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Affine mortality models, developed in continuous time, are well suited to
longevity risk applications including pricing and capital management. A
major advantage of this mortality modelling approach is the availability of
closed-form cohort survival curves, consistent with the assumed time dynam-
ics of mortality rates. This paper makes new contributions to the estima-
tion of multi-factor continuous-time affine models including the canonical
Blackburn-Sherris, the AFNS and the CIR mortality models. We discuss
and address numerical issues with model estimation. We apply the esti-
mation methods to age-cohort mortality data from five different countries,
providing insights into the dynamics of mortality rates and the fitting perfor-
mance of the models. We show how the use of maximum likelihood with the
univariate Kalman filter turns out to be faster and more robust compared to
traditional estimation methods which heavily use large matrix multiplication
and inversion. We present graphical and numerical goodness-of-fit results,
and assess model robustness. We project cohort survival curves and assess
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the out-of-sample performance of the models for the five countries. We con-
firm previous results, by showing that, across these countries, although the
CIR mortality model fits the historical mortality data well, particularly at
older ages, the canonical and AFNS affine mortality models provide better
out-of-sample performance. We also show how these affine mortality mod-
els are robust with respect to the set of age-cohort data used for parameter
estimation. R code is provided.

Keywords: Longevity Risk, Kalman filter, State-space models, Affine mortality models

1. Introduction

The dynamics of mortality rates across countries have been modelled assuming many
different stochastic processes (see Cairns et al. (2006b) and references therein). Following
the seminal work of Lee & Carter (1992), many stochastic mortality models have been
proposed (Cairns et al. (2006a), Plat (2009), Hyndman & Shahid Ullah (2007) to name
a few). These discrete-time models have mostly been fitted to age-period data. Several
extensions have been proposed to account for the cohort effect (see for example Renshaw
& Haberman (2006) and Currie (2006)).

In contrast, we directly focus on age-cohort data because in actuarial applications
age-cohort survival curves are required for pricing longevity-linked securities. Cohort
effects are persistent throughout adult life, as justified in McCarthy (2021), unlike period
effects. Period effects in age-cohort models impact all ages in a period to a greater-or-
lesser extent. In contrast cohort effects in age-period models are less easy to rationalize.

Following Huang et al. (2022) we focus on affine mortality models, developed in con-
tinuous time, which build on the affine framework in Duffie & Kan (1996) applied to
modelling interest rates. Amongst many others Milevsky & Promislow (2001), Dahl
(2004) and Biffis (2005) are early examples of mortality models applying the modelling
approach originally developed for interest rates. Our approach models the cohort sur-
vival curve as an exponentially affine function of a vector of latent variables driving the
mortality dynamics through time. Previous research focused on models with two and
three factors as in Jevtić et al. (2013), Blackburn & Sherris (2013), Xu et al. (2020),
Jevtić & Regis (2019), Huang et al. (2022) and Jevtić & Regis (2021).

We contribute new insights to modelling the dynamics of mortality rates and the
estimation of mortality models in a number of important respects:

• We shed light on the parameter estimation process using the univariate Kalman
filter maximum likelihood initially proposed by Koopman & Durbin (2000) by ad-
dressing the numerical issues in its use. In addition, we provide researchers and
practitioners with access to our robust and transparent methods implemented in
open source R code including parameter estimation and goodness-of-fit methods
used in the paper. Compared to the works of Jevtić & Regis (2019) and Jevtić
& Regis (2021) who similarly use the univariate Kalman filter, we enhance the
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robustness of the algorithm with additional numerical tricks (e.g. the Joseph sta-
bilized update for the conditional covariance of the latent states and the estimation
of the diffusion matrix for dependent factor models);

• We propose a faster and efficient method to estimate the parameter uncertainty by
means of a multiple imputation-based procedure as opposed to the computationally
expensive bootstrap method used in Blackburn & Sherris (2013) and Jevtić & Regis
(2019);

• We expand the range of affine specifications, and discuss the quality of fit and of
the projection for models with more than three factors as thus far analysed in the
current literature;

• We show the wider applicability of affine mortality models by analysing the mor-
tality rates of five different countries with different population size, mortality ex-
perience and length of the time series of available data. Specifically, we compare
the results in terms of goodness of fit measures, as well as using graphical tools
to assess in-sample and out-of-sample performance of the models. In addition, we
assess the model robustness with respect to the set of cohorts used for parameter
estimation. To the best of our knowledge, this is the first paper analysing these
aspects of affine mortality models.

This approach to mortality modelling is of relevance to practitioners since the un-
derlying model approach based on interest rate and credit risk modelling is familiar to
financial market practitioners. The modelling approach has attractive features includ-
ing analytical tractability with closed form survival curves for the affine mortality class
that we extend in our research, consistency between the mortality dynamics and the
functional form of the survival curve, stability of parameter estimates as we show in
our research, natural extensions to the multi-factor models, capturing differing trends,
volatility and correlations by age and cohort that we present and assess in our research,
and an arbitrage-free model setting along with real world dynamics to allow calibration
of prices of risk for financial and actuarial applications.

The paper is structured as follows. Section 2 presents an overview of the mathematical
framework of continuous-time affine mortality models. Section 3 summarizes the mor-
tality data used for calibration from the Human Mortality Database (HMD). Section
4 outlines the parameter estimation procedure, based on the univariate formulation of
the Kalman filter procedure to estimate the latent state variables, and to obtain a more
tractable log-likelihood function. Section 5 analyses the results about the estimated
parameter values. Section 6 considers the goodness-of-fit of the affine mortality models
for the five countries. Section 7 assesses robustness of the fitted models with respect to
the set of cohorts used for calibration. Section 8 considers and compares the projection
performance of each mortality model, and Section 9 outlines a possible extension to
account for period effects. Section 10 concludes. The supplementary material provides
more details on parameter estimation including information for the R code.
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2. Continuous-Time Affine Mortality Models

2.1. Framework

The affine mortality modelling approach is based on a consistent and arbitrage-free multi-
factor model for the term structure of interest rates developed by, among others, Duffie
& Kan (1996) and Dai & Singleton (2000). In particular, we assume the existence of an
instantaneous mortality intensity process µ, which is modelled as an affine function of
an M -dimensional latent factor process X. See, for example, Biffis (2005), Dahl (2004),
Schrager (2006) for an in-depth theoretical treatment.

We fix a probability space (Ω,F , Q). Since we are interested in financial and actuar-
ial pricing applications, we suppose (Ω,F , Q) corresponds to an arbitrage-free market
setting, where Q is a risk-neutral probability measure. Furthermore, we equip (Ω,F , Q)
with a right-continuous and Q-complete filtration F := {Ft}t≥0, where F := G∨H, with
G := {Gt}t≥0 the filtration containing all financial and actuarial information except the
time of death and H := {Ht}t≥0 = {σ(1{τ≤s} : 0 ≤ s ≤ t)}t≥0 the smallest filtration
under which the time of death τ is a stopping time (i.e. H is the minimal filtration
containing information about the time of death).

The latent factor process X := {X(t)}t≥0 = {(X1(t), . . . , XM (t))′}t≥0 (′ indicating
matrix transpose) is modelled as an F-Markov process whose dynamics are given by the
(vector) stochastic differential equation (SDE)

dX(t) = ∆(θQ −X(t))dt+ ΣD(X(t), t)dWQ(t), X(0) = x0 ∈ RM , (2.1)

where ∆ ∈ RM×M is the mean reversion matrix, θQ ∈ RM is the long-run mean of X,
Σ ∈ RM×M is the volatility matrix, D(X(t), t) is an M ×M diagonal matrix whose
ith diagonal entry dii(X(t), t) is given by dii(X(t), t) =

√
αi(t) + (βi(t))′X(t), for i =

1, . . . ,M, where αi and βi := (βi1, . . . , β
i
M )′ are bounded and continuous functions, and

WQ is a standard M -dimensional Q-Brownian motion.
The instantaneous mortality intensity µ := {µ(t)}t≥0 is assumed to be an affine func-

tion of X, i.e. for some ρ0 ∈ R and ρ1 ∈ RM , we have µ(t) = ρ0 + ρ′1X(t). Then,
using standard results for affine processes (see e.g. Duffie et al. 2000), without loss of
generality, the (risk-neutral) probability that a newborn at time t survives up to time T
is given by

S(t, T ) := EQ
[

exp

{
−
∫ T

t
µ(s)ds

}∣∣∣∣Ft
]

= exp{A(t, T ) +B(t, T )′X(t)},

where A(t, T ) and B(t, T ) are solutions of a system of ordinary differential equations
dependent on the coefficients of the model. We refer to A(t, T ) and B(t, T ) as the factor
loadings. Consequently, the average force of mortality from t to T is also an affine
function of the latent state process,

µ̄(t, T ) := − 1

T − t
logS(t, T ) = −B(t, T )′

T − t
X(t)− A(t, T )

T − t
. (2.2)

In our setting, µ̄(t, T ) and the factor loadings only depend on T − t.
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2.2. Mortality Model Specification

The mortality models we analyze in this paper are specified by the dynamics of X, given
by (2.1), and the coefficients ρ0 and ρ1 of µ. In particular, we focus on several mortality
models for which A(t, T ) and B(t, T ) are available in closed form. In all models of inter-
est, we set ρ0 = 0. In particular, we analyze the multi-factor Blackburn-Sherris model
(Blackburn & Sherris 2013), the arbitrage-free Nelson-Siegel (AFNS) model (Christensen
et al. 2011), the arbitrage-free generalized Nelson-Siegel (AFGNS) model (Christensen
et al. 2009), and the multi-factor Cox-Ingersoll-Ross model (Cox et al. 1985, Chen &
Scott 2003, Geyer & Pichler 1999).

2.2.1. Multi-Factor Blackburn-Sherris Model

In the three-factor version of the model, the mortality intensity is modelled as µ(t) =
X1(t) + X2(t) + X3(t), i.e. ρ1 = (1, 1, 1)′, where the latent process X = (X1, X2, X3)

′

satisfies the SDEdX1 (t)
dX2 (t)
dX3 (t)

 = −

δ1,1 0 0
0 δ2,2 0
0 0 δ3,3

X1 (t)
X2 (t)
X3 (t)

 dt+

σ1,1 0 0
0 σ2,2 0
0 0 σ3,3


dWQ

1 (t)

dWQ
2 (t)

dWQ
3 (t)


(2.3)

Here, we assume that θQ = 0 and, for each i, k = 1, . . . , 3, αi(t) = 1 and βik(t) = 0 in
the general equation (2.1). We assume that the latent factors are independent via the
diagonal specification of the volatility matrix.

Given the parameterization of equation (2.3), the factor loadings A(t, T ) and B(t, T )
can be obtained in closed-form; see Section 1 of the supplementary material. In this
model, Bk(t, T ), for k = 1, 2, 3, all have the same structure and, based on the value of
δk,k, they measure the sensitivity of the cohort mortality curve with respect to Xk(t) for
differing ages. More precisely, the larger the value of δk,k, the larger the impact of Xk(t)
at older ages.

Dependence among the latent factors is induced by replacing ∆ and Σ with lower
triangular matrices. The corresponding factor loading equations for the three-factor
dependent case can be found in Huang et al. (2022, Appendix A). The extension to the
four-factor case is straightforward. In the four-factor case, we only consider the case of
independent factors.

2.2.2. Arbitrage-Free Nelson-Siegel (AFNS) and Arbitrage-Free Generalized
Nelson-Siegel (AFGNS) Models

Proposed by Christensen et al. (2009), the AFGNS model is an extension of the AFNS
model (Christensen et al. 2011) and is, in turn, a dynamic, arbitrage-free version of the
Svensson (1995) extension of the Nelson-Siegel model. The Svensson model is a four-
factor model with a level, slope, and two curvature factors to improve the fit at longer
maturities. However, Christensen et al. (2009) show that an arbitrage-free version of
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the Svensson model can only be obtained by pairing the additional curvature factor
with a corresponding slope factor. Therefore, the AFGNS model is a five-factor model
with one level factor L(t), two slope factors S1(t) and S2(t), and two curvature factors
C1(t) and C2(t), under which the instantaneous mortality intensity is modelled as µ(t) =
L(t) + S1(t) + S2(t), i.e. X = (L, S1, S2, C1, C2)

′ and ρ1 = (1, 1, 1, 0, 0)′.
Under the AFGNS model with independent factors, the latent factor process X satis-

fies equation
dL (t)
dS1 (t)
dS2 (t)
dC1 (t)
dC2 (t)

 = −


0 0 0 0 0
0 δ1 0 −δ1 0
0 0 δ2 0 −δ2
0 0 0 δ1 0
0 0 0 0 δ2



L (t)
S1 (t)
S2 (t)
C1 (t)
C2 (t)

 dt

+


σ1,1 0 0 0 0
0 σ2,2 0 0 0
0 0 σ3,3 0 0
0 0 0 0σ4,4 0
0 0 0 0 σ5,5




dWQ
1 (t)

dWQ
2 (t)

dWQ
3 (t)

dWQ
4 (t)

dWQ
5 (t)

 .

(2.4)

We assume that θQ = 0 and, for each i, k = 1, . . . , 5, αi(t) = 1 and βik(t) = 0. The special
structure of ∆ above ensures that we preserve the factor loading structure inherent in the
Nelson-Siegel and the AFNS models. We assume that δ1 6= δ2, which is a non-binding
restriction due to symmetry.

The factor loadings for the AFGNS model are available in closed form (Christensen
et al. 2009, Proposition 3.1). See Section 1 of the Supplementary Material. The loading
BL (t, T ) affects all ages in the same way, BS`

(t, T ) is increasing with the value of T − t,
impacting older ages more than younger ages, while BC`

(t, T ) is decreasing with respect
to δ`, measuring the extent of the curvature of mortality rates. Since δ1 > δ2, the factor
loadings for S1 and C1 decay faster than those for S2 and C2, allowing us to better
capture the dynamics of the mortality intensity at older ages.

Dependence among the latent factors can be induced by replacing Σ in (2.4) by a lower
triangular matrix In this case, B(t, T ) is still given by (??). We refer to Christensen
et al. (2009, Appendix) for the solution A(t, T ) in the dependent case. To preserve the
special structure of the factor loadings and the geometric interpretation of the latent
factors, we assume the same form for ∆ in the dependent-factor case.

The AFNS model is a special case of the AFGNS model in which we do not have
a second slope and curvature factor. That is, the instantaneous mortality intensity is
characterized as µ(t) = L(t) + S(t), where the latent factor process X = (L, S,C)′

satisfies the equationdL(t)
dS(t)
dC(t)

 = −

0 0 0
0 δ −δ
0 0 δ

L(t)
S(t)
C(t)

dt+

σ1,1 0 0
0 σ2,2 0
0 0 σ3,3


dWQ

1 (t)

dWQ
2 (t)

dWQ
3 (t)

 . (2.5)
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The corresponding factor loadings A(t, T ) and B(t, T ) under the AFNS model can be
found in the Supplementary material.

As before, dependence among the latent factors can be introduced by replacing Σ
with a lower triangular matrix. The expressions for BL, BS , and BC are the same in
the dependent case. The equation for A(t, T ) in the dependent factor case can be found
in Christensen et al. (2011, Appendix B).

2.2.3. Multi-Factor Cox-Ingersoll-Ross Model

In the CIR model, the instantaneous mortality intensity is modelled as the sum of the
components of X = (X1, X2, X3)

′, where the latent factor process X satisfies the SDEdX1 (t)
dX2 (t)
dX3 (t)

 =

δ1,1 0 0
0 δ2,2 0
0 0 δ3,3



θ

Q
1

θQ2
θQ3

−
X1 (t)
X2 (t)
X3 (t)


dt

+

σ1,1 0 0
0 σ2,2 0
0 0 σ3,3


√
X1 (t) 0 0

0
√
X2 (t) 0

0 0
√
X3 (t)


dWQ

1 (t)

dWQ
2 (t)

dWQ
3 (t)

 .

(2.6)

The presence of a square-root term in the diffusion term implies that each component
of X is nonnegative Q-a.s.; in fact, if 2δk,kθ

Q
k ≥ σ2k,k, then Xk is strictly positive Q-a.s.

Furthermore, since Xk(s) is asymptotically gamma distributed (as t → ∞) (Cox et al.
1985), the CIR mortality model is able to capture the heterogeneity of mortality rates
at older ages; see Pitacco (2016) and the references therein.

Under this model, the factor loadings are available in closed form; see Appendix ??.
Here, the factor loadings may have a non-monotonic relationship with respect to T − t.

The four-factor model is obtained by increasing the dimension of (2.6) accordingly.
The corresponding factor loading expressions are given by equation (1.4) in the Supple-
mentary Material.

2.3. Change of Measure

Thus far, the mortality models have been developed in an arbitrage-free setting under
the risk-neutral probability measure Q. However, to estimate the parameters of the
model using historical data, we must recast the models under the historical probability
measure P . This can be achieved by specifying an RM -valued F-adapted risk premium
process Λ := {Λ(t)}t∈[0,T ], interpreted in our setting as the market price of mortality
risk, and assuming that

dQ

dP

∣∣∣∣
FT

= M(T ) := exp

{
−
∫ T

0
Λ′(t)dWP (t)− 1

2

∫ T

0
|Λ(t)|2dt

}
,

where WP is an M -dimensional Brownian motion under P . Provided that Λ is chosen
such that EP [M(T )] = 1, by Girsanov’s Theorem, we can conclude that Q and P are

7



equivalent probability measures on (Ω,FT ) and the Q-Brownian motion WQ and the
P -Brownian motion WP are connected via the equation dWQ(t) = Λ(t)dt + dWP (t),
(see e.g. Björk 2020, Section 12.2 for further details) Consequently, the P -dynamics of
X, whose risk-neutral dynamics given by (2.1), is given by

dX(t) = (∆θQ −∆X(t) + ΣD(X(t), t)Λ(t))dt+ ΣD(X(t), t)dWP (t). (2.7)

We note that only the drift term changes due to the change of measure.
Following Duffee (2002), we specify Λ as Λ(t) = λ0 + λ1X(t) if X is given by either

the Blackburn-Sherris, the AFNS, or the AFGNS model, or as

Λ(t) = diag
(√

X1(t),
√
X2(t),

√
X3(t)

)
λ0

if X is given by the three-factor CIR model (with obvious adjustments for the four-factor
case). In both cases, λ0 and λ1 are, respectively, a constant column vector and a square
matrix of appropriate dimensions.

This specification of the risk premium preserves the affine structure of the dynamics
of X under both P and Q; that is, for some K ∈ RM×M and θP ∈ RM , we can write

dX(t) = K(θP −X(t))dt+ ΣD(X(t), t)dWP (t).

Specifically, for the Blackburn-Sherris, the AFNS, and the AFGNS models, we have

dX(t) = K(θP −X(t))dt+ ΣdWP (t), (2.8)

where θP = ∆−1(∆θQ + Σλ0) and K = ∆−Σλ1. Similarly, for the CIR model, we have

dX(t) = K(θP −X(t))dt+ ΣD(X(t), t)dWP (t), (2.9)

where K = ∆− Σdiag(λ0) and θP = K−1∆θQ.
The flexibility in choosing λ0 and λ1 implies that we are free to choose K and θP

(Duffee 2002). Thus, for the Blackburn-Sherris, ANFS, and AFGNS models, we set
θP = 0, consistent with their specification under Q which also assumes a zero mean
reversion level. For all models, we assume that K = diag(κ1, . . . , κM ), where M = 3, 4, 5
depending on how many latent factors are involved.

3. Data

We analyse yearly cohort mortality data for males aged 50 to 99 for USA (cohorts born
from 1883 to 1915), Australia (1872-1916), England & Wales (1795-1914), Denmark
(1790-1914) and Japan (1887-1916). In this way, we consider countries having different
population size, mortality experience where for example E&W has more pronounced
cohort effects, and with differing lengths of the time series of available data.

Central exposure-at-risk years Ecx,t and number of deathsDx,t for each age x and cohort
year t are sourced from the Human Mortality Database1. We estimate the central rate

1Human Mortality Database, University of California, Berkeley (USA), and Max Planck Institute for
Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de (data
downloaded on 15 September 2020.
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of mortality with mx,t = Dx,t/E
c
x,t. These are equal to the force of mortality under the

assumption that the latter are constant between integer ages.
The probability of an individual aged x at time x+ t to survive until calendar year T

(hence, to survive until age T − t) is given by:

Sx (t, T ) =
T−t−x∏
j=1

e−mx+j−1,t . (3.1)

It follows that the corresponding average force of mortality for an individual between
age x and T − t is:

µ̄x (t, T ) =
1

T − t− x

T−t−x∑
j=1

mx+j−1,t, (3.2)

which is analogous to equation (2.2), which referred to a new born.
In this work we set x = 50 and write µ̄t = [µ̄50 (t, t+ 1) , . . . , µ̄50 (t, t+N)]′. Table 3.1

provides a stylized representation of the age-cohort dataset of average mortality rates
used for the analysis. The focus on the average mortality rates is motivated by their
smoothness compared to the µ rates widely used in stochastic mortality modelling. This
aspect turns out valuable when dealing with parameter estimation.

Table 3.1: Dataset for the analysis of the average mortality rates between age 50 and 99
of Y cohort data.

Cohort birth year

Age 1 2 . . . t . . . Y

50 µ̄50 (1, 52) µ̄50 (2, 53) . . . µ̄50 (t, t+ 51) . . . µ̄50 (Y, Y + 51)
51 µ̄50 (1, 53) µ̄50 (2, 54) . . . µ̄50 (t, t+ 52) . . . µ̄50 (Y, Y + 52)
. . . . . . . . . . . . . . . . . . . . .
i µ̄50 (1, i+ 2) µ̄50 (2, i+ 3) . . . µ̄50 (t, t+ i+ 1) . . . µ̄50 (Y, Y + i+ 1)
. . . . . . . . . . . . . . . . . . . . .
99 µ̄50 (1, 101) µ̄50 (2, 102) . . . µ̄50 (t, t+ 100) . . . µ̄50 (Y, Y + 100)

4. Inference

4.1. State-space representation

Although the models are developed in continuous time, their parameter estimation pro-
cess is carried out using data collected in discrete time. This is analogous to the Kalman
filter based estimation approaches used among the others by Blackburn & Sherris (2013)
and Jevtić & Regis (2021). From the affine representation of the average force of mor-
tality (2.2) and the discretized solution of the SDE of equation (2.8) or (2.9), we obtain
the state-space model:
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X (t) = ΦtX (t− j) + ηt, (4.1)

µ̄t = At +BtX (t) + εt (4.2)

for t = j, 2j, . . . , T , At =
[
−A(t,t+1)

1 , . . . ,−A(t,t+N)
N

]′
andBt =

[
−B(t,t+1)

1 , . . . ,−B(t,t+N)
N

]′
.

The state equation (4.1) describes the dynamics of the factor, or latent variable,
X (t) ∈ RM driven by the stochastic noise ηt ∼ N (0, Rt), ηt ∈ RM , Rt ∈ RM×M
and the system matrix Φt ∈ RM×M , while the measurement equation (4.2) represents
the linear relationship between the observed measurement µ̄t ∈ RN and the latent X (t).
At ∈ RN denotes the deterministic factor underlying the dynamics of µ̄t, Bt ∈ RN×M
represents the factor loading and finally εt ∼ N (0, Ht) is the error term of the measure-
ment equation (εt ∈ RN , Ht ∈ RN×N ). We assume that ηt and εt are independently
distributed.

For a single cohort, A, B, H and Φ = e−Kj do not depend on t, which is fixed at the
initial year for the cohort data. For yearly cohort mortality rates, we set j = 1. For
Gaussian models, such as the Blackburn-Sherris and the AFNS models, Rt = R has the
following structure:

R = E

[(∫ t+j

t
e−K(s−t)ΣdWP (s)

)2
]

=
[
I − e−Kj

]
ΣΣ′

[
I − e−Kj

]′
. (4.3)

For the CIR model, because of the independence between the factors, Rt is a diagonal
matrix where each element along the diagonal Rt,k is given by:

Rt+j,k = E

[(∫ t+j

t
e−κk(s−t)σk,k

√
Xk (s)dWP

k (s)

)2
]

= σ2k,k

(
1− e−κkj

κk

)(
1

2
θPk
(
1− e−κkj

)
+ e−κkjXk (t)

)
. (4.4)

The state-space representation for the CIR model represents an approximation, since
X(t), conditional on X(t− 1), has a noncentral χ2 distribution (Cox et al. 1985). How-
ever, for the parameter estimation methodology we propose, we approximate the con-
ditional distribution by a normal distribution with mean and covariance identified by
matching it to the first two moments of the exact distribution (Chen & Scott 2003, Geyer
& Pichler 1999).

We remark how Φ, A, B, Rt and H are function of the parameters indexing the
state-space model.

4.2. Univariate Kalman filter (KF)

The Kalman filter provides the least squares estimator of the distribution of the latent
state variable X(t), conditional on the measurement µ̄t, when X(t) and µ̄t are normally
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distributed. This is not the case for the CIR mortality model, for the reasons explained
in Section 4.1, the Kalman filter provides only an approximation in this case.

The Kalman filter consists of two recursive steps, called forecasting and time-update.
A description of the maximum likelihood estimation of continuous-time affine mortality
models can be found in more details in Blackburn & Sherris (2013) and Xu et al. (2020).
However, when implemented on a computer, these two steps may produce a round-off
error, which likely occurs when multiplying and inverting matrices of large dimensions,
and these errors propagate at each iteration. In order to avoid the need of inverting
large matrices, we employ the univariate treatment of the Kalman filter proposed by
Koopman & Durbin (2000), which yields a log-likelihood function which is numerically
stable for optimization.

For simplicity, we let H be a diagonal matrix with diagonal elements
(
ω2
1, . . . , ω

2
N

)
,

implying that measurements are independent across all ages. Thus, the measurement
equation can be written as:

µ̄t,i = ai + bixt,i + εt,i, εt,i ∼ N (0, ωi) , (4.5)

where µ̄t,i is the ith element of µ̄t, ai is the ith element of the vector At, and bi is the
ith row of the matrix Bt and xt,i = X (t).

In the univariate Kalman filter, the state equation is written as

xt+1,1 = Φxt,N + ηt, (4.6)

xt,i+1 = xt,i

for i = 1, . . . N − 1 and t = 1, . . . , T , given initial state x0,N = X (0). Let µ̄1:t =
[µ̄1, . . . , µ̄t] and µ̄t,1:i = [µ̄t,1, . . . , µ̄t,i].

Koopman & Durbin (2000) derived the following recursions, given initial state x0,N
and initial conditional covariance Σ0,N :

1. Forecasting (i = 1 only):

x̂t,1 = E (xt,1 | µ̄1:t−1) = Φx̂t−1,N , (4.7)

Σ̂t,1 = V (xt,1 | µ̄1:t−1) = ΦΣ̂t−1,NΦ′ +R;

2. Time-update (i = 1, . . . , N − 1 on the left-hand side):

x̂t,i+1 = E (xt,i+1 | µ̄1:t−1, µ̄t,1:i) = x̂t,i +Kt,iνt,i, (4.8)

Σ̂t,i+1 = V (xt,i+1 | µ̄1:t−1, µ̄t,1:i) = Σ̂t,i −Kt,iFt,iK
′
t,i

= (I −Kt,ibi) Σ̂t,i (I −Kt,ibi)
′ +Kt,iω

2
iK
′
t,i,

where the scalar quantities νt,i and Ft,i, and the 3× 1-dimensional vector Kt,i are
given by

νt,i = µ̄t,i − ai − bix̂t,i, (4.9)

Ft,i = biΣ̂t,ib
′
i + ω2

i ,

Kt,i = Σ̂t,ib
′
iF
−1
t,i .
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When forecasting Σ, we use the Joseph stabilized form (Bucy & Joseph 1968), which
is extended here to the case of univariate KF. In this way, we ensure that Σt,i+1 will be
positive semidefinite, since the third line of equation (4.8) is a quadratic form.

The value of X̂(t) = E (X(t) | µ̄1:t), X̂(t | t−1) = E (X(t) | µ̄1:t−1), Σ̂(t) = V (X (t) | µ̄1:t),
and Σ̂(t | t−1) = V (X (t) | µ̄1:t−1) are obtained as x̂t,N , x̂t,1, Σ̂t,N and Σ̂t,1, respectively.

Several alternatives have been proposed to handle or to reduce the extent of the round-
off error (see Chapter 7 of Grewal & Andrews (2014) for a review). Among others, we
mention the square root covariance filtering, which updates the matrix Gt defined such
that Σt = GtG

′
t. For example, Wang et al. (1992) and Zhang & Li (1996) characterize

the Kalman filter recursions in terms of the singular value decomposition (SVD) of
Σ. In addition, Kulikova & Tsyganova (2017) provide an analytic formulation for the
log-likelihood function. Our derivation of the univariate treatment of the SVD-based
Kalman filter yielded the same results as the Koopman-Durbin implementation, while
being much slower in the optimization of the log-likelihood function. In case the round-
off error persists, an approach is to replace the matrix Σ with its nearest symmetric
positive semidefinite matrix (see Higham (1988) for further details).

Other parameter estimation methods include the use of the EM algorithm (see Särkkä
(2013)). However, in our implementation this turned out to be particularly unstable as
the log-likelihood function tended to diverge towards very large values.

4.3. Parameter estimation

The parameters of the state-space system are estimated using the maximum likelihood
estimator (MLE). The likelihood function of the parameter vector ψ given the observed
average mortality rates µ̄1:T given by:

logL (ψ | µ̄1:T ) = −TN
2

log 2π − 1

2

T∑
t=1

N∑
i=1

(
logFt,i + ν2t,iF

−1
t,i

)
. (4.10)

For the CIR model, the estimated parameter vector ψ̂ corresponds to the quasi-MLE,
as described in more detail by Chen & Scott (2003).

4.4. Implementation

To account for the increasing variation in the mortality rates at older ages, we specify
the following parametric form for the variance of the measurement error terms:

ω2
i = rc + r1

i∑
k=1

exp (r2k) /i (4.11)

for i = 1, . . . , N (Blackburn & Sherris 2013, Huang et al. 2022). In order to foster
convergence and avoid the possibility of negative values of ω2

i , we optimize the likelihood
over r∗c = log rc, r

∗
1 = log r1 and r∗2 = log r2. We assume that r1 and r2 are positive in

order to capture the increasing variability in mortality rates for older individuals, where
mortality data are scanty.
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The initial state x0,N is included among the parameters to be estimated, while Σ0,N is
set as a diagonal matrix with diagonal elements equal to 10−10. For the CIR model, in
order we optimize over x∗0,N = log x0,N to ensure x0,N > 0.2 Similarly, we optimize over

κ∗ = log κ and θP∗ = log θP . Geyer & Pichler (1999) recommend bounding X below
during the KF forecasting and time update steps. In our implementation we set a lower
bound of 10−10.

The diffusion term for the models with dependent factors is given by the Cholesky
factor of the covariance matrix of the Wiener process underlying the SDE of the latent
variable X (t). The positive definiteness of this covariance matrix is ensured by using
the log-Cholesky parametrization described in Section A.1. In this way, we can optimize
the log-likelihood function without imposing any constraint over the parameters.

The log-likelihood function we seek to optimize (eq. (4.10)) is highly non-linear with
several local maxima, and may diverge in some areas of the parameter space. Hence, we
need to carefully choose the starting values.

The estimation is carried out by using the coordinate ascent algorithm, where the log-
likelihood function is iteratively optimized by groups of parameters, instead of taking all
of them simultaneously. We find that this is more useful and robust for the estimation of
largely parametrized models such as the Blackburn-Sherris model with three dependent
factors and the CIR model. The gradient-free simplex method Nelder-Mead, which
is readily available in R within the function optim, is used for optimization. At each
iteration we use the estimates from the previous iterations as starting values.

The R code for estimating these models, is available from the Github repository https:

//github.com/ungolof/affine_mortality.git (Ungolo et al. (2021)). The resources
in the repository allow also to estimate parameter uncertainty and carry out further
analysis as covered in the remainder of this paper. Section 7 of the Supplementary
material shows an example of how to use the code for fitting the models to mortality
data.

4.5. Estimation of the standard errors by multiple imputation

We estimate the standard errors of the parameters of Gaussian models (Blackburn-
Sherris, AFNS, and AFGNS) by using multiple imputation (Rubin 1978, Little & Rubin
2019) for the values of the latent state variables, based on the parameter estimates
ψ̂. The idea is to “complete” the joint density f (y1:T , x1:T | ψ) by drawing D values

x
(1)
1:T , . . . , x

(D)
1:T from the smoothing distribution f (x1:T | y1:T , ψ) (Rauch et al. 1965). This

speeds up the optimization process and reduces the multimodality of the log-likelihood
function.

For the CIR model, we found that this procedure encounters numerical problems due
to the positivity constraint placed on the latent state variables, following its estimation
by quasi-MLE. Thus, the CIR parameters standard error are estimated by using the
bootstrap procedure of Stoffer & Wall (2009) and utilized in this context by Blackburn

2Geyer & Pichler (1999) recommend to initialize the filter at the long-term value of the state variable
θ.
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& Sherris (2013).
We implement the following procedure, drawing on the framework of Little & Rubin

(2019), for estimating the standard errors of the unconstrained parameter vector ψ∗:

Step 1 Calculate the smoothing distribution of the states based on the parameter esti-
mate ψ̂∗;

For d = 1, . . . , D, repeat the following Step 2 and Step 3:

Step 2 Draw a value for x
(d)
1 , x

(d)
2 , . . . , x

(d)
T , sampled from the density p

(
X1:T | y1:T , ψ̂∗

)
(the smoothing distribution);

Step 3 Estimate the parameters of the probability distribution p
(
x
(d)
1:T , y1:T ;ψ∗

)
hence

obtaining ψ̂∗(d):

ψ̂∗(d) = arg max
ψ∗

log p
(
x
(d)
1:T , y1:T ;ψ∗

)
(4.12)

where

log p
(
x
(d)
1:T , y1:T ;ψ∗

)
=

T∑
t=1

[
log p

(
yt | x(d)t ;ψ∗

)
+ log p

(
x
(d)
t | x

(d)
t−1;ψ

∗
)]

(4.13)

Step 4 Estimation of standard errors:

Step 4.1 Calculate ψ̄∗:

ψ̄∗ =
1

D

D∑
d=1

ψ̂∗(d) (4.14)

Step 4.2 Estimate the covariance matrix of the parameter estimates V
(
ψ̂∗
)

as

follows:

V̂
(
ψ̂∗
)

=
1

D

D∑
d=1

V
(
ψ̂∗(d)

)
+
(
1 +D−1

) [ 1

D − 1

D∑
d=1

(
ψ̂∗(d) − ψ̄∗

)]
(4.15)

where V
(
ψ̂∗(d)

)
is the covariance matrix obtained from the inverse of the

Hessian matrix from the optimization process of equation (4.12). The factor(
1 +D−1

)
is a correction to account for smaller samples.

Step 4.3 The standard errors of the parameters are easily obtained as the square

root of the elements on the diagonal of V
(
ψ̂∗
)

.
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The covariance matrix of the original parameter vector ψ is obtained by applying the
multivariate delta method to the unconstrained parameter ψ∗. Let g (·) define a function
such that g (ψ∗) = ψ and and Σ∗ψ∗ the covariance matrix of ψ∗ as obtained from the
multiple imputation optimization process.

The computation of the covariance matrix for ψ = g−1 (ψ∗), denoted as Σψ requires
the calculation of the Jacobian matrix ∇g (ψ∗):

Σψ = ∇g (ψ∗)T Σ∗ψ∗∇g (ψ∗) (4.16)

For independent factor models, the only transformations are the logarithms of some
parameters in order to ensure they are positive, as described in Section 4.4. Hence,
∇g (ψ∗) is a diagonal matrix with the vector of first derivatives of the inverse of the
log-transformation (the exponential function) along the main diagonal. The parameters
which have not been transformed, such as the δ’s, will have derivative equal to 1. For the
dependent factor models, we numerically compute the Jacobian for the parameters of
the factor covariance matrix. This procedure is implemented more efficiently if we take
x0 from the smoothing distribution, allowing us to implement the optimization process
in a lower number of variables.

This methodology turns out useful, because on one hand, it may not be possible to nu-
merically compute the information matrix coming from the optimization of the likelihood
function of equation (4.10) due to its very flat surface. On the other hand, bootstrap
methods, as used in Blackburn & Sherris (2013), are computationally expensive if carried
out hundreds of times.

The downside of this methodology, is that unlike the bootstrap, it tends to underesti-
mate the standard error, since it is a delta method. From a computational perspective, a
potential downside is given by the need to invert a Hessian matrix of larger dimensions.
However, this task is simpler than inverting the Hessian matrix from the estimation
procedure, where likelihood is integrated out the latent states.

5. Parameter estimates

Tables 2.1-2.5 of the Supplementary Material show the parameter estimates along their
standard errors for each model fitted on the USA, Australia, Denmark, England&Wales
and Japan male population. For all countries and all models, the δ parameters are

statistically significant at 95% (i.e.
∣∣ δ̂

std.err.(δ̂)

∣∣ > 2). More precisely, the δ parameters of

the AFNS and AFGNS models are always negative, and the same evidence is observed
for most of the diagonal elements of ∆ for the CIR and Blackburn-Sherris models.

The estimated values of the κ parameters, driving the dynamics of X (t) under the
real probability measure, are always such that its stochastic process is stationary3 for
the Blackburn-Sherris and the AFNS models (this condition is imposed for the CIR
model). For the AFGNS models, this holds only for the Australian and for the Japanese
mortality datasets. However, the κ parameters are estimated with higher uncertainty, as

3For a diagonal matrix K this is ensured when κ1 + . . .+ κM > 0.
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shown by their larger standard errors. This evidence has also been noted in Blackburn &
Sherris (2013) when analysing two and three independent factor models for the analysis
of the Swedish male population.

The standard deviations of the diffusion process parameters are always statistically
significant. In most cases, their magnitude is positively associated with the magnitude of
the κ parameters. Conversely, the covariance parameter estimates are never statistically
significant, despite their improvement in the goodness-of-fit compared to the independent
factor models as shown in Section 6.

The θP parameters of the CIR models are generally very small, with the exception of
θP1 of the CIR model with four factors for the E&W dataset and θP3 of the CIR model
with three factors for the Japanese dataset. We observed in these cases that this evidence
paired with an extremely small value of the corresponding κ parameter, indicating that
the factor follows a random walk.

Finally, the parameters r1, r2 and rc are always statistically significant. In any case,
their small magnitude ensures that the uncertainty around the measurement is very low,
ensuring a good in-sample fit of each model.

6. Goodness of Fit

6.1. AIC, BIC and RMSE

We assess the goodness of fit of the models models by means of a range of measures:
Akaike Information Criterion (AIC, Akaike (1974)), Bayesian Information Criterion
(BIC, Schwarz (1978)) and Root Mean Squared Error (RMSE), which we seek to mini-
mize, as in Blackburn & Sherris (2013) and Huang et al. (2022):

AIC = −2 logL
(
ψ̂ | µ̄1:T

)
+ 2k,

BIC = −2 logL
(
ψ̂ | µ̄1:T

)
+ 2kTN,

RMSE =
1

TN

∑
x

∑
t

(
µ̄t,x − ̂̄µt,x)2 ,

where k is the number of parameters, t = 1, . . . , T and x = 50, . . . , 99, hence N = 50.
When counting the number of parameters, we take into account the additional number
of initial states X (0) we estimate, as described in Section 4.4. We show the results for
each model and for each country in Table 6.1.

The use of additional factors sensibly improves the in sample performance in terms
of the AIC, BIC and RMSE for all countries, compared to the three-factor models as
analysed by Huang et al. (2022) for the US dataset. In particular, the CIR mortality
model with four factors shows the best performance in terms of AIC and BIC for all
countries, except E&W. In this latter case the best performance is achieved under the
AFGNS model with five dependent factors. Additional factors improve the in-sample fit
in terms of RMSE for all countries with exception of the Japan. We must assume this is
due to the smaller dataset which is likely to make parameter estimate lesser stable. The
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evidence in this case is mixed: the RMSE is smallest when using the Blackburn-Sherris
model with four independent factors for the Australian dataset, the AFGNS model with
independent factors for the US data, the CIR model with four factors when analysing
the Danish dataset and the AFGNS model with dependent variable for the E&W data.
The Blackburn-Sherris model with three dependent factors shows the smallest RMSE
for the Japan mortality data.

We also considered versions of the Gaussian models with a nonzero long-run mean θP .
However, we observed that the quality of the fit does not improve significantly over the
case with θP = 0. Similar results are obtained when analysing the two-Gaussian factor
Makeham-Gompertz model presented in Schrager (2006) which yields age-dependent
A (t, T ) and B (t, T )4.

The results for the US data are consistent with those of Huang et al. (2022), who also
found that the CIR model with three factors is the best performing model in terms of
AIC, BIC and RMSE. However, the log-likelihood function turns out to be higher, as
well as the RMSE. The parameter estimates obtained are consistent with Huang et al.
(2022).

All mortality models, with parameter estimates shown in the Supplementary material,
except the AFGNS model with independent factors have negligible probability of neg-
ative mortality rates at all ages when projected over the next cohort year. For the US
dataset, also the AFGNS model with dependent factors shows a probability of negative
rates around 5% after age 90.

We also assess the in-sample model performance by comparing the empirically ob-
servedcohort survival curves with those fitted for each mortality model. We also calcu-
late the Mean Absolute Percentage Error (MAPE) for each age, across all cohorts to
compare the estimated survival curves. The results are plotted in Figure 6.1 for Australia
and England&Wales5, where we use a separate scale to account for the larger magnitude
of the MAPE above age 85.

When considering MAPE for the survival curves, we see that the additional factors
generally improve the MAPE over the whole age span, with the only exception given by
the AFGNS models when fitted to the older ages for the Japanese dataset.

Furthermore, for all countries the CIR models show the worst fit at younger ages,
although they provide a good fit at older ages. We hypothesise that this is due to the
Gamma distribution of the factors, which are better at capturing increased variability
arising from heterogeneity at older ages. This is more pronounced for the USA and the
Australian data. The other Gaussian models have similar fits to the survival curve data.

4Full results are available upon request to the authors.
5The plots for the other countries are available upon request.
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Table 6.1: Comparison of Affine Models (the best results in terms of AIC, BIC and
RMSE are underlined)

Model M USA Aus Dnk E&W Jap

AIC

BS ind. 3 −21252.67 −28283.02 −77165.58 −74206.37 −13998.13
BS ind. 4 −22726.41 −29476.88 −78544.46 −75941.66 −14063.30
BS dep. 3 −21442.46 −28414.46 −77629.61 −74685.19 −14016.87

AFNS ind. 3 −20849.12 −27883.92 −77116.23 −74171.88 −13984.60
AFNS dep. 3 −21368.86 −28129.14 −77430.76 −74667.22 −14003.06

AFGNS ind. 5 −22792.23 −29286.10 −77696.70 −75354.73 −14951.12
AFGNS dep. 5 −22875.43 −29831.39 −78850.31 −76618.15 −15031.00

CIR 3 −21440.65 −28646.51 −78456.13 −75265.79 −14253.31
CIR 4 −23804.88 −30008.43 −79056.70 −76520.06 −15032.41

BIC

BS ind. 3 −21187.77 −28214.40 −77084.70 −74125.97 −13939.24
BS ind. 4 −22639.87 −29385.38 −78436.61 −75834.47 −13984.78
BS dep. 3 −21345.10 −28311.52 −77508.28 −74564.60 −13928.53

AFNS ind. 3 −20795.04 −27826.73 −77048.83 −74104.88 −13935.52
AFNS dep. 3 −21298.55 −28054.80 −77343.13 −74580.13 −13939.25

AFGNS ind. 5 −22700.29 −29188.88 −77582.12 −75240.84 −14867.69
AFGNS dep. 5 −22729.40 −29676.99 −78668.33 −76437.26 −14898.49

CIR 3 −21359.52 −28560.73 −78355.02 −75165.30 −14179.69
CIR 4 −23696.71 −29894.06 −78921.90 −76386.07 −14934.25

RMSE

BS ind. 3 0.00212 0.00187 0.00253 0.00160 0.000298
BS ind. 4 0.00059 0.00078 0.00252 0.00086 0.000305
BS dep. 3 0.00202 0.00183 0.00251 0.00148 0.000289

AFNS ind. 3 0.00287 0.00205 0.00261 0.00162 0.000302
AFNS dep. 3 0.00212 0.00193 0.00248 0.00147 0.000297

AFGNS ind. 5 0.00035 0.00081 0.00260 0.00086 0.001833
AFGNS dep. 5 0.00052 0.00082 0.00247 0.00081 0.001812

CIR 3 0.00092 0.00112 0.00228 0.00128 0.000378
CIR 4 0.00110 0.00095 0.00217 0.00105 0.000513
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(a) Australia (b) England&Wales

Figure 6.1: Mean Absolute Percentage Error by age for each country and model.

6.2. Residuals

We also assess model adequacy by considering the quality of fit visually based on the
standardized residuals. These are given in vector form for each cohort by rt, calculated
as

rt =

(√
V̂ (µ̄t)

)−1 (
µ̄t − ̂̄µt) , (6.1)

where from the measurement equation (4.2) it follows that

V (µ̄t) = E (V (µ̄t | Xt)) + V (E (µ̄t | Xt))

= H +BRtB
′ (6.2)

Figure 6.2 shows the standardized residuals for the Blackburn-Sherris model with
three dependent factors for the Australian mortality dataset (left) and for the AFNS
independent-factor model for England&Wales (right). The plots for the other models
and countries are shown in Section 2 of the Supplementary material.

Since we analyse age-cohort data, period effects appear as diagonals in the residuals.
We observe that for USA, Australia, and Denmark there appears to be a period effect
corresponding to calendar years around 1970. The same holds for Japan, although to a
lesser extent. This finding is consistent with those of Huang et al. (2022) who, in the
context of USA data, attribute this to a period of mortality improvements around 1970
likely reflecting the impact of reductions in smoking.

Similar evidence for the presence of a period effect is found for Denmark as well as
E&W around 1890 and 1920, the latter corresponding to the global influenza pandemic
of 1918-1920. Another period effect is observed around 1940 at the beginning of the
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Second World War. We see no significant period effects for Japan, since the standardized
residuals are relatively small.

(a) Blackburn-Sherris
three dependent
factors for USA

(b) AFNS with independent factors for
E&W

Figure 6.2: Plots of standardized residuals by age and cohort.

7. Robustness

We analyse the robustness of the parameter estimates with respect to the set of cohorts
included in the estimation of the models. A model is robust when its parameter estimates
are not sensitive with respect to the set of data used for inference.

The estimation process is repeated using the Danish mortality data restricted to the
cohorts born from 1810, 1830 and 1850, and for the England & Wales cohorts born from
1815, 1835 and 1855. We report the results only for these two countries, due to the
length of available time series of mortality rates.

The Blackburn-Sherris model with independent factors (Figure 4.1 in the Supplemen-
tary Material7.1) is robust, except for the parameter δ11 of the three factor model, which
affects the factor loading B1 (t, T ) for the Danish male population. For the other pa-
rameters, we observe that the factor loadings and the yield-adjustment term A (t, T )
maintain the same relationship with respect to the age. Furthermore, all factors X (t)
follow the same behavior across the cohorts, except for a parallel shift, which depends
on the estimated value of the initial state value, which is estimated among the param-
eters of the model. We see that a larger initial value of one factor is compensated by a
smaller value of another of the others. We also see that the parameters of the mortality
dynamics are stable over time. This evidence is consistent with the results of Blackburn
& Sherris (2013). When we account for factor dependence in the three-factor Blackburn-
Sherris model, we have a similar result compared to the independent factor model. In
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Figure 7.1: Factor loadings (left) and factor values X (t) (right) for the Blackbun-Sherris
model with three independent factors for Denmark.

this case, we see that for the E&W dataset the model lacks some robustness when using
the smallest set of cohorts (born from 1855).

The two AFNS models are also robust with respect to the set of cohorts used for
their calibration. Once again, the parallel shifts observed in the values of level, slope
and curvature are due to a different estimate of the initial value of the initial state
X (0). The values of the factor loadings B2 (t) and B3 (t), which depend uniquely on the
parameter δ, are not affected by the length of the time series of the restricted datasets.

The factor loadings of the two AFGNS models have a consistent relationship with
respect to the age, irrespective of the cohort range used in the estimation. However, a
closer inspection of the level, the two slope and the two curvature factors shows how the
use of younger cohorts yields steeper trajectories for the latent states, showing a relative
lack of robustness of these models, especially for their use in projecting future mortality
rates.

The CIR model is robust with respect to the cohorts used in the analysis. The only
exception seems the estimated parameter δ2 for the model with three factor in the E&W
dataset and of the four factor model for the Danish dataset. In both cases, this problem
occurs only when considering the smallest dataset. Nevertheless, this seems not to affect
the estimated value of the latent states X (t), which seems consistent across the datasets
used for parameters estimation. The only issue we observe is that for the E&W dataset,
one of the factors hits the lower bound for the youngest cohorts.
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Figure 7.2: Factor loadings (left) and factor values X (t) (right) for the AFNS model
with dependent factors for the E&W dataset.

England&Wales

Figure 7.3: Factor loadings (left) and factor values X (t) (right) for the AFGNS model
with independent factors for the E&W dataset.
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Figure 7.4: Factor loadings (left) and factor values X (t) (right) for the CIR model with
four factors for Denmark.

8. Forecasts of Cohort Survival Curve

We project survival curves for each affine mortality model for the US cohort born in 1916,
the Australian and Japanese cohorts born in 1917 and the E&W and Danish cohort born
in 1915.

The forecast is constructed using the conditional expectation of X(t+h), given X(t).
That is, forecasts of the average force of mortality and the survival probability are
calculated as

µ̄x (t+ h, T + h) = −B (t, T )

T − t
E [X (t+ h) | X (t)]− A (t, T )

T − t
, (8.1)

and

Sx (t+ h, T + h) = exp
(
B (t, T )′ E [X (t+ h) | X (t)] +A (t, T )

)
. (8.2)

This is the optimal forecast of the average force of mortality under quadratic loss (see
Christensen et al. (2011)). Table 8.1 shows the RMSE of the survival curve forecasts.

The AFGNS model with independent factors has the best one-year out of sample
performance in terms of RMSE for Australia and Denmark, whereas the AFGNS model
with dependent factors best forecasts the survival curve for USA. The Blackburn-Sherris
model with four independent factors yields the best performance for England & Wales,
and, for Japan, the Blackburn-Sherris model with three independent factors performs
best.

We also plot the survival curves and the MAPEs with respect to realized survival
probabilities for the cohorts of interest in Figures 8.1 to 8.2, and Figures 5.1-5.3 in the
Supplementary Material.
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Table 8.1: RMSE for comparing Actual and Best-Estimate average mortality rates for
projected cohorts.

M USA Australia Denmark E&W Japan
1916 1917 1915 1915 1917

BS ind. 3 0.00200 0.00366 0.00234 0.00308 0.00086
BS ind. 4 0.00248 0.00051 0.00153 0.00036 0.00210
BS dep. 3 0.00204 0.00389 0.00169 0.00264 0.00181

AFNS ind. 4 0.00351 0.00406 0.00182 0.00314 0.00120
AFNS dep. 3 0.00135 0.00303 0.00144 0.00249 0.00129

AFGNS ind. 5 0.00139 0.00044 0.00119 0.00074 0.00556
AFGNS dep. 5 0.00054 0.00069 0.00255 0.00155 0.00573

CIR 3 0.00152 0.00063 0.00128 0.00145 0.00308
CIR 4 0.00168 0.00098 0.00164 0.00143 0.00087

Figure 8.1: Projection of the survival curves for the USA male cohort born in 1916 under
each model (left) and their MAPE (right).

For USA, we note that all mortality models tend to underestimate mortality rates at
older ages, except the CIR with three factors. The opposite holds between age 65 and
85, since their survival curves lie above the empirical curve. The MAPE considerably
increases at older ages for all models, except the CIR model with three factors and the
two AFGNS models.
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Figure 8.2: Projection of the survival curves for the Danish male cohort born in 1915
under each model (left) and their MAPE (right).

For Australia, the Blackburn-Sherris model with three independent factors, the AFGNS
model with dependent factors, and the CIR model with three dependent factors slightly
overestimate the mortality rates between ages 70 and 85. Mortality rates are underesti-
mated for ages over 90 under the two Blackburn-Sherris models with three factors and
the AFNS model with dependent factors. The AFNS model with independent factors
tends to underestimate mortality rates under age 70. Survival curves projected using the
Blackburn-Sherris and the CIR models with four factors and the AFGNS model with
independent factors are very close to observed survival curve.

The models we consider yield a larger RMSE because of poorer forecasting perfor-
mance at older ages, where mortality rates are underestimated. Under age 95, the
MAPE is below 10%, except for the CIR model with four factors and the AFGNS model
with dependent factors. The CIR mortality model has the lowest MAPE at very old
ages, but underestimates mortality rates for Australia across all other ages.

The AFGNS mortality model with dependent factors shows a relatively poor perfor-
mance when predicting the survival curve of the 1915 Danish cohort, particularly until
age 95, where mortality rates are overestimated. For this dataset, the additional factor
for the Blackburn-Sherris model yielded projected mortality rates closer to those em-
pirically observed compared to their three-factor counterparts. The other models yield
survival curves close to the empirically observed one. The MAPE is below 10% for all
models until age 95, except the AFGNS with dependent factor and the CIR model with
four factors.

For the England&Wales, the CIR models tend to underestimate mortality rates at
younger ages, as their projected survival curve lies above the empirically observed one.
All other models show a good out-of-sample performance at least until age 92. For very
older people, the two CIR, the two AFGNS and the Blackburn-Sherris with four factor
models improve the out-of-sample performance.

For the Japanese 1917 cohort, we see that the two AFGNS models show the worst
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out-of-sample performance, as seen from a large MAPE and a survival curve which
overestimates mortality rates until age 95 and overestimate these at very old ages. At
a lesser extent, the same holds for the CIR model with three facors. Conversely, the
Blackburn-Sherris model with four factors, tends to underestimate mortality rates for
the projected survival curve. All other models yield survival curves which closely overlap
the one observed for the 1917 cohort, as also shown by a relatively small MAPE.

9. Period effects

The age-cohort affine models do not include factors accounting for any period effects,
which would capture changes in mortality due to wars, pandemics, and other effects that
impact all ages to a greater or lesser extent over specified time periods.

In Section 6.2 we discuss potential period effects in the model residuals. An approach
to capture period effects is to use period-related factor values. For example, for the
Blackburn-Sherris and CIR type models, we can specify µ′ (t) = µ (t) + 1[p=1]X

P (t),

where XP (t) is a period specific effect and p = 1 if there is a period effect component
and 0 otherwise. This specification reflects the approach used in Jevtić et al. (2013) and
Xu et al. (2020), where the period effect was the main time dimension and then a cohort
specific factor was added in this specification. Again, XP (t) has dynamics characterised
by the same SDE of equation (2.1), allowing for mean-reversion. For the AFNS, it is
important to consider period-specific slope and curvature factors as the two cannot be
separated (see Christensen et al. (2009)).

Including period effects in this way would allow the application of our modelling
approach to forecast future cohort survival curves and to assess the impact of stress
scenarios from period effects such as pandemics. A challenge is to identify the years that
a period effect occurs and to separate these from age-cohort effects that differ across
ages. This aspect is not considered here and is left for future research.

10. Conclusions

We contribute to the analysis and application of multi-factor affine mortality models
by providing a new estimation methodology and insights from the analysis of mortality
data across different countries.

We developed and implemented an improved estimation method for continuous-time
affine models using age-cohort data. In this way, we can easily estimate models with
several factors in a reasonable amount of time. The approach accounts for the increasing
variation at older ages in the measurement equation and can be extended to include
additional cohort- and period-specific factors and parameters. The models can also be
easily extended to account for a non-zero correlation in the average force of mortality
rates across ages (Koopman & Durbin (2000)).

We fitted the affine mortality models to the mortality rates of five different countries
with differing length of the time series of available age-cohort data and compared them
to observed mortality rates. We show how additional factors enhance the in-sample
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fit performance as well as a better out of sample performance. The four factor CIR
mortality model shows a better in-sample performance in terms of information criteria,
while all other models with more than three factors show a reduced RMSE. The CIR
mortality models had better in-sample performance for fitting mortality rates at older
ages, reflecting its ability to better capture possible mortality heterogeneity. The affine
mortality models based on Gaussian distributed factors fit well, particularly at younger
ages and perform well in forecasting future cohort survival curves. We also show that
affine mortality models are generally robust with respect to the range of cohorts used
for their calibration, with exception of the AFGNS models.

To assist other researchers and practitioners, we provide R code for the models esti-
mation and assessment.
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A. Appendix

A.1. Optimization with respect to the covariance matrix

The estimation process through optimization of any M ×M covariance matrix Λ must
ensure that the resulting estimate is positive semidefinite. If the covariance matrix is
diagonal, that is Λ = diag

(
λ21, . . . , λ

2
N

)
, then it is sufficient that λi > 0. In order to

remove the constraint, we optimize over λ∗i = log λi.
In the general case of nonzero covariances, setting constraints in order to keep Λ pos-

itive semidefinite can be very cumbersome, as discussed by Pinheiro & Bates (1996). In
our implementation we remove the constraint by using the log-Cholesky parametrization
analysed in Pinheiro & Bates (1996).

Let L be a lower triangular matrix, denoting the Cholesky factor of Λ, such that
Λ = LLT . In order to ensure that the Cholesky factor is unique, we constrain the
diagonal elements of L to be positive.

The parameter vector θ used for optimization is the following:

θ = (log l11, l21, log l22, l31, l32, log l33, . . . , log lMM ) . (A.1)

The log-Cholesky factorization turns out to be computationally simple and stable, but
on the other hand, it lacks a direct interpretation of the parameters in terms of Λ.
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1 Factor Loadings for the Mortality Models

1.1 Multi-Factor Blackburn-Sherris Model

The factor loadings for the three-factor Blackburn-Sherris model with independent fac-
tors are given by

A(t, T ) =
1

2

3∑
k=1

σ2k,k
δ3k,k

[
1

2
(1 − e−2δk,k(T−t)) − 2(1 − e−δk,k(T−t)) + δk,k(T − t)

]

Bk(t, T ) = −1 − e−δk,k(T−t)

δk,k
, k = 1, 2, 3.

(1.1)

The factor loadings in the four-factor case are given by the same expressions for k =
1, 2, 3, 4.
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For the three-factor Blackburn-Sherris model with dependent factors, we refer to
Huang et al. (2022, Appendix A) for the corresponding factor loading expressions.

1.2 Arbitrage-Free Generalized Nelson-Siegel Model

The factor loadings for the AFGNS model with independent factors are given by

A(t, T ) = σ21,1
(T − t)3

6
+ σ22,2(T − t)

[
1

2δ21
+

1

δ31

1 − e−δ1(T−t)

T − t
+

1

4δ31

1 − e−2δ1(T−t)

T − t

]

+ σ23,3(T − t)

[
1

2δ22
+

1

δ32

1 − e−δ2(T−t)

T − t
+

1

4δ32

1 − e−2δ2(T−t)

T − t

]

+ σ24,4(T − t)

[
1

2δ21
+

1

δ21
e−δ1(T−t) − 1

4δ1
(T − t)e−2δ1(T−t) − 3

4δ21
e−2δ1(T−t)

− 2

δ31

1 − e−δ1(T−t)

T − t
+

5

8δ31

1 − e−2δ1(T−t)

T − t

]

+ σ25,5(T − t)

[
1

2δ22
+

1

δ22
e−δ2(T−t) − 1

4δ2
(T − t)e−2δ2(T−t) − 3

4δ22
e−2δ2(T−t)

− 2

δ32

1 − e−δ2(T−t)

T − t
+

5

8δ32

1 − e−2δ2(T−t)

T − t

]
BL(t, T ) = −(T − t)

BS`
(t, T ) = −1 − e−δ`(T−t)

δ`
, ` = 1, 2

BC`
(t, T ) = (T − t)e−δ`(T−t) − 1 − e−δ`(T−t)

δ`
, ` = 1, 2.

(1.2)

In the dependent-factor case, the expressions for B(t, T ) are the same as that of the
independent-factor case since ∆ is unchanged. However, the expression for A(t, T ) be-
comes considerably more complicated; we refer to Christensen et al. (2009, Appendix).
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1.3 Arbitrage-Free Nelson-Siegel Model

The factor loadings for the AFNS model with independent factors are given by

A (t, T ) = σ21,1
(T − t)3

6
+ σ22,2 (T − t)

[
1

2δ2
− 1

δ3
1 − e−δ(T−t)

T − t
+

1

4δ3
1 − e−2δ(T−t)

T − t

]

+ σ23,3 (T − t)

[
1

2δ2
+

1

δ2
e−δ(T−t) − 1

4δ
(T − t) e−2δ(T−t) − 3

4δ2
e−2δ(T−t)

− 2

δ3
1 − e−δ(T−t)

T − t
+

5

8δ3
1 − e−2δ(T−t)

T − t

]
,

BL (t, T ) = − (T − t) ,

BS (t, T ) = −1 − e−δ(T−t)

δ
,

BC (t, T ) = (T − t) e−δ(T−t) − 1 − e−δ(T−t)

δ
.

(1.3)

In the dependent-factor case, the expressions for B(t, T ) are the same as that of the
independent-factor case since ∆ is unchanged. However, the expression for A(t, T ) be-
comes considerably more complicated; we refer to Christensen et al. (2011, Appendix
B).

1.4 Multi-Factor Cox-Ingersoll-Rooss Model

The factor loadings for the three-factor CIR model are given by

A(t, T ) =

3∑
k=1

2δk,kθ
Q
k

σ2k,k
log

[
2γke

1
2
(δk,k+γk)(T−t)

(δk,k + γk)(eγk(T−t) − 1) + 2γk

]

Bk(t, T ) = − 2(eγk(T−t) − 1)

(δk,k + γk)(eγk(T−t) − 1) + 2γk
, k = 1, 2, 3,

(1.4)

where γk :=
√
δ2k,k + 2σ2k,k. The extension to the four-factor case is straightforward. We

do not consider the dependent-factor case in this paper.
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2 Parameter estimates

Table 2.1: Parameter estimates for the USA dataset

Par. Blackburn-Sherris AFNS AFGNS CIR
Indep. fact. Dep. fact. Indep. fact. Dep. fact. Indep. fact. Dep. fact.
3 4 3 3 3 5 5 3 4

δ11 0.04269 −0.01246 −0.01101 −0.06922 −0.06337 −0.07117 −0.08304 −0.22347 −0.13199
(0.00127) (0.00010) (0.00456) (0.00003) (0.00005) (0.00003) (0.00024) (0.00383) (0.00148)

δ21 − − 1.16407 − − − − − −
(0.02188)

δ22 -0.03123 -0.07528 -0.00518 − − -0.07338 -0.04983 0.23036 0.29486
(0.00031) (0.00008) (0.00324) (0.00002) (0.00040) (0.01571) (0.01939)

δ31 − − −0.78085 − − − − − −
(0.01799)

δ32 − − −0.03675 − − − − − −
(0.00231)

δ33 -0.08574 -0.12354 -0.07178 − − − − -0.13107 -0.09322
(8.843e-05) (0.00012) (0.00010) (0.00286) (0.00178)

δ44 − −0.05468 − − − − − − −0.07894
(0.00012) (0.00166)

κ1 0.01475 0.08000 5.20880 0.09672 0.01784 0.08596 0.00188 0.00111 0.07241
(0.02132) (0.00183) (0.06356) (0.02529) (0.06373) (0.00078) (0.00323) (6.450e-05) (0.01194)

κ2 -0.00004 0.06723 -0.03927 -0.00183 0.00969 0.01794 -0.00268 0.40895 0.40756
(0.00876) (0.00103) (0.00765) (0.00401) (0.00272) (0.00002) (0.00047) (0.01099) (0.01757)

κ3 0.01156 -0.00988 0.00320 0.08407 0.00220 0.01058 -0.00307 0.12902 1.404e-06
(0.00229) (0.00221) (0.00413) (0.01348) (0.02201) (0.00010) (0.00075) (0.03335) (0.00041)

κ4 − 0.10149 − − − 0.01040 -0.00281 − 0.01439
(0.00181) (0.00019) (0.00047) (0.00212)

κ5 − − − − − 0.03536 -0.00138 − −
(0.00098) (0.00267)

σ11 0.00079 0.00170 0.00138 0.00064 0.00889 0.00093 0.00175 0.00260 0.00039
(7.845e-05) (0.00007) (6.509e-06) (4.367e-05) (9.189e-06) (0.00006) (0.00014) (0.00011) (7.564e-05)

σ21 − − −4.466e-07 − −7.720e-05 − 3.422e-06 − −
(0.00009) (0.01040) (0.00008)

σ22 0.00067 0.00180 0.00054 0.00035 0.00869 6.651e-07 0.00196 0.00307 0.00258
(5.845e-05) (0.00002) (4.817e-05) (1.926e-05) (2.776e-06) (9.763e-08) (4.423e-08) (0.00071) (0.00034)

σ31 − − 2.592e-07 − −3.173e-05 − −6.187e-06 − −
(0.00053) (0.03393) (1.793e-03)

σ32 − − −2.226e-07 − 3.101e-05 − −6.937e-06 − −
(0.00107) (0.00105) (0.00004)

σ33 0.00009 0.00009 0.00042 0.00012 0.00357 0.00576 0.00354 0.02146 0.01381
(1.149e-05) (3.432e-06) (3.798e-06) (7.517e-06) (5.969e-06) (2.533e-06) (6.505e-07) (0.00069) (0.00042)

σ44 − 0.00737 − − − 0.00002 0.00034 − 0.03150
(1.932e-05) (8.122e-07) (7.827e-07) (0.00053)

σ55 − − − − − 0.00030 0.00841 − −
(5.587e-06) (9.331e-06)

r1 2.157e-15 1.410e-32 3.547e-15 2.458e-15 7.151e-16 1.140e-40 4.901e-30 7.606e-22 1.574e-28
(5.827e-16) (1.910e-32) (1.192e-15) (1.068e-15) (2.363e-16) (3.137e-40) (8.485e-30) (8.249e-20) (2.850e-23)

r2 0.55467 1.31053 0.54388 0.56463 0.57985 0.61608 1.185 0.82391 1.119
(0.00602) (0.0288) (0.00748) (0.00998) (0.00765) (0.06063) (0.03664) (0.05771) (0.06026)

rc 9.494e-08 6.591e-08 8.081e-08 1.044e-07 8.611e-08 7.554e-08 6.627e-08 1.499e-07 2.611e-08
(3.377e-09) (7.919e-10) (1.689e-09) (3.699e-09) (1.764e-09) (8.256e-10) (9.911e-10) (1.304e-08) (2.136e-09)

CIR θP θP1 θP2 θP3 θP4
3 Fact. 0.00519 0.00713 5.912e-09 −

(0.00031) (0.00030) (6.024e-05)
4 Fact. 0.00035 0.00789 1.502e-07 0.01049

(2.573e-05) (7.439e-05) (2.69463) (0.00094)
AFGNS dep. σ41 σ42 σ43 σ51 σ52 σ53 σ54

5.710e-07 6.412e-07 −1.163e-06 9.362e-07 1.151e-06 −1.153e-06 −1.169e-09
(3.602e-05) (3.863e-06) (8.615e-06) (5.672e-06) (1.756e-05) (2.739e-05) (8.233e-06)
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Table 2.2: Parameter estimates for the Australian dataset

Par. Blackburn-Sherris AFNS AFGNS CIR
Indep. fact. Dep. fact. Indep. fact. Dep. fact. Indep. fact. Dep. fact.
3 4 3 3 3 5 5 3 4

δ11 0.11204 0.06071 0.05432 −0.04991 −0.04891 −0.08269 −0.08313 −0.13785 −0.11850
(0.00189) (0.00098) (0.00325) (0.00004) (0.00004) (0.00005) (0.00018) (0.00268) (0.00280)

δ21 − − 0.53855 − − − − − −
(0.02205)

δ22 0.01030 −0.05963 0.05291 − − −0.04968 −0.04982 −0.09152 −0.11543
(0.00050) (0.00008) (0.00194) (0.00003) (0.00030) (0.00387) (0.00609)

δ31 − − −0.27095 − − − − − −
(0.01759)

δ32 − − −0.07973 − − − − − −
(0.00153)

δ33 −0.07157 −0.14399 −0.07234 − − − − −0.08292 −0.08675
(0.00004) (0.00017) (0.00010) (0.00115) (0.00323)

δ44 − −0.02189 − − − − − − 0.35470
(0.00025) (0.03923)

κ1 0.06129 0.04099 0.07122 0.04773 0.02331 0.00672 0.00616 0.01266 0.13478
(0.01698) (0.01468) (0.01880) (0.00907) (0.01867) (0.00015) (0.00574) (0.11629) (0.03541)

κ2 0.03814 0.01583 0.03390 0.05301 0.03381 0.00014 0.00010 0.00186 0.00323
(0.01020) (0.00383) (0.01125) (0.01129) (0.03420) (0.00013) (0.00009) (0.00079) (0.00054)

κ3 0.00965 -0.00757 0.02488 0.02019 0.01095 −0.00115 −0.00115 7.870e-07 0.08643
(0.00185) (0.01979) (0.00691) (0.00229) (0.00719) (0.00030) (0.00097) (0.00846) (0.02999)

κ4 − 0.02641 − − − −0.00034 −0.00029 − 0.36586
(0.00770) (0.00004) (0.00033) (0.03478)

κ5 − − − − − 0.00162 0.00173 − −
(0.00006) (0.00131)

σ11 0.00105 0.00130 0.00068 0.00096 0.00269 0.01368 0.00486 0.00127 0.00367
(0.00009) (0.00008) (0.00004) (0.00005) (0.00013) (0.00002) (0.00071) (0.00073) (0.00051)

σ21 − − −1.612e-06 − −7.138e-06 − −1.478e-06 − −
(0.00046) (0.00478) (0.00009)

σ22 0.00092 0.00092 0.00254 0.00078 0.00269 0.00145 0.00046 0.05282 0.05607
(0.00008) (0.00002) (0.00003) (0.00004) (0.00007) (0.00004) (0.00004) (0.00216) (0.00218)

σ31 − − 1.263e-06 − −3.051e-06 − -0.00002 − −
(0.00272) (0.00318) (0.00557)

σ32 − − −4.873e-06 − 3.074e-06 − 1.105e-06 − −
(0.00079) (0.00037) (0.00080)

σ33 0.00024 0.00003 0.00193 0.00030 0.00115 0.00285 0.00438 0.01044 0.01246
(0.00002) (9.924e-07) (0.00001) (0.00002) (0.00002) (0.00003) (0.00001) (0.00084) (0.00109)

σ44 − 0.00184 − − − 0.00001 0.00026 − 0.01371
(0.00004) (1.215e-06) (0.00680) (0.00220)

σ55 − − − − − 0.00554 0.00397 − −
(0.00004) (0.00004)

r1 4.672e-13 1.165e-12 4.711e-13 1.215e-15 1.189e-15 1.454e-14 1.768e-15 4.303e-19 9.634e-14
(1.235e-13) (1.092e-12) (1.469e-13) (4.425e-16) (3.885e-16) (1.654e-14) (2.425e-15) (2.732e-17) (4.158e-12)

r2 0.43094 0.35870 0.42991 0.56201 0.56248 0.45856 0.50646 0.68340 0.41813
(0.00621) (0.02018) (0.00727) (0.00815) (0.00716) (0.02480) (0.02907) (0.10433) (0.03920)

rc 1.298e-07 1.124e-07 1.272e-07 1.985e-07 1.833e-07 1.078e-07 1.070e-07 1.904e-07 8.183e-08
(4.213e-09) (3.622e-09) (4.305e-09) (5.654e-09) (5.428e-09) (1.821e-09) (1.788e-09) (1.545e-08) (4.992e-09)

CIR θP θP1 θP2 θP3 θP4
3 Fact. 1.276e-09 1.814e-02 1.080e-08 −

(6.278e-05) (0.00297) (8.039e-05)
4 Fact. 00044 0.04216 0.00014 0.00250

(6.780e-05) (0.00674) (0.00096) (0.00022)
AFGNS dep. σ41 σ42 σ43 σ51 σ52 σ53 σ54

1.140e-06 −8.819e-08 −1.010505e-06 −1.865e-05 1.434e-06 1.629e-05 −9.999e-07
(0.28756) (0.06038) (0.11084) (16.91549) (3.43681) (2.68759) (0.46707)
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Table 2.3: Parameter estimates for the Danish dataset

Par. Blackburn-Sherris AFNS AFGNS CIR
Indep. fact. Dep. fact. Indep. fact. Dep. fact. Indep. fact. Dep. fact.
3 4 3 3 3 5 5 3 4

δ11 8.364e-07 0.23551 −0.05330 −0.08301 −0.07491 −0.08248 −0.08271 −0.12329 −0.13324
(2.286e-06) (0.00218) (0.00110) (0.00003) (0.00004) (0.00004) (0.00006) (0.00150) (0.00190)

δ21 − − 0.43602 − − − − − −
(0.00452)

δ22 −0.05220 −0.03288 −0.05259 − − -0.04718 −0.04934 0.00797 −0.00584
(0.00004) (0.00009) (0.00053) (0.00002) (0.00015) (0.00244) (0.00342)

δ31 − − -0.21455 − − − − − −
(0.00358)

δ32 − − 0.01697 − − − − − −
(0.00038)

δ33 −0.10132 −0.09814 −0.06072 − − − − −0.08836 −0.11211
(0.00001) (0.00005) (0.00006) (0.00300) (0.00316)

δ44 − 0.04056 − − − − − − −0.11386
(0.00025) (0.00257)

κ1 0.01146 0.11510 0.03309 0.00915 0.01385 0.00046 −0.00993 0.03829 0.11431
(0.00843) (0.03052) (0.00896) (0.00495) (0.00961) (0.00024) (0.00204) (0.01242) (0.03884)

κ2 0.06877 0.06832 0.01035 0.01068 0.00351 −0.00222 −0.00317 0.04984 0.02932
(0.01224) (0.01720) (0.00319) (0.00591) (0.01528) (0.00026) (0.00065) (0.00958) (0.00318)

κ3 0.00498 0.00495 0.00970 0.00744 0.00302 −0.00179 −0.00115 0.04859 0.02569
(0.00559) (0.00529) (0.00273) (0.00690) (0.01207) (0.00062) (0.00128) (0.00725) (0.00552)

κ4 − 0.02618 − − − −0.00185 −0.00067 − 0.00002
(0.01396) (0.00027) (0.00077) (2.033e-05)

κ5 − − − − − -0.00238 -0.00997 − −
(0.00053) (0.00280)

σ11 0.00109 0.00204 0.00070 0.00066 0.00319 0.01031 0.00955 0.00535 0.00532
(0.00003) (0.00010) (0.00006) (0.00003) (0.00012) (0.00004) (0.00089) (0.00015) (0.00015)

σ21 − − −1.330e-06 − −8.198e-06 − −7.790e-06 − −
(0.00078) (0.00082) (0.00010)

σ22 0.00112 0.00142 0.00208 0.00053 0.00261 0.00137 0.00262 0.00424 0.00369
(0.00001) (0.00004) (0.00007) (0.00002) (0.00001) (0.00001) (0.00016) (0.00052) (0.00054)

σ31 − − 1.232e-06 − −3.630e-06 − -0.00008 − −
(0.00337) (0.00112) (0.00167)

σ32 − − -3.834e-06 − 2.994e-06 − 1.083e-06 − −
(0.00105) (0.00016) (0.00047)

σ33 0.00052 0.00055 0.00189 0.00021 0.00116 0.00377 0.00929 0.02590 0.03122
(2.914e-06) (3.398e-06) (0.00007) (5.212e-06) (7.761e-06) (0.00003) (0.00002) (0.00219) (0.00155)

σ44 − 0.00218 − − − 0.00018 0.00097 − 0.01261
(0.00007) (4.185e-06) (0.00011) (0.00046)

σ55 − − − − − 0.00545 0.01162 − −
(0.00013) (1.200e-07)

r1 3.716e-15 2.350e-13 3.098e-15 2.416e-15 3.385e-15 4.468e-15 1.044e-14 4.887e-16 1.975e-15
(1.099e-15) (5.560e-14) (8.814e-16) (7.644e-16) (9.980e-16) (1.631e-15) (2.957e-15) (1.860e-15) (3.942e-14)

r2 0.54312 0.45143 0.54693 0.55369 0.54440 0.53604 0.51683 0.58006 0.54856
(0.00665) (0.00553) (0.00622) (0.00698) (0.00651) (0.00781) (0.00635) (0.03173) (0.03167)

rc 1.796e-07 9.973e-08 1.729e-07 1.877e-07 1.816e-07 1.288e-07 1.176e-07 1.469e-07 1.279e-07
(3.365e-09) (2.044e-09) (1.887e-09) (3.544e-09) (3.264e-09) (1.444e-09) (1.223e-09) (1.593e-08) (1.395e-08)

CIR θP θP1 θP2 θP3 θP4
3 Fact. 4.915e-18 0.00510 0.00332 −

(2.099e-08) (0.00056) (0.00046)
4 Fact. 0.00065 0.00527 0.00221 2.701e-12

(0.00011) (0.00049) (0.00051) (6.478e-07)
AFGNS.dep. σ41 σ42 σ43 σ51 σ52 σ53 σ54

6.915e-06 2.941e-07 −8.019e-06 −9.898e-05 1.068e-05 9.694e-05 −9.968e-06
(0.00280) (0.00137) (0.00190) (6.48895) (0.55735) (3.10011) (0.92826)
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Table 2.4: Parameter estimates for the E&W civilian population dataset

Par. Blackburn-Sherris AFNS AFGNS CIR
Indep. fact. Dep. fact. Indep. fact. Dep. fact. Indep. fact. Dep. fact.
3 4 3 3 3 5 5 3 4

δ11 0.04017 0.01264 -0.02247 -0.06154 -0.05159 -0.08184 -0.08337 -0.11253 -0.11122
(0.00037) (0.00020) (0.00160) (0.00003) (0.00003) (0.00002) (0.00008) (0.00135) (0.00125)

δ21 − − 0.76411 − − − − − −
(0.00706)

δ22 -0.03819 -0.08277 -0.01988 − − -0.04924 -0.04927 -0.00708 0.00988
(0.00013) (0.00002) (0.00065) (0.00001) (0.00012) (0.00325) (0.00122)

δ31 − − -0.35646 − − − − − −
(0.00553)

δ32 − − -0.00214 − − − − − −
(0.00046)

δ33 -0.08624 -0.18177 -0.05992 − − − − -0.09758 -0.07582
(0.00003) (0.00014) (0.00008) (0.00458) (0.00268)

δ44 − -0.04412 − − − − − − -0.13049
(0.00008) (0.00239)

κ1 0.01804 0.01406 0.02721 0.01174 0.00529 0.00101 0.00709 0.05367 1.040e-08
(0.00903) (0.00630) (0.01005) (0.00477) (0.00608) (0.00008) (0.00440) (0.00335) (4.370e-10)

κ2 0.03410 0.00833 0.00687 0.02245 -0.00008 -0.00231 -0.00740 0.01871 0.01670
(0.01608) (0.00175) (0.00319) (0.01326) (0.02362) (0.00009) (0.00065) (0.00786) (0.00360)

κ3 0.00622 0.03690 0.00592 0.00743 0.00167 -0.00268 -0.00903 0.39703 0.26070
(0.00521) (0.00732) (0.00171) (0.00440) (0.00888) (0.00020) (0.00103) (0.09355) (0.02845)

κ4 − 0.01777 − − − -0.00233 -0.00670 − 2.387e-15
(0.00751) (0.00009) (0.00063) (6.928e-10)

κ5 − − − − − -0.00185 -0.00488 − −
(0.00003) (0.00229)

σ11 0.00097 0.00104 0.00072 0.00115 0.00699 0.02058 0.00552 0.00953 0.00829
(0.00005) (0.00003) (0.00005) (0.00003) (0.00029) (0.00003) (0.00042) (0.00022) (7.934e-05)

σ21 − − -2.321e-06 − -0.00005 − -2.301e-06 − −
(0.01263) (0.02047) (0.00006)

σ22 0.00101 0.00040 0.00338 0.00100 0.00757 0.00156 0.00186 0.00524 0.01004
(0.00004) (0.00001) (0.00055) (0.00003) (0.00007) (0.00004) (0.00013) (0.00073) (0.00062)

σ31 − − 1.629e-06 − -0.00003 − -0.00003 − −
(0.00587) (0.01558) (0.00101)

σ32 − − -7.883e-06 − 0.00003 − -1.970e-06 − −
(0.00135) (0.00183) (0.00045)

σ33 0.00094 3.523e-06 0.00235 0.00074 0.00452 0.00295 0.00549 0.03227 0.03254
(3.445e-06) (1.387e-07) (0.00005) (9.124e-06) (0.00004) (0.00004) (2.303e-06) (0.001923) (0.00077)

σ44 − 0.00125 − − − 0.00004 0.00062 − 0.01426
(0.00002) (1.945e-06) (0.00018) (0.00044)

σ55 − − − − − 0.00574 0.00897 − −
(0.00011) (0.00128)

r1 3.159e-11 4.832e-10 3.514e-11 1.894e-11 3.685e-11 3.878e-10 6.518e-10 1.867e-11 3.887e-12
(6.681e-12) (8.392e-11) (8.382e-12) (4.372e-12) (7.303e-12) (9.728e-11) (1.289e-10) (1.890e-11) (3.881e-12)

r2 0.32370 0.22870 0.31842 0.33537 0.31709 0.23723 0.22176 0.32445 0.34321
(5.046e-03) (4.113e-03) (5.680e-03) (5.273e-03) (4.753e-03) (5.749e-03) (4.767e-03) (0.03006) (0.03513)

rc 1.656e-07 1.538e-07 1.608e-07 1.728e-07 1.622e-07 1.276e-07 1.167e-07 1.550e-07 1.449e-07
(3.506e-11) (3.157e-11) (3.484e-11) (3.752e-11) (3.629e-11) (1.712e-11) (1.754e-11) (1.164e-08) (6.903e-09)

CIR θP θP1 θP2 θP3 θP4
3 Fact. 0.00518 0.00151 0.00009 −

(0.00043) (0.00143) (0.00073)
4 Fact. 23075.34809 0.00480 0.00051 6.516e-30

(110.22) (0.00080) (4.474e-05) (0.14078)
AFGNS.dep. σ41 σ42 σ43 σ51 σ52 σ53 σ54

2.092e-06 3.924e-07 -2.702e-06 -3.829e-05 3.823e-06 0.00003 -4.607e-06
(0.00302) (0.00241) (0.00278) (103.02721) (7.63012) (82.22063) (17.49291)
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Table 2.5: Parameter estimates for the Japanese dataset

Par. Blackburn-Sherris AFNS AFGNS CIR
Indep. fact. Dep. fact. Indep. fact. Dep. fact. Indep. fact. Dep. fact.
3 4 3 3 3 5 5 3 4

δ11 -0.07423 0.01713 -0.07882 -0.09489 -0.09444 -0.08245 -0.08284 -0.11439 -0.11832
(0.00002) (0.00079) (0.00065) (0.00002) (0.00001) (0.00019) (0.00223) (0.00291) (0.00120)

δ21 − − 0.02280 − − − − − −
(0.00133)

δ22 0.25703 -0.03913 -3.417e-07 − − -0.04973 -0.04994 0.62391 1.28506
(0.01170) (0.00014) (0.00111) (7.596e-06) (0.00134) (0.03265) (0.00659)

δ31 − − -0.00684 − − − − − −
(0.00043)

δ32 − − -0.04925 − − − − − −
(0.00053)

δ33 -0.15143 -0.07665 -0.12597 − − − − -0.10646 -0.08796
(0.00013) (0.00004) (0.00025) (0.00769) (0.00066)

δ44 − 0.00598 − − − − − − -0.03500
(0.00060) (0.00288)

κ1 0.02986 -0.08308 0.03705 -0.00373 0.00145 0.12492 0.16089 0.00034 0.02815
(0.00248) (0.00041) (0.00029) (0.00918) (0.00284) (0.00020) (0.00372) (2.797e-05) (0.00539)

κ2 0.09056 -0.07310 -0.03760 0.03908 0.03975 0.05296 0.07584 0.63792 1.29611
(0.04171) (0.00019) (0.01139) (0.00333) (0.00274) (0.00000) (0.00110) (0.01032) (0.01618)

κ3 0.02603 -0.01406 0.03802 0.07654 0.09926 0.04126 0.05894 0.00000 0.18922
(0.00268) (0.00825) (0.03373) (0.01613) (0.00266) (0.00003) (0.00147) (5.002e-11) (0.01207)

κ4 − -0.08047 − − − 0.04273 0.06016 − 0.11300
(0.00007) (0.00010) (0.00143) (0.00960)

κ5 − − − − − 0.07282 0.10161 − −
(0.00004) (0.00105)

σ11 0.00013 0.00021 0.00047 0.00017 0.00038 0.00115 0.00237 0.00809 0.00521
(0.00001) (0.00002) (0.00004) (0.00002) (0.00010) (0.00008) (0.00014) (0.00102) (8.203e-05)

σ21 − − -2.184e-07 − -9.503-08 − -8.148e-07 − −
(0.00025) (0.00006) (1.998e-06)

σ22 0.00030 3.106e-07 0.00053 0.00013 0.00029 1.492e-07 0.00389 0.00922 0.02903
(0.00003) (7.783e-08) (0.00003) (5.965e-06) (4.024e-06) (3.233e-08) (0.00001) (0.00114) (0.00242)

σ31 − − 1.222e-07 − -4.693e-08 − -1.345e-06 − −
(0.00071) (0.00061) (0.00003)

σ32 − − -1.489e-07 − 3.843700e-08 − -0.00001 − −
(0.00028) (0.00014) (0.00019)

σ33 0.00004 0.00077 0.00028 0.00006 0.00013 0.00334 0.00436 0.03237 0.00631
(2.962e-07) (7.455e-06) (1.835e-06) (1.922e-06) (3.100e-06) (0.00001) (0.00004) (0.00102) (0.00016)

σ44 − 8.740e-07 − − − 0.00006 0.00079 − 0.04087
(2.028e-07) (7.377e-06) (1.905e-07) (0.00124)

σ55 − − − − − 0.00580 0.00208 − −
(5.054e-06) (1.369e-06)

r1 2.649e-34 3.791e-34 5.661e-34 1.455e-34 1.533e-33 2.746e-21 1.892e-21 1.676e-23 6.430e-11
(2.083e-33) (1.610e-33) (5.352e-33) (1.067e-33) (1.258e-31) (2.155e-21) (2.025e-21) (2.149e-13) (1.492e-11)

r2 1.32529 1.32896 1.29393 1.33389 1.37580 0.82927 0.83461 0.86033 0.23442
(0.15181) (0.08752) (0.16549) (0.15077) (0.12502) (0.01716) (0.02337) (0.24213) (0.00771)

rc 8.04133 7.59980 8.20018 8.44065 8.38675 0.70797 0.73568 4.56694 0.64562
(2.784e-09) (8.670e-10) (8.847e-10) (2.936e-09) (9.206e-10) (1.199e-10) (1.605e-10) (6.046e-09) (3.598e-10)

CIR θP θP1 θP2 θP3 θP4
3 Fact. 0.68899 0.00731 13.28658 −

(0.02920) (0.00017) (9.845e+05)
4 Fact. 0.00079 0.00550 0.00000 0.00122

(9.287e-05) (1.750e-05) (2.894e-11) (6.804e-05)
AFGNS.dep. σ41 σ42 σ43 σ51 σ52 σ53 σ54

2.450e-07 3.007e-06 -2.957e-06 -4.284e-06 3.611e-06 -1.744e-07 3.993e-07
(0.00049) (0.00369) (0.00015) (0.15452) (0.06615) (0.05625) (0.01435)
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3 Standardized Residuals

Blackburn-Sherris with 3 independent factors

Blackburn-Sherris with 4 independent factors

Blackburn-Sherris with 3 dependent factors

Arbitrage-Free Nelson-Siegel model with independent factors

Arbitrage-Free Nelson-Siegel model with dependent factors

Arbitrage-Free Generalized Nelson-Siegel model with independent factors

Arbitrage-Free Nelson-Siegel model with dependent factors

Cox-Ingersoll-Ross model with 3 factors

Cox-Ingersoll-Ross model with 4 factors

(a) USA (b) Austr. (c) Denm. (d) E&W (e) Japan

Figure 3.1: Plots of standardized residuals by age and cohort.
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4 Plots of factor loadings and of X (t) for the robustness
analysis of affine mortality models.

Denmark

England&Wales

Figure 4.1: Factor loadings (left) and factor values X (t) (right) for the Blackbun-Sherris
model with three independent factors for the Denmark (top) and the E&W
datasets (bottom).
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Denmark

England&Wales

Figure 4.2: Factor loadings (left) and factor values X (t) (right) for the Blackbun-Sherris
model with four independent factors for the Denmark (top) and the E&W
datasets (bottom).
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Denmark

England&Wales

Figure 4.3: Factor loadings (left) and factor values X (t) (right) for the Blackbun-Sherris
model with dependent factors for the Denmark (top) and the E&W datasets
(bottom).
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Denmark

England&Wales

Figure 4.4: Factor loadings (left) and factor values X (t) (right) for the AFNS model with
independent factors for the Denmark (top) and the E&W datasets (bottom).
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Denmark

England&Wales

Figure 4.5: Factor loadings (left) and factor values X (t) (right) for the AFNS model with
dependent factors for the Denmark (top) and the E&W datasets (bottom).
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Denmark

England&Wales

Figure 4.6: Factor loadings (left) and factor values X (t) (right) for the AFGNS model
with independent factors for the Denmark (top) and the E&W datasets (bot-
tom).
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Denmark

England&Wales

Figure 4.7: Factor loadings (left) and factor values X (t) (right) for the AFGNS model
with dependent factors for the Denmark (top) and the E&W datasets (bot-
tom).
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Denmark

England&Wales

Figure 4.8: Factor loadings (left) and factor values X (t) (right) for the CIR model with
three factors for the Denmark (top) and the E&W datasets (bottom).
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Denmark

England&Wales

Figure 4.9: Factor loadings (left) and factor values X (t) (right) for the CIR model with
four factors for the Denmark (top) and the E&W datasets (bottom).
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5 Plot of projected survival curves and their Mean Absolute
Percentage Error (MAPE)

Figure 5.1: Projection of the survival curves for the Australian male cohort born in 1917
under each model (left) and their MAPE (right).

Figure 5.2: Projection of the survival curves for the England & Wales male cohort born
in 1915 under each model (left) and their MAPE (right).
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Figure 5.3: Projection of the survival curves for the Japanese male cohort born in 1917
under each model (left) and their MAPE (right).

6 Parameter estimation: illustration with R

The estimation of continuous-time affine mortality models follows along the code skeleton
illustrated below. We show two examples: the Blackburn-Sherris model with indepen-
dent factors, and the AFNS model with dependent factors. Further details about the
use of the code and of the functions therein are available in Ungolo et al. (2021).

<readFunctions >

<defineVariables >

<loadData >

<prepareData >

<fitModelCoordAscent >

<improveEstLocalSearch >

<readFunctions> We load the the package which is needed for reading the data (we
use HMDHFDplus by Riffe (2015)) and read the functions which need to be optimized
(’Est fun.R’) by means of Coordinate Ascent (’Coordinate Ascent.R’) and its sub-
sequent improvement by local search (’Full opt.R’):

<readFunctions >:

source(’Est_fun.R’)

source(’Coordinate_Ascent.R’)

source(’Full_opt.R’)

<defineVariables> and <loadData> wrap the code for defining the variables and load
the dataset from the IMD. <prepareData> wraps the code which is needed to produce
the working dataset of average mortality rates used for fitting the models (not shown
here).

We now illustrate the remaining wrappers for the Blackburn-Sherris model with inde-
pendent factors and for the AFNS model with dependent factors.
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6.1 Blackburn Sherris with independent factors

The parameter estimation process for the Blackburn-Sherris model with independent
factors requires the specification of the number of factors, which is given by the length
of the parameter vector κ = (κ1, κ2, . . .).

Hence, <fitModelCoordAscent> wraps the code which uses the function co asc BSi,
which performs the optimization process by iteratively optimizing the negative log-
likelihood function by group of parameters. This process is repeated for a maximum
number of iterations max iter (set by the researcher, default set to 200) by using as
starting values the parameter estimates obtained at the previous iteration, until the log-
likelihood function increase is below a tolerance level (tol lik, set by the researcher,
default value of 0.1). The researcher should also specify the starting value for each
parameter vector (default values are also provided).

<fitModelCoordAscent >:

pe_CA_BSi <- co_asc_BSi(mu_bar=dataset , max_iter =200, tol_lik =0.1)

If we use the default starting values used in our code, by running pe CA BSi <-

co asc BSi() this yields the following output when fitted using the US dataset of this
work:

> pe_CA_BSi

$par_est
$par_est$x0

x0_1 x0_2 x0_3

0.001551705 0.005618262 0.007011683

$par_est$delta
delta_1 delta_2 delta_3

0.04268782 -0.03122758 -0.08573677

$par_est$kappa
kappa_1 kappa_2 kappa_3

1.475362e-02 -4.096367e-05 1.156081e-02

$par_est$sigma
sigma_1 sigma_2 sigma_3

7.941997e-04 6.671747e-04 9.359528e-05

$par_est$r1
r1

2.156668e-15

$par_est$r2
r2

0.5546705

$par_est$rc
rc

9.494266e-08
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$log_lik
log_lik.

10638.34

In addition, the function co asc BSi provides also a table (not shown here) containing
the value of the parameters and of the log-likelihood function at each iteration.

6.2 AFNS with dependent factors

For this model, the number of factors is set to three by default. <fitModelFullOptim>
is as follows:

<fitModelCoordAscent >:

fit_AFNSi_CA <- co_asc_AFNSd(mu_bar=dataset , x0=c(0,0,0),

delta =-0.05, kappa=c(0.01 ,0.01 ,0.01) , sigma_dg=c(0.01 ,0.01 ,0.01) ,

Sigma_cov=c(0,0,0), r=c(1e-5,0.3,1e-5), max_iter =200, tol_lik =0.1)

The starting values of Σ are supplied separately, based on whether they are the terms
on the diagonals (sigma dg, corresponding to σL, σS and σC , i.e. the standard devia-
tions, not the variances), or its off-diagonal elements, the covariances, provided in the
following order: σLS , σLC and σSC .

The output of this function has the same structure described for the Blackburn-Sherris
independent factor model implementation. An analogous reasoning applies for the other
R functions.
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