

The demand for longevity, critical illness insurance and long-term care insurance in the COVID-19 pandemic

Cheng Wan¹, Hazel Bateman¹, Hanming Fang², and Katja Hanewald¹

¹CEPAR, UNSW Sydney ²University of Pennsylvania and ShanghaiTech University

29th Colloquium on Pensions and Retirement Research Dec 1-3, 2021

1. Introduction

- 2. The hypothetical survey
- 3. Results
- 4. Conclusion

1 - Outline

1. Introduction

2. The hypothetical survey

3. Results

4. Conclusion

Rapid population ageing & growing awareness of health risks due to COVID-19 Developing countries: basic public insurance \rightarrow catastrophic medical expenditure

- Government public insurance system not adequate, how to expand?
- Individuals retirement risks (longevity, medical, aged care), how to manage them?

Challenging task!

- Future survival probabilities, health cost risks (incl. aged care), economic environment
- Societal changes: family values, growing female labour force participation, migration, etc.

Role of retirement insurance?

1 – Annuity puzzle

Theory - Annuities are part of an optimal portfolio Practice - Voluntary annuitisation rates are low

Many explanations (e.g., Benartzi et al., 2011) - three key reasons

- **Precautionary savings** due to uncertain health-related expenditures (e.g., Koijen et al., 2016; Pang and Warshawsky, 2010; Peijnenburg et al., 2017)
- Stochastic mortality and correlated health costs (Laitner et al., 2018; Reichling and Smetters, 2015)
- Adverse selection (e.g., Braun et al., 2019; Finkelstein and Poterba, 2004)

Remarks

- Better to consider a *portfolio* of retirement insurance products health risks matter!
- Limited research considering longevity and health-contingent insurance simultaneously

Demand for retirement insurance

- 1. What are the stated preferences for a portfolio of longevity and health-contingent insurance products?
- 2. Does access to health-contingent insurance release precautionary savings for the purchase of life annuities?
- **3**. What are the determinants of the stated preferences for the retirement portfolio allocation? How does experience with COVID-19 influence insurance demand?

1 – Our paper

An online hypothetical survey with annuity, critical illness insurance (CII), and long-term care insurance (LTCI) in a less-well developed retirement system (urban China)

- A simplified two-stage process for allocation of (hypothetical) retirement wealth
- Comprehensive covariates, including experience with COVID-19

Main contributions

- The first hypothetical survey to include critical illness insurance in a retirement portfolio
 - Existing studies only consider a life annuity, critical illness insurance, and/or long-term care insurance (Brown et al., 2019; Wang et al., 2021; Wu et al., 2017; Ying et al., 2007).
- Provide empirical evidence for designing bundled longevity and health-contingent insurance products to increase annuity demand
- Provide insights for the design of retirement insurance products

2 – Outline

1. Introduction

2. The hypothetical survey

3. Results

4. Conclusion

2 - Survey overview

Sample screening 1	Background information and financial products
Age 45 - 69, not retired, no history of critical	Risks and costs in retirement; products (annuity, critical illness
illness, can perform 3+ activities of daily livings	insurance (CII), long-term care insurance (LTCI)), and a savings
(ADLs)	account

Embedded task

Preference of retirement portfolio

• Stage 1: Choice of annuitisation in nine tasks with different cover levels of CII and LTCI

	Task 1	Task 2	Task 3	Task 4	Task 5	Task 6	Task 7	Task 8	Task 9
CII cover	0%	50%	100%	0%	0%	50%	100%	50%	100%
LTCI cover	0%	0%	0%	50%	100%	50%	50%	100%	100%

• Stage 2: Rank the nine portfolios from Stage 1 (each time, see three of the nine portfolios, then indicate the most and the least preferred portfolios, following a balanced incomplete design)

Covariate collection

Questions on retirement planning, health, preferences, personality traits, financial competence; experiences with and attitude of COVID-19; demographics and socio-economics

3

· Stage 1: Choice of annuitisation in nine tasks with different cover levels of CII and LTCI

	Task 1	Task 2	Task 3	Task 4	Task 5	Task 6	Task 7	Task 8	Task 9
CII cover	0%	50%	100%	0%	0%	50%	100%	50%	100%
LTCI cover	0%	0%	0%	50%	100%	50%	50%	100%	100%

Participants

- Complete the above nine annuitisation tasks, from Task 1 to Task 9
- At the end of Stage 1, have nine retirement portfolios with different levels of cover for health-related risks, and longevity risk

Annuitisation data

- Analysed with a linear mixed model with random individual intercepts (Model 1)
- Treatment variable: cover of CII and LTCI from the nine tasks (ref.: Task 1)

Next TWO pages: An example screenshot of Task 1

WAN, Bateman, Fang, and Hanewald

2 – Embedded task: Stage 1 example screenshot

Task 1/9

Hover your mouse over the blue text for more information.

Suppose you are aged **55**, you have just retired, and you have retirement savings of **500,000 RMB**. Assume that you will receive a **Pension** of **1000** RMB every month (<u>inflation-adjusted</u>) and that you have **Public Health Insurance** (which will cover half of the cost of critical illness, but none of the cost of long-term care).

In this scenario, assume you didn't buy any of the critical illness cash product or the long-term care income product.

Your remaining savings are 500,000 RMB.

Your task is to decide how you would allocate these remaining savings between the **lifetime income product** and the **savings account**.

Use the slider below to show your preferred allocation.

Figure 1: Example screenshot (upper part) of an allocation task, Stage 1

WAN, Bateman, Fang, and Hanewald

2 – Embedded task: Stage 1 example screenshot

Use the slider below to show your preferred allocation. Savings Account: 100% of Savings Account Income Product

0 RMB

500000 RMB

Lifetime Income Product: **0%**, **О**кмв

The output table below summarises the outcome of your allocation to the three retirement financial products and the savings account.

	Product allocation: Task 1	
Critical illness cash product One-off payment if critically ill	0 RMB	You need to withdraw from your savings account to cover the cost if critically ill.
Long-term care income product Monthly income when needing long-term care	0 RMB	You need to withdraw from your savings account to cover the cost if needing long- term care.
Lifetime income product Monthly income for the rest of your life	0 RMB	
Savings account Remaining retirement savings	500,000 RMB	

Your Pension will also provide a monthly income of 1000 RMB, and Public Health Insurance will cover half of the medical expenditures for critical illness. You do not have any insurance for long-term care.

Figure 2: Example screenshot (lower part) of an allocation task, Stage 1

• Stage 2: Rank the nine portfolios from Stage 1 (each time, see three of the nine portfolios, then indicate the most and the least preferred portfolios, following a balanced incomplete design)

Participants

- Complete twelve Best-Worst (B-W) tasks, in a randomised order
- At the end of Stage 2, have ranked their nine retirement portfolios

Ranking data

• Analysed with a multinomial logit model with std errors clustered at individual level (Model 2)

Next page: An example screenshot of one Best-Worst task

2 – Embedded task: Stage 2 example screenshot

Choice set 2/12

Of the three retirement product allocations below, which one do you prefer MOST, and which one do you prefer LEAST?

Hover your mouse over the blue text for more information.

	Product allocation A	Product allocation B	Product allocation C	
Critical illness cash product One-off payment if critically ill	75,000	75,000	150,000	
Long-term care income product Monthly income when needing long-term care	0	1500	3000	
Lifetime income product Monthly income for the rest of your life	624	764	1164	
Savings account Remaining retirement savings	280,713	216,609	36,642	
	А	В	С	
MOST preferred	OST preferred			
LEAST preferred				

Figure 3: Example screenshot of a Best-Worst task, Stage 2

WAN, Bateman, Fang, and Hanewald

Insurance products:

- Life annuity: industry mortality curve
- Critical illness insurance: industry incidence and mortality curves
- Long-term care insurance: estimated from the China Health and Retirement Longitudinal Study (CHARLS)

Price discounts

- 10% discount when any two products are chosen
- 15% discount when all three products are chosen

Interest rate: 3.5%; Inflation: 2%; Loading: 15%

3 – Outline

1. Introduction

2. The hypothetical survey

3. Results

4. Conclusion

3 – Stated preferences for retirement insurance (Best-Worst tasks)

- More preferred: Portfolio 6 to 9
- Least preferred: Portfolio 1
- Higher variation: Portfolio 1, Portfolio 9

3 – Access to health-contingent insurance and annuity demand (Model 1)

Treatment variable:	Dependent variable:
Cover for CI and LTC costs (ref.: 0%)	Monthly annuity (CNY)
50% CII	44.8*** (9.5)
100% CII	-8.2 (9.5)
50% LTCI	52.8*** (9.5)
100% LTCI	0.9 (9.5)
50% CII + 50% LTCI	45.3*** (9.5)
100% CII + 50% LTCI	-14.4 (9.5)
50% CII + 100% LTCI	-13.1 (9.5)
100% CII + 100% LTCI	-75.5*** (9.5)
Omitted control variables	
No. of observations	9,000
	***p<0.01

- Access to half CII, LTCI, or both increases monthly annuity demand by CNY 45 (1.2% of disposable urban income)
- Access to full CII and LTCI decreases monthly annuity demand by CNY 75 (2.1% of disposable urban income)

3 – Factors affecting retirement insurance (Model 1 and Model 2)

	Demographic and socio- economic factors	Personality traits	Health experience	Retirement planning & Intergenera- tion aspects	Product under- standing	Financial capabilities	COVID-19
Annuity	Wealth, Income, Age, Education, Female, State- employer	Conscien- tiousness, <u>Risk tolerance</u> (financial)	Unhealthy BMI, Family with illness, Provided care	Intended spending, Live in the same house with children, Bequest motives	Product under- standing	Financial and numerical skills	Mental health, <u>Purchased</u> <u>COVID-19</u> <u>insurance</u> , Worry own income
CII, LTCI Note: Positive / n from Model	Wealth, Income egative effects 1 & Model 2	Conscien- tiousness, Risk tolerance (financial), Prefer to spend more in bad health state	Provided care	Intended spending, Bequest motives	Product under- standing	Financial and numerical skills, Familiar with financial products, Subjective financial literacy Have stocks	Mental health, <u>Purchased</u> <u>COVID-19</u> <u>insurance,</u> COVID-19 risky behaviours

16 / 17

4 – Outline

1. Introduction

- 2. The hypothetical survey
- 3. Results

4. Conclusion

4 – Conclusion

We conducted an online hypothetical survey to study the preferences for retirement portfolio in China after the COVID-19 outbreak

- Retirement insurance: a life annuity, critical illness insurance, long-term care insurance
- Key covariates related to retirement planning, and COVID-19 experience

Key findings:

- Most preferred retirement insurance: half critical illness insurance + half long-term care insurance + a monthly annuity of 19.6% of disposable urban income.
- Access to health-contingent insurance can release the precautionary savings to purchase annuity, and the effect depends on the cover of the health insurance.
- Retirement portfolio highly depends on individual factors and COVID-19 experience. Their effects can be opposite by health-contingent insurance and life annuity.

The authors acknowledge the support from

- the ARC Centre of Excellence in Population Ageing Research (CEPAR)
- the School of Risk and Actuarial Studies, UNSW Sydney
- the QUARTET competition from the University of Pennsylvania
- the Scientia PhD Scholarship from the University of New South Wales

Thank you very much for your interest in our research!

Contact: cheng.wan@unsw.edu.au

$$Annuity_{i,t} = \alpha_0 + \beta_t Task_t + X_i \kappa + \lambda_i + \epsilon_{i,t},$$
(1)

- Annuity $_{i,t}$: the amount of monthly annuity income chosen by individual i in each choice task t
- Task_t (t = 1...9): dummy coded treatment variables for the nine choice tasks
- β_t : coefficient
- X_i: vectors of individual covariates
- κ : coefficient vector
- λ_i : individual random intercept

4 – Model 2

The value or utility of portfolio t for individual i:

$$V_{i,t} = \alpha_t + \mathbf{X}_i \kappa_t + \epsilon_{i,t} \tag{2}$$

The probability of choosing Portfolio A, among Portfolios A, B, and C in a given B-W task:

$$\mathsf{Prob}(\mathsf{Choice}_i = \mathsf{Portfolio}_A) = \frac{e^{V_{i,A}}}{e^{V_{i,A}} + e^{V_{i,B}} + e^{V_{i,C}}}$$
(3)

- **X**_{*i*}: vector of individual covariates
- κ_t: portfolio-specific coefficient vector of the individual covariates

- Benartzi, S., Previtero, A., & Thaler, R. H. (2011). Annuitization Puzzles. *Journal of Economic Perspectives*, *25*(4), 143–164.
- Braun, R. A., Kopecky, K. A., & Koreshkova, T. (2019). Old, Frail, and Uninsured: Accounting for Features of the U.S. Long-Term Care Insurance Market. *Econometrica*, *87*(3), 981–1019.
- Brown, J. R., Kapteyn, A., Luttmer, E. F., Mitchell, O. S., & Samek, A. (2019). Behavioral Impediments to Valuing Annuities: Complexity and Choice Bracketing. *The Review of Economics and Statistics*, 1–45.
- Finkelstein, A., & Poterba, J. (2004). Adverse Selection in Insurance Markets: Policyholder Evidence from the U.K. Annuity Market. *Journal of Political Economy*, *112*(1), 183–208.
- Koijen, R. S., Van Nieuwerburgh, S., & Yogo, M. (2016). Health and Mortality Delta: Assessing the Welfare Cost of Household Insurance Choice. *The Journal of Finance*, 71(2), 957–1010.
- Laitner, J., Silverman, D., & Stolyarov, D. (2018). The Role of Annuitized Wealth in Post-retirement Behavior. *American Economic Journal: Macroeconomics*, *10*(3), 71–117.

- Pang, G., & Warshawsky, M. (2010). Optimizing the equity-bond-annuity portfolio in retirement: The impact of uncertain health expenses. *Insurance: Mathematics and Economics*, *46*(1), 198–209.
- Peijnenburg, K., Nijman, T., & Werker, B. J. (2017). Health Cost Risk: A Potential Solution to the Annuity Puzzle. *The Economic Journal*, *127*(603), 1598–1625.
- Reichling, F., & Smetters, K. (2015). Optimal Annuitization with Stochastic Mortality and Correlated Medical Costs. *American Economic Review*, *105*(11), 3273–3320.
- Wang, Q., Abiiro, G. A., Yang, J., Li, P., & De Allegri, M. (2021). Preferences for long-term care insurance in China: Results from a discrete choice experiment. *Social Science & Medicine*, *281*, 114104.
- Wu, S., Bateman, H., & Thorp, S. (2017). Reducing the under-insurance puzzle by product design: Experimental evidence of life care annuity demand (Working Paper).
 Ying, X.-H., Hu, T.-W., Ren, J., Chen, W., Xu, K., & Huang, J.-H. (2007). Demand for private health insurance in Chinese urban areas. *Health Economics*, 16(10), 1041–1050.