [2,5],

127 transition1 [1,5]- transition1 [3,5],

128 transition1 [3,5]- transition1 [4,5],

129 transition2 [1,5]- transition2 [2,5],

130 transition2 [1,5]- transition2 [3,5],

131 transition2 [3,5]- transition2 [4,5],

132 transition3 [1,5]- transition1 [2,5],

133 transition3 [1,5]- transition1 [3,5],

134 transition3 [3,5]- transition1 [4,5],

135 transition4 [1,5]- transition2 [2,5],

136 transition4 [1,5]- transition2 [3,5],

137 transition4 [3,5]- transition2 [4,5],

138 transition1_1[1,5]- transition1_1[2,5],

139 transition1_1[1,5]- transition1_1[3,5],

140 transition1_1[3,5]- transition1_1[4,5],

141 transition2_1[1,5]- transition2_1[2,5],

142 transition2_1[1,5]- transition2_1[3,5],

143 transition2_1[3,5]- transition2_1[4,5],
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144 transition3_1[1,5]- transition1_1[2,5],

145 transition3_1[1,5]- transition1_1[3,5],

146 transition3_1[3,5]- transition1_1[4,5],

147 transition4_1[1,5]- transition2_1[2,5],

148 transition4_1[1,5]- transition2_1[3,5],

149 transition4_1[3,5]- transition2_1[4,5],

150

151 #Mortality absolute value conditions

152 sum(transition1 [,5]*prob_70_1998_0)-mortrange_upper

_70_1998_0,

153 -sum(transition1 [,5]*prob_70_1998_0)+mortrange_

lower_70_1998_0,

154 sum(transition2 [,5]*prob_90_1998_0)-mortrange_upper

_90_1998_0,

155 -sum(transition2 [,5]*prob_90_1998_0)+mortrange_

lower_90_1998_0,

156 sum(transition1 [,5]*prob_70_2018_0)-mortrange_upper

_70_2018_0,

157 -sum(transition1 [,5]*prob_70_2018_0)+mortrange_

lower_70_2018_0,

158 sum(transition2 [,5]*prob_90_2018_0)-mortrange_upper

_90_2018_0,

159 -sum(transition2 [,5]*prob_90_2018_0)+mortrange_

lower_90_2018_0,

160 sum(transition1_1[,5]*prob_70_1998_1)-mortrange_

upper_70_1998_1,

161 -sum(transition1_1[,5]*prob_70_1998_1)+mortrange_

lower_70_1998_1,

162 sum(transition2_1[,5]*prob_90_1998_1)-mortrange_

upper_90_1998_1,

163 -sum(transition2_1[,5]*prob_90_1998_1)+mortrange_

lower_90_1998_1,

164 sum(transition1_1[,5]*prob_70_2018_1)-mortrange_

upper_70_2018_1,

165 -sum(transition1_1[,5]*prob_70_2018_1)+mortrange_

lower_70_2018_1,

47



166 sum(transition2_1[,5]*prob_90_2018_1)-mortrange_

upper_90_2018_1,

167 -sum(transition2_1[,5]*prob_90_2018_1)+mortrange_

lower_90_2018_1,

168

169 #Mortality conditions across ages

170 transition1 [1,5]- transition2 [1,5],

171 transition1 [2,5]- transition2 [2,5],

172 transition1 [3,5]- transition2 [3,5],

173 transition1 [4,5]- transition2 [4,5],

174 transition3 [1,5]- transition4 [1,5],

175 transition3 [2,5]- transition4 [2,5],

176 transition3 [3,5]- transition4 [3,5],

177 transition3 [4,5]- transition4 [4,5],

178 transition1_1[1,5]- transition2_1[1,5],

179 transition1_1[2,5]- transition2_1[2,5],

180 transition1_1[3,5]- transition2_1[3,5],

181 transition1_1[4,5]- transition2_1[4,5],

182 transition3_1[1,5]- transition4_1[1,5],

183 transition3_1[2,5]- transition4_1[2,5],

184 transition3_1[3,5]- transition4_1[3,5],

185 transition3_1[4,5]- transition4_1[4,5],

186

187 #Stay conditions

188 transition1 [1,2]- transition1 [1,1],

189 transition1 [1,3]- transition1 [1,1],

190 transition1 [1,4]- transition1 [1,1],

191 transition1 [2,1]- transition1 [2,2],

192 transition1 [2,3]- transition1 [2,2],

193 transition1 [2,4]- transition1 [2,2],

194 transition1 [3,4]- transition1 [3,3],

195 transition1 [4,3]- transition1 [4,4],

196 transition2 [1,2]- transition2 [1,1],

197 transition2 [1,3]- transition2 [1,1],

198 transition2 [1,4]- transition2 [1,1],

199 transition2 [2,1]- transition2 [2,2],
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200 transition2 [2,3]- transition2 [2,2],

201 transition2 [2,4]- transition2 [2,2],

202 transition2 [3,4]- transition2 [3,3],

203 transition2 [4,3]- transition2 [4,4],

204 transition3 [1,2]- transition3 [1,1],

205 transition3 [1,3]- transition3 [1,1],

206 transition3 [1,4]- transition3 [1,1],

207 transition3 [2,1]- transition3 [2,2],

208 transition3 [2,3]- transition3 [2,2],

209 transition3 [2,4]- transition3 [2,2],

210 transition3 [3,4]- transition3 [3,3],

211 transition3 [4,3]- transition3 [4,4],

212 transition4 [1,2]- transition4 [1,1],

213 transition4 [1,3]- transition4 [1,1],

214 transition4 [1,4]- transition4 [1,1],

215 transition4 [2,1]- transition4 [2,2],

216 transition4 [2,3]- transition4 [2,2],

217 transition4 [2,4]- transition4 [2,2],

218 transition4 [3,4]- transition4 [3,3],

219 transition4 [4,3]- transition4 [4,4],

220 transition1_1[1,2]- transition1_1[1,1],

221 transition1_1[1,3]- transition1_1[1,1],

222 transition1_1[1,4]- transition1_1[1,1],

223 transition1_1[2,1]- transition1_1[2,2],

224 transition1_1[2,3]- transition1_1[2,2],

225 transition1_1[2,4]- transition1_1[2,2],

226 transition1_1[3,4]- transition1_1[3,3],

227 transition1_1[4,3]- transition1_1[4,4],

228 transition2_1[1,2]- transition2_1[1,1],

229 transition2_1[1,3]- transition2_1[1,1],

230 transition2_1[1,4]- transition2_1[1,1],

231 transition2_1[2,1]- transition2_1[2,2],

232 transition2_1[2,3]- transition2_1[2,2],

233 transition2_1[2,4]- transition2_1[2,2],

234 transition2_1[3,4]- transition2_1[3,3],

235 transition2_1[4,3]- transition2_1[4,4],
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236 transition3_1[1,2]- transition3_1[1,1],

237 transition3_1[1,3]- transition3_1[1,1],

238 transition3_1[1,4]- transition3_1[1,1],

239 transition3_1[2,1]- transition3_1[2,2],

240 transition3_1[2,3]- transition3_1[2,2],

241 transition3_1[2,4]- transition3_1[2,2],

242 transition3_1[3,4]- transition3_1[3,3],

243 transition3_1[4,3]- transition3_1[4,4],

244 transition4_1[1,2]- transition4_1[1,1],

245 transition4_1[1,3]- transition4_1[1,1],

246 transition4_1[1,4]- transition4_1[1,1],

247 transition4_1[2,1]- transition4_1[2,2],

248 transition4_1[2,3]- transition4_1[2,2],

249 transition4_1[2,4]- transition4_1[2,2],

250 transition4_1[3,4]- transition4_1[3,3],

251 transition4_1[4,3]- transition4_1[4,4],

252

253 #other condition

254 transition1 [2,3]- transition1 [2,4],

255 transition2 [2,3]- transition2 [2,4],

256 transition3 [2,3]- transition3 [2,4],

257 transition4 [2,3]- transition4 [2,4],

258 transition1 [1 ,2]+ transition1 [1,4]- transition1 [3,4],

259 transition2 [1 ,2]+ transition2 [1,4]- transition2 [3,4],

260 transition3 [1 ,2]+ transition3 [1,4]- transition3 [3,4],

261 transition4 [1 ,2]+ transition4 [1,4]- transition4 [3,4],

262 transition1 [4,3]- transition1 [2,1],

263 transition2 [4,3]- transition2 [2,1],

264 transition3 [4,3]- transition3 [2,1],

265 transition4 [4,3]- transition4 [2,1],

266 transition1_1[2,3]- transition1_1[2,4],

267 transition2_1[2,3]- transition2_1[2,4],

268 transition3_1[2,3]- transition3_1[2,4],

269 transition4_1[2,3]- transition4_1[2,4],

270 transition1_1[1 ,2]+ transition1_1[1,4]- transition1_

1[3,4],
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271 transition2_1[1 ,2]+ transition2_1[1,4]- transition2_

1[3,4],

272 transition3_1[1 ,2]+ transition3_1[1,4]- transition3_

1[3,4],

273 transition4_1[1 ,2]+ transition4_1[1,4]- transition4_

1[3,4],

274 transition1_1[4,3]- transition1_1[2,1],

275 transition2_1[4,3]- transition2_1[2,1],

276 transition3_1[4,3]- transition3_1[2,1],

277 transition4_1[4,3]- transition4_1[2 ,1]

278 )

279 return(list(ceq=NULL ,c=f))

280 }

281

282 # 2. Upper and lower bounds

283 ub = init_para + 0.3 * abs(init_para)

284 lb = init_para - 0.3 * abs(init_para)

285

286 ## Finally , the estimation is run as follows.

287 solnl = solnl(X = init_para , objfun = trans_optim , confun =

constraint_mort3 ,lb=lb, ub=ub,tolX = 1e-05,

288 tolFun = 1e-6, tolCon = 1e-6, maxnFun = 1e

+07, maxIter = 4000)
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