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Background and motivation

Background and motivation

▶ A variable annuity (VA) is an attractive retirement income product: equity participation &
downside protection

▶ Embedded financial guarantees expose VA insurer’s liability to significant market risks

▶ Regulators encourage frequent, market consistent valuations

▶ VM 21 (NAIC, USA): intra-day monitoring

▶ APS 117 (APRA, Australia): detailed stochastic calculations

▶ Solvency standard (IPSA, NZ): validation on a regular basis

▶ IFRS17: high level of granularity to qualify for hedge accounting purposes

▶ Managing portfolio risks is a major challenge

▶ In practice, VA insurers use Monte Carlo simulations: challenging & time-consuming
(Gan and Valdez, 2017)
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Background and motivation

Motivational example

▶ Suppose an insurer plans to rebalance the hedge portfolio at 1:00 pm

▶ Partial dollar Deltas must be calculated based on the levels of the equity indices at 1:00 pm

▶ Calculation must be completed within a very short time interval

▶ Otherwise, the calculated partial dollar Deltas may be very different from the ones at
when the calculation is completed

▶ For a large VA portfolio, it is problematic
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Background and motivation

Motivation

Under certain conditions, the regulator permits group-level modeling

▶ Grouping of contracts shall be reflective of the quantity being measured

AG 43/VM-21: Requirements for PBR of VA

▶ Aggregation must reflect perceived risk profile

APS 117 (Australia)

▶ Grouping requires pooling of similar risks

IFRS 17 Insurance contracts and Level of Aggregation

▶ Group-based valuation models must go through internal model approval process

Solvency II
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Existing solution

Key question

How to determine an optimal grouping?
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Existing solution

Existing solution: Meta-modeling framework

Issue: Compression doesn’t guarantee the most informative (optimal) sample for the prediction
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Existing solution

Literature Gap: Practical implications related to the existing approach

1. Contract selection is independent of quantity being measured → lessen explainability

2. Inefficient selection of representative contracts → worsen the valuation accuracy

Implication: Less appealing for principle based reserving (PBR) in practice

Solution: Propose a method to select the representative sample in a supervised manner

How: By pre-processing the data with SHAP values (SHapley Additive exPlanations)
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Proposed solution

Proposed framework
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Proposed solution

Shapley framework
▶ Introduced by Lloyd Shapley in 1953

▶ Assigning payouts to players based on their contribution to the total payout

Game theory Model explanation
Game Prediction task
Players Input features
Payout Actual prediction
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Proposed solution

KernelSHAP explanation
▶ Lundberg et al. (2017) showed that if we define an explanation model for an instance z ′ ;

g(z ′) = ψ0 +
D∑
j=1

ψjz
′
j ,

▶ train the linear model g by optimizing the following loss function L:

L(f , g , πx) =
∑
z′∈Z

[f (hx(z
′))− g(z ′)]2πx(z

′)

▶ where the Kernel is;

πx(z
′) =

(D − 1)(
D
|z′|

)
|z ′|(D − |z ′|)

and

▶ D is the maximum number of input features, hx is a mask vector of ‘0‘ and ‘1‘ for feature
presence and |z ′| is the number of present features in instance z ′ ,

▶ then, the estimated coefficients of the model, the ψj ’s, are the Shapley values.
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Proposed solution

Transformation of data into SHAP values

The implementation of the decomposition method requires pre-training a neural network on
various contract specifications under various market conditions and using it for generalization
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Proposed solution

Step 1: Pre-training neural network

▶ Minimize the loss
θ∗ = argmin

θ∈Θ
E(X S ,Y S )∼pS [Y S − f (X S , θ)]2

▶ Let data from the source domain be DS = {xi , yi}S = {Φ(Pi )
s ,V (Pi )

s}N∗

i=1

▶ Then the empirical risk minimization becomes;

θ∗ = argmin
θ∈Θ

1

n

∑
i∈DS

[yi
S − f (xi

S , θ)]2
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Proposed solution

Step 2: Obtaining the Shapley decomposition

▶ Obtaining the SHAP decomposition for each contract using the trained model

▶ The goal is to decompose the predicted value of the quantity being measured as a sum of
marginal attributions from input features

V̂ (Pi )
s = f (Φ(Pi )

s , θ∗) ≈ ψ0 +
d∑

j=1

ψj (1)
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Proposed solution

Step 3 - 4: Selecting the representative sample and running Monte Carlo

3. Clustering the Shapley additive representations to select the representative contracts

4. With the configurations of the target market condition DT , run the high resolution Monte
Carlo simulation to estimate the quantity of interest

V (pi )
T =

1

M

M∑
m=1

V (Φ(pi )
T ,m), i = 1, ..., n (2)
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Proposed solution

Step 5- 6: Fine-tuning and Prediction

5. Fine-tune the transferred knowledge from (Φ(P)S ,VS , pS) to the (Φ(P)T ,VT , pT )
following (Yolsinki et al., 2014)

Fine-tune the model using emprirical risk minimization

θ∗T = argmin
θ∈Θ

1

n

∑
i∈DT

[yi
T − f (xi

T , θ)]2

6. Use the fine-tuned model f T (·) to predict the value of the remaining contracts
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Numerical analysis

Dataset

▶ Synthetic dataset of variable annuities constructed by Gan and Valdez (2018)

▶ 38,000 synthetic VA contracts described by 34 features

Variable Description

Gender Gender of the policyholder

Age Age of the policyholder

Product Type Product type of the VA policy

GMWB Balance Guaranteed minimum withdrawal benefit (GMWB) balance

GB Amount Guaranteed benefit amount

Fund Value i Account value of the i th fund, for i = 1, 2, ..., n

Time to Maturity Time to maturity in years

Table: https://www2.math.uconn.edu/∼gan/software.html
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Numerical analysis

Numerical results I

Figure: Formation of clusters (i) Raw input feature space with (ii) SHAP decomposition input space

▶ Proposed method uses how the features contributed to the prediction as the basis for
clustering: effective handles categorical features

▶ Resulting clusters are explainable
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Numerical analysis

Numerical results II

Figure: Comparison WCSS values between clustering from raw values and clustering from SHAP values.

▶ Within-cluster sum of squares (WCSS) for SHAP value based clustering is lower

▶ Resulting clusters are more compact → better cluster quality
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Numerical analysis

Numerical results III

Figure: Graphical illustration of different features contribute differently to the target quantity computed
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Numerical analysis

Numerical results IV

Figure: Portfolio error (PE) across different sample sizes
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Numerical analysis

Numerical results IV

Figure: Room mean sqaured error (RMSE) across different sample sizes
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Conclusion

Summary and contributions

▶ Propose a novel framework to select representatives in an informative manner

▶ Show that pre-processing with SHAP values

1. overcomes possible artificial creation of clusters

2. results in tighter clusters

3. facilitates explainability for cluster formation

4. results in improved PE and RMSE measures
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Conclusion

Thank you

Gayani Thalagoda

g.thalagoda@student.unsw.edu

24 / 27



Conclusion

References I

Feng, R., Goujun, G., & Zhang, N. (2022).Variable annuity pricing, valuation, and risk
management: A survey. Scandinavian Actuarial Journal, 2022(10), 867–900.
https://doi.org/10.1080/03461238.2022.2049635

Feng, R., Jing, X., & Dhaene, J. (2017).Comonotonic approximations of risk measures for
variable annuity guaranteed benefits with dynamic policyholder behavior. Journal of
Computational and Applied Mathematics, 311, 272–292.

Gan, G. (2022).Metamodeling for variable annuity valuation: 10 years beyond kriging. 2022
Winter Simulation Conference (WSC), 915–926.
https://doi.org/10.1109/WSC57314.2022.10015284

Gan, G., & Valdez, E. A. (2017).Valuation of large variable annuity portfolios: Monte carlo
simulation and synthetic datasets. Dependence Modeling, 5(1), 354–374.

Gan, G., & Valdez, E. A. (2018).Nested stochastic valuation of large variable annuity
portfolios: Monte carlo simulation and synthetic datasets. Data, 3(3), 31.

25 / 27

https://doi.org/10.1080/03461238.2022.2049635
https://doi.org/10.1109/WSC57314.2022.10015284


Conclusion

References II

Godin, F., Hamel, E., Gaillardetz, P., & Ng, E. H.-M. (2023).Risk allocation through shapley
decompositions, with applications to variable annuities. ASTIN Bulletin: The Journal
of the IAA, 53(2), 311–331.

Lin, X., & Yang, S. (2020).Efficient dynamic hedging for large variable annuity portfolios with
multiple underlying assets. ASTIN Bulletin: The Journal of the IAA, 50(3), 913–957.

Lundberg, S. M., & Lee, S.-I. (2017).A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30.
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Numerical Results: additional

Figure: Formation of clusters with raw values

▶ Clustering with SHAP values generate notably heterogeneous clusters and use its centroids

as model points might not be enough 1 / 1
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