The Earned Income Tax Credit and the Tax-benefit Link of Public Pensions

Dongmin Chun

Seoul National University

July 3, 2023

presented at CEPAR International Conference 2023

Earned Income Tax Credit (EITC)

- Welfare program for the low income conditioned on working
 ⇒ goal: to provide cash assistance & incentive to work
- EITC can raise income through...
 - 1. tax credit
 - 2. labor earnings \uparrow if labor supply responds to incentive

Literature

- Do labor supply increase in response to EITC?
 - (seems to be) Yes, at the participation margin (e.g., Eissa and Liebman, 1996; Meyer and Rosenbaum, 2001)
- Is earnings ↑ important for income ↑ (tax credit + earnings)?

▶ Yes (Hoynes and Patel, 2018)

- Long-term impact over the life cycle?
 - Enhance welfare by providing insurance against wage risks (Athreya et al., 2014; Blundell et al., 2016)
 - ▶ EITC as rainy-day fund for newborns with low lifetime income
 - ▶ precautionary savings ↓ & consumption ↑ (consumption smoothing ↑)

Motivation

• Long-term impact with tax-benefit link of public pensions?

- Then EITC can raise *lifetime* income through...
 - 1. (static) tax credit
 - 2. (static) labor earnings
 - 3. (dynamic) pension benefits after retirement \uparrow
- Furthermore, if people better understand **dynamic return** when making labor supply choice (Liebman and Luttmer, 2015)

▶ EITC's impact on labor supply & earnings ↑

 \Rightarrow EITC's impact on lifetime income & welfare $\uparrow\uparrow$

This paper

Question: How important is the pension tax-benefit link for the EITC's long-term impact over the life cycle?

- 1. Build a standard life-cycle model of consumption-savings with
 - EITC & labor supply choice (as in literature)
 - + persistent wage risks (as in literature) to capture EITC's consumption smoothing effect
 - tax-benefit link of public pension (new)
 - + mortality risks (new)

to avoid overstating the role of pension tax-benefit link

This paper

- 2. Calibrate the model to the Korean economy
 - runs EITC program & supporting evidence of labor supply effect (half of UI expenditure to 10% of working-age population in 2019)
 - 70% of EITC recipients pay pension contributions (SHFLC, 2017–2020)
- 3. Two counterfactual experiments (in PE setting as in literature)
- (1) EITC vs. NO EITC where tax-benefit link fully active (full model)
 - \blacktriangleright importance of pension income \uparrow in lifetime income \uparrow
- (2) EITC vs. NO EITC where tax-benefit link active only for EITC-ineligible employment (static-only model)
 - results from (1) vs. (2): EITC's effects with both static and dynamic returns vs. static return only
 - \Rightarrow importance of understanding about pension tax-benefit link

Brief summary

- Question: How important is the pension tax-benefit link for the EITC's long-term impact over the life cycle?
- **Answer**: Focusing on newborns with low lifetime income, I find *pension tax-benefit link* can explain *more than half (a quarter)* of the increase in lifetime income (welfare)

• Contributions:

- 1. Further understand the *benefits* of the EITC: better knowledge of the pension tax-benefit link can be an important amplifying mechanism
- 2. EITC to the working age as an alternative policy tool to prevent old-age poverty *in advance*

Model — EITC (million KRW \approx thousand USD)

Figure: EITC schedule for single-earner families, 2019, Korea

earnings limit & asset limit

Model — Public Pension

• Pension benefits formula:

$$\xi(e,n) = \kappa(E+e)\mathbf{n}$$

e: career average taxable earnings

- n: contribution periods (cumulative years of employment)
 - κ : scale parameter (avg. replacement rate of 40%)
 - E: economy-wide average taxable earnings
- Note that $\partial \xi / \partial n > 0$

 \Rightarrow employment response to EITC \Rightarrow future pension income \uparrow

Earnings (static) vs. Pension benefits (dynamic)

If an EITC-eligible individual works $\underline{1 \text{ more year}}$, he will receive tax credits and...

- (static) earns about <u>₩10 million</u>
- (dynamic) more pension income in future by about
 - ► ₩0.3 million per year
 - ▶ $\underline{\text{W6 million in total}}$ (life expectancy at age 65 \approx 20 years)
 - ▶ ₩1.3 million in PV at age 25
 - ► ₩4.3 million in PV at age 65
- \Rightarrow quite large dynamic labor supply incentive

Model — Tax / Transfer

$$tax = \underbrace{\mathcal{T}(y)}_{\text{labor income tax}} + \underbrace{\tau_p \cdot \min\{y, \bar{y}\}}_{\text{pension contribution}} + \tau_k ra + \tau_c c$$
$$transfer = \underbrace{\psi(a, y) + \Omega \cdot (1 - h) + tr}_{\text{before retirement}} + \underbrace{\xi(e, n) + bp}_{\text{after retirement}}$$

where

• y: earnings; a: risk-free asset holdings; $h \in \{0, 1\}$: labor supply

- ψ(a, y): EITC
- Ω : transfers to non-employed; tr: lump-sum transfer to working age
- ξ : public pension benefits; *bp*: basic pension (lump-sum)

Model — Overview of Individual's Problem

• During working age (25 \leq age \leq 65)

consumption-savings & labor supply choice

- facing persistent wage risks & borrowing constraint
- can receive EITC & pay taxes
- During retirement period (66 \leq age \leq 100)
 - consumption-savings choice
 - facing mortality risks
 - receive pension benefits
- extension of standard heterogeneous-agent (incomplete markets) OLG model of Huggett (1996)

Model — Individual

• Value function of the working age $(j < J_R)$:

$$V_{j}(a, z, n, e) = \max_{c, a', h} \log c - \nu_{j} h + \beta \phi_{j+1} E_{z'|z} V_{j+1}(a', z', n', e')$$

subject to

$$c + a' = y + ra + a - (tax - transfer)$$

$$a' \ge 0, \quad c \ge 0, \qquad \boxed{h \in \{0, 1\}}$$

$$labor supply choice$$

$$\boxed{n' = n + h}; \quad e' = \frac{e \cdot n + \min\{y, \bar{y}\}}{n'}$$

$$\boxed{y = w\epsilon_j zh}$$

$$\boxed{\log z' = \rho_z \log z + \epsilon'_z, \quad \epsilon'_z \sim i.i.d \ N(0, \sigma_z^2)}$$

z: idiosyncratic shock to productivity

Model — Individual

• Value function of the **retiree** $(j \ge J_R)$:

$$V_j(a, e, n) = \max_{c, a'} \log c + \beta \phi_{j+1} V_{j+1}(a', e, n)$$

subject to

$$c + a' = \xi(e, n) + bp + ra + a - tax$$

 $a' \ge 0, \quad c \ge 0$

receive pension benefits ξ
 consumption-savings decisions only

Figure: Conditional survival probability by age *Source:* Life Table (2015)

• pronounced mortality risks in retirement period

Figure: Deterministic productivity by age ϵ_j Source: SHFLC, 2019

• standard hump-shaped age earnings profile

Model fit — Targeted

• employment rate by age

Figure: Employment rate by age Source: Economically Active Population Survey, 2015–2019

Model fit — NOT targeted

• moments for EITC (2019 EITC)

	Data	Model
EITC to GDP ratio (%)	0.20	0.19
EITC recipiency rate (%)	10.4	11.4

- labor supply elasticity (holding wealth distribution fixed)
 - aggregate: 0.72 (Chang and Kim, 2006; Fiorito and Zanella, 2012; Erosa et al., 2016)
 - Moon and Song (2016)'s estimates: 0.23 at intensive margin & 0.93-0.99 at total margin

 \Rightarrow model-implied labor supply effect of EITC would be plausible

Effects on Lifetime Income

	Environment	
	full	static-only
Lifetime years of employment (years)	0.86	0.59
Tax credit (million KRW)	7.45	4.41
Post-tax earnings (million KRW)	8.52	6.01
Pension income (million KRW)	4.55	-0.40
Labor-related income (million KRW)	20.52	10.02

Results from full pension tax-benefit link setting (1st column)

- ▶ post-tax earnings ↑ is as large as tax credit receipts (Hoynes and Patel, 2018)
- ▶ pension income ↑ amounts to 60% of tax credit receipts

Role of Pension Tax-benefit Link

- How important is the dynamic return to labor supply through the pension tax-benefit link for the result?
- This is important because...
 - people might not recognize pension tax-benefit link when making labor supply decisions (Liebman and Luttmer, 2015)
 - ► Liebman and Luttmer (2015): informational intervention (RCT) about pension tax-benefit link ⇒ labor supply ↑
- What if we can make potential EITC recipients better understand the dynamic return on labor supply?

► "If you work, you get EITC & your future pension benefits ↑"

• To this end, we shut down pension tax-benefit link for EITC-eligible employment and analyze EITC's effects (static-only model)

Role of Pension Tax-benefit Link

	Environment	
	full	static-only
Lifetime years of employment (years)	0.86	0.59
Tax credit (million KRW)	7.45	4.41
Post-tax earnings (million KRW)	8.52	6.01
Pension income (million KRW)	4.55	-0.40
Labor-related income (million KRW)	20.52	10.02

Results WITH vs. W/O dynamic return (1st vs. 2nd column)

fully understand future return of pension benefits vs. perceive pension contribution as pure tax

▶ labor supply & incomes ↑ greater with dynamic return

 \Rightarrow If the true model is static-only in 2nd column,

EITC's benefits can be substantially amplified through information provisions about pension tax-benefit link

Effects on Savings & Consumption

(a) Savings

Figure: Proportional changes in savings & cons.: full vs. static-only model

- EITC ⇒ precautionary savings ↓ b/c it partially insures against bad productivity in future (Athreya et al., 2014; Blundell et al., 2016)
- With dynamic return, EITC's impacts on dis-savings & consumption at middle age ↑↑ as well as retirement period
- because EITC-eligible employment near retirement...
 - ▶ insures against retirement through tax-benefit link
 ⇒ retirement motive savings ↓ & consumption ↑ at middle age

Welfare Consequences

	Environment	
	full	static-only
Changes in PV of	Unit: million KRW	
Lifetime disposable income, (a)	8.01	5.43
Lifetime consumption, (b)	9.55	5.91
Consumption smoothing, $(b)/(a)-1$	19%	9%

Table: Effects on consumption smoothing

	Environment	
Consumption equivalence (%)	full	static-only
Consumption component	2.33	1.78
Consumption-Leisure	0.73	0.54

Table: Effects on welfare

dynamic return amplifies consumption smoothing effect

 \Rightarrow explains a quarter of consumption component welfare gain

Conclusion

- Examine the <u>EITC</u>'s long-term impact over the life cycle and emphasize the role of pension tax-benefit link
- Policy implications
 - ▶ informational intervention about tax-benefit link ↑
 ⇒ EITC's benefits ↑
 - such interventions also can help reduce old-age poverty in advance
- CAVEATS
 - results from comparing two extreme cases: w/ perfect knowledge vs. w/ no knowledge
 - NOT directly applicable to other countries b/c how pension contributions and benefits are linked would be different across countries

Appendix

Model — Government

• Govt balances tax/transfer & public pension systems, *respectively*:

(Tax/Tr)
$$G + EITC + Welfare + BP = \sum_{j=1}^{J_R-1} \theta_j \int T(y) d\mu_j(x) + \tau_c C + \tau_k rK + Beq$$

(Pension) $\sum_{j=J_R}^J \theta_j \int \xi(e, n) d\mu_j(x) = \tau_p \sum_{j=1}^{J_R-1} \theta_j \int \min\{y, \bar{y}\} d\mu_j(x)$

Expenditures (revenues) are on LHS (RHS) for each system
 Assume PAYG system for public pension as in literature

Model — Firm

• Representative firm has access to CRS technology:

$$Y = AK^{\alpha}L^{1-\alpha}$$

• L is labor input in efficiency unit:

$$L = \sum_{j} \theta_{j} \int \epsilon_{j} \cdot z \cdot h(x) \ d\mu_{j}(x)$$

where x = (a, z, e, n) and θ_j is population share.

- Aggregate capital K depreciates at rate δ
- Markets are competitive.

Model — Equilibrium

Equilibrium consists of prices $\{w, r\}$, tax-transfer policies $\{\tau_c, \lambda_l, \tau_l, \tau_k, \Omega, tr, bp\}$, EITC $\{\beta_{in}, \beta_{out}, \alpha_{out}, \bar{\psi}, \bar{a_1}, \bar{a_2}\}$, public pension system $\{\tau_p, \bar{y}, \kappa, E\}$, government consumption *G*, and individual's policy functions $\{c(x), h(x), a'(x)\}$ such that,

- Given prices and government policies, the policy functions of the individual are solutions to optimization problems,
- Given prices, firms determines their demand for capital and labor to maximize profit: w = AF_L(K, L) and r = AF_K(K, L) - δ,
- G and τ_p satisfy each government budget,
- Markets are cleared,
- The measure of individuals is consistent.

Parameter	Value	Description	Target/source
Labor produ	ıctivity		
ρ_z	0.773	persistence of shock	Han et al. (2019)
σ_z^2	0.04	variance of shock	Han et al. (2019)
Preference			
$\{\nu_j\}_{j=1}^{J_R-1}$	-	disutility of work by age	employment rate by age
β	0.9767	discount rate	r = 4%
Tax and Transfer			
$ au_l$	0.02	progressivity of income tax	estimated
λ_l	0.913	scale parameter of income tax	$T_I / Y = 4.6\%$
Ω	0.039	transfer to non-employed	estimated
tr	0.026	lump-sum transfer	Welfare/Y = 7.4%
Public Pension			
τ_p	12.9%	contribution rate	balanced budget
\overline{y}	0.5880	maximum taxable earnings	current system
κ	0.005	scale parameter (replacement rate)	current system (40%)
E	0.4146	economy-wide average earnings	equilibrium

Table: Parameter values

Figure: Labor supply elasticity by age

Figure: Fixed cost of work by age

Who is mainly affected?

Figure: Median age profiles for low lifetime income and population

- 'low lifetime income': newborns whose PV of lifetime income belongs to lowest 30%
- earnings & assets are persistently low compared to population
- seems to be plausible candidate

Who is mainly affected?

Figure: Low lifetime income's share of EITC recipients and recipiency rate

- large share of EITC recipients (bar graph)
- ⇒ We will focus on *average effects* for newborns whose PV of lifetime income belongs to lowest 30% (low lifetime income)

Effects on Labor Supply

	By age		
-	25–39	40–49	50–65
Employment rate (pp)	1.91	0.53	3.22
	(1.82)	(0.24)	(1.81)

- stronger response at younger and older age due to
 - high recipiency rate at those ages
 - high labor supply elasticity especially nearing retirement (French, 2005; Erosa et al., 2016; Fan et al., 2022)
- consistent with empirical findings of Park and Lee (2018) & suggest possible mechanisms for it
 - \blacktriangleright Korean EITC \Rightarrow labor supply at extensive margin
 - ▶ find larger labor supply response of those aged 60–65
- Parentheses report the results from partial model
 - difference b/w full model gets larger near retirement
 - \Rightarrow role of dynamic return gets larger near retirement

Recipiency by age