Explaining the Valuation of Annuities and Lumpsum Options

The Role of Preferences

Eduard Ponds

Joint work with Niek Hensen and Jane Spliethoff

IPRA - Paris

June 12, 2024

Motivation

Netherlands is an annuity country

Pension funds must pay out pensions as a life-long annuity

□ 2024: Lumpsum as new option (maximum 10% of pension capital at retirement)

Issues pension fund industry

- □ Fear big run on the lumpsum option
- □ How to communicate this new product properly (choice architecture)?

Research question paper:

- We ask respondents to give a (financial) value to the 10% lumpsum option and the 10% annuity options?
- □ What can we learn from this valuation for choice architecture?

Degree of annuitisation pension wealth at retirement in workplace pension plans

🔆 apg

 \leftarrow \rightarrow

Explaing Annuity DECISIONS

 Literature mainly focused on explaining the actual annuity decisions by plan participants (cf. Agnew et al. 2008, Schreiber & Weber 2016, Brown 2007, Alexandra & Gatzert 2019, Lambregts & Schut, 2022).

Stylized model Yaari (1965): 100% annuitisation

Rational economic perspective

- □ (Im)patience
- Bequests
- □ Life expectancy
- Institutional aspects: Public pensions, Taxation, Role social partners in plan design

Behavioral economic perspective

- Present bias (time inconsistency)
- Cognitive constraints

Annuity VALUATION:

Different route: use the information from **doing a valuation task**:

Ask respondents to value both options and use this information to improve the understanding of annuity decision making

- We ask respondents two questions:
 - Q1 How much lumpsum do you want in return for 10% of your annuity position?
 - Q2 How much annuity do you want in return for a lumpsum position equal to 10% of pension pot?

Inspiration

- Brown, J. R., Kapteyn, A., Luttmer, E. F., & Mitchell, O. S. (2017). Cognitive constraints on valuing annuities. *Journal of the European Economic Association*
- Brown, J. R., A. Kapteyn, E. F. P. Luttmer, O. S. Mitchell, and A. Samek. 2021. "Behavioral Impediments to Valuing Annuities: Complexity and Choice Bracketing." *The Review of Economics and Statistics*

😽 apg

Inspiration and Interpretation

Brown, Kapteyn, Mitchell, Luttmer (2017, 2021)	Our paper
Valuation framework	Valuation framework
Rational pricing should drive valuation	Preferences drive valuation
Value LS = Value Annuity	□ Value LS \neq Value Annuity
Deviation due to cognitive constraints	 ❑ Deviations understandable due to preferences ❑ 1 Income certainty → annuity > lumpsum ❑ 2 Flexibility lumpsum → lumpsum > annuity
 Interventions More information → Larger deviations Explain consequences → Smaller deviations 	 Interventions Stimulate use of calculation method Default - Order effect
	6

Findings

Liss panel

- Representative sample of employees (45-66) at Dutch industry pension funds (LISS)
- □ N=1760 with completed survey

Findings

- □ Valuation in line with preferences
 - □ Subgroup "Flexibililty" (54%)
 - Low value annuity
 - □ High value lumpsum position
 - □ Subgroup "Income certainty" (29%)
 - High value annuity
 - Low value lumpsum position
- Valuation more realistic when repondents indicate using explicit or implicit calculation
- Valuation foreshadows choices at retirement
- □ Valuation results input for choice architecture

Valuation framework

12 income classes

Estimated gross income per year	Scaling factor	Pension pot at age 67	Annuity of 100%	Lump sum of 10%
€ 0 - € 19,999	0.2	€ 40,000	€ 200	€ 4,000
€ 20,000 - € 24,999	0.4	€ 80,000	€ 400	€ 8,000
€ 25,000 - € 28,999	0.6	€ 120,000	€ 600	€ 12,000
€ 29,000 - € 33,999	0.8	€ 160,000	€ 800	€ 16,000
€ 34,000 - € 37,999	1	€ 200,000	€ 1,000	€ 20,000
€ 38,000 - € 41,999	1.2	€ 240,000	€ 1,200	€ 24,000
€ 42,000 - € 46,999	1.4	€ 280,000	€ 1,400	€ 28.000
€ 47,000 - € 52,999	1.6	€ 320,000	€ 1,600	€ 32,000
€ 53,000 - € 57,999	1.8	€ 360,000	€ 1,800	€ 36,000
€ 58,000 - € 65,999	2.0	€ 400,000	€ 2,000	€ 40,000
€ 66,000 - € 86,999	2.6	€ 520,000	€ 2,600	€ 52,000
€ 87,000 or more	3.2	€ 640,000	€ 3,200	€ 64,000
Prefer not to answer	1	€ 200,000	€ 1,000	€ 20,000

Base case

□ Dutch worker with median income of gross € 40.000

Pension pot net €200.000 at 67

- □ Full annuity = \in 1.000/m
- □ 10% lumpsum = € 20.000
 □ 90% annuity = € 900/m

10% F	Pension pot at 67	Actuarial v	value		Subjective	e value	
[1]	20.000	10% annuities	$s = \Sigma 100 / m$	\rightarrow	Lumpsum	XIIV	20.000 ??
[2]	20.000	lumpsum	= 20.000	\rightarrow	Σ annuities	\rightarrow IIV	100/m ??

Question 1: Valuation annuity

Which option do you chose?

- Option A: Each month €1.000 Ο
- **Option B: €25.000** Lumpsum and each month **€900** Ο

Range of end values		
lumpsum in question 1		
€32,500		
€30,000		
€27,500		
€25,000		
€22,500		
€20,000		
€17,500		
€15,000		
€12,500		
€10,000		
€7,500		

Question 2: Valuation lumpsum

Which option do you chose?

Option A: €20.000 Lumpsum and each month **€900** Ο

Option B: Each month | ...€900 + 50 0

Range of end values	
additional annuity in	
question 2	
€163	
€150	
€138	
€125	
€113	
€100	
€87	
€75	
€63	
€50	
€38	

Y apg

Expected results

High

Findings

Variation around actuarial value

- Every dot is a combination of given subjective valuations to 10% annuity stream and 10% lumpsum
- 13 of the 1460 respondents: valuations match with the actuarial values
- □ Two interpretations (at least) for this variety:
 - 1) Deviations from rational pricing
 - 2) Expression of preferences

Results

🐐 apg

16 🔶 🔶

Variables (Preferences and behavioral factors) via survey questions

Benefit profile preferences

- LS Appreciation
- □ HL annuity Appreciation
- Intended choice at retirement age

Behavioral factors

- Loss aversion
- Risk aversion
- Long Term patience
- □ Short Term oriented
- Self-confidence
- Cognition index

Houshold characteristics

- □ Life expectancy
- Nr Children
- Income
- □ …Personal savings…

😽 apg

	Dependent variable:		
	Flexibility (1)	Certainty (2)	
Appreciation LS	0.995***	-1.028***	
Loss aversion	-0.593***	0.709***	
Patience	-1.521***	0.390	
Short termism	0.162***	-0.141**	
Start question nr.1	-0.317***	0.553***	
Controls	Yes	Yes	
Observations	1,460	1,460	
 Note:	*p<0.1; **p<0	.05; ***p<0.01	

18 🗲 🔿

Intended choice at 67

Intended choice at retirement:

Chosing between the two payout options with the same actuarial value:

 Option A: Receiving a monthly annuity of €1000

 Option B Receiving a monthly annuity of €1000 and lumpsum €20.000

Flexibility group

- □ Expectation 100% choice for lumpsum
- Intention
 - 96%

Certainty group

- Expectation 100% choice for annuity
- □ Intention 87%

Open question

- Open question after valuation task
 "Please reflect about what you thought or did during valuation task"
- Classification process of the answers (verbal protocal method)
- □ 6 coders

abd

- 41% of the respondents classified as using some form of calculation
 - Explicit method

Implicit method

High Valuation Actuaria lumpsum value Low High Actuarial Low value Valuation annuity Dependent variable: Absolute spread Flexibility Certainty Calculation explicit -0.173*** -0.278*** Calculation implicit -0.092*** -0.186*** Controls Yes Yes 0.774*** 0.682*** Constant Observations 875 448 R2 0.145 0.304 Adjusted R2 0.132 0.283 _____ *p<0.1; **p<0.05; ***p<0.01 Note:

Additional material in the paper

- Verbal protocol method
 - forgotten method to analyze answers on open questions
- □ Choice architecture
 - Confidence and first order effect
 - Framing
- Role of taxation
 - Progressive taxation
 - □ Negative impact on taking up a lumpsum

😽 apg

Final

□ Valuation in line with preferences

- Valuation more realistic when respondents indicat some form of calculation
- □ Valuation foreshadows choices at retirement
- □ Valuation results input for choice architecture

□ Follow-up: using results for choice architecture

😽 apg