Stacked Regression Ensemble Learning for Mortality Forecasting.

Salvatory Roman Kessy Joint Work With: M. Sherris, A. Villegas, & J. Ziveyi.

UNIVERSITY OF NEW SOUTH WALES

8 December 2020

Model Selection Dilemma

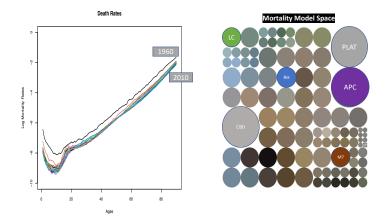


Figure 1: Model Selection Dilemma.

What mortality model is likely to perform best?

Different Mortality Models

Multiple mortality models capture different features of death rates such as trends, linearity, non-linearity, curvature, and cohort effects.

Model	Predictor (η_{xt})	Parameters
LC	$\alpha_{\star} + \beta_{\star}^{(1)} \kappa_{\star}^{(1)}$	$2n_a + n_v$
RH	$\alpha_x + \beta_x^{(1)} \kappa_t^{(1)} + \beta_x^{(0)} \gamma_c$	$3n_a + n_v + n_b$
APC	$\alpha_x + \kappa_t^{(1)} + \gamma_c$	$n_a + n_v + n_b$
CBD	$\kappa_{t}^{(1)} + (x - \bar{x})\kappa_{t}^{(2)}$	2 <i>n</i> _v
M7	$\kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)} + ((x - \bar{x})^2 - \hat{\sigma}_x^2)\kappa_t^{(3)} + \gamma_c$	$3n_y + n_b$
Plat	$\alpha_x + \kappa_t^{(1)} + (\bar{x} - x)\kappa_t^{(2)} + (\bar{x} - x)^+ \kappa_t^{(3)} + \gamma_c$	$n_a + 3n_y + n_b$

Table 1: Generalized Age-Period-Cohort (GAPC) mortality models. Here, year of birth is c = t - x, n_a is a number of age and n_y is a number of years. The functions $\beta_x^{(i)}, \alpha_x, \kappa_t^{(i)}$, and γ_c are age, period and cohort effects respectively. \bar{x} is the mean age over the range of ages being used in the analysis, $\hat{\sigma}_x^2$ is the mean value of $(x - \bar{x})^2$.

Better methods are needed.

Model Combination

 Simple Model Averaging (Shang 2012), Bayesian Model Averaging (Shang 2012) and (Kontis et al. 2017), Model Confidence Set (Shang and Haberman 2018).

Model combination formulation:

$$\ln\left(\widehat{\mu}(x,t+h)
ight)_{ ext{comb}}=\sum_{m=1}^{M}w_m\ln\left(\widehat{\mu}_m(x,t+h)
ight).$$

Stacking Ensemble Techniques

- Ensemble methods use different models to obtain better predictive performance than could be obtained from any of the constituent models (Wolpert 1992).
- If a set of models does not contain the true prediction function, ensembles can give a good approximation of that function (Polley and Laan 2010).
- The stacking ensemble has been successfully applied and improved the predictive accuracy on a wide range of problems:
 - 1. Forecasting global energy consumption (Khairalla et al. 2018).
 - 2. Credit risk assessment (Doumpos and Zopounidis 2007).
 - 3. Financial time series data sets (Ma and Dai 2016).
- Most winning teams in data science competitions have been using the stacked regression ensemble (Sill et al. 2009; Puurula, Read, and Bifet 2014; Makridakis, Spiliotis, and Assimakopoulos 2019).

This Presentation is About ...

Propose a new approach of estimating the optimal weights for combining multiple mortality models using stacked regression ensemble framework (Wolpert 1992).

1. Concurrently solve the problem of **model selection and estimation of the model combination** to improve model predictions (Sridhar, Seagrave, and Bartlett 1996).

2. Tackle the **model list miss-specification limitation** associated with the BMA approach (Yao et al. 2017).

3. Assigns weights to the individual mortality models by **minimising the cross-validation criterion.**

Develops the mortality model combination that is dependent on the forecasting horizon (SriDaran et al. 2020; Rabbi and Mazzuco 2018).

Stacked Regression Ensemble

- Stacked regression ensemble combines point predictions from multiple mortality base learners using the weights that optimise a cross-validation criterion (Wolpert 1992).
- ▶ Bagging is a special case of the stacked regression ensemble.

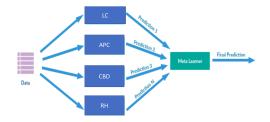


Figure 2: An example scheme of stacking ensemble learning.

Stacked Regression Ensemble

- Suppose that the *h*-year-ahead mortality rate forecasts from *M* mortality models L_1, \ldots, L_M are $\hat{\mu}_1(x, t_{n_y} + h), \ldots, \hat{\mu}_M(x, t_{n_y} + h)$ for age $x \in [x_1, x_{n_a}]$ at time $t_{n_y} + h$.
- Combining weights are viewed as the linear regression coefficients:

$$\underbrace{\ln \mu(x, t_{n_y} + h)}_{\text{Dependent variables}} = \sum_{m=1}^{M} \underbrace{w_m(h)}_{\text{coefficients}} \underbrace{\ln \widehat{\mu}_m(x, t_{n_y} + h)}_{\text{covariates}},$$

- Any supervised machine learning algorithm can be used to estimate the weights by optimising the squared loss function (Wolpert 1992).
- The optimization is constrained such that these weights sum to unity.

Blcok Cross-validation

 Block cross-validation of mortality data by period (Bergmeir, Costantini, and Benítez 2014; SriDaran et al. 2020).

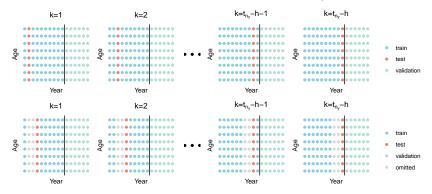


Figure 3: Iterations of cross validation for horizon one-year-ahead (h = 1) (top row) and three-years-ahead (h = 3) (bottom row).

Metadata

- Train each mortality base learners L₁,..., L_M on the training data set (blue) from Figure 3.
- For each base learner L_1, \ldots, L_M , predict the mortality rates $\hat{\mu}(x, t + h)$ using the test set (red) from Figure 3.
- Generate level-one/metadata.

	LC	RH	APC	CBD	M7	PLAT	Actual
1 2 3		-4.91		-4.73	-4.95	-4.91 -4.90 -4.90	-4.89 ⇒
:	:	:	:	÷	:	:	Y = Zw
1197	-1.48	-1.50	-1.49	-1.38	-1.50	-1.48	-1.49
1198	-1.50	-1.46	-1.46	-1.38	-1.46	-1.44	-1.44
1199	-1.50	-1.46	-1.47	-1.36	-1.42	-1.42	-1.52

Train a meta-learner on metadata to estimate the optimal weights of combining *M* mortality base models.

Meta-learners

Non-negative Least Square Regression (Breiman 2004; Naimi and Balzer 2018):

$$\widehat{\mathbf{w}}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{t=t_1}^{t_n} \sum_{x=x_1}^{x_n} \left(\ln(\mu_{x,t}) - \sum_{m=1}^M w_m \ln \widehat{\mu}_m(x,t) \right)^2, \ \widehat{w}_m^* \ge 0.$$

Ridge Regression (Leblanc et al. 2016):

$$\widehat{\mathbf{w}}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{t=t_1}^{t_{ny}} \sum_{x=x_1}^{x_{n_a}} \left(\ln \mu(x,t) - \sum_{m=1}^{M} w_m \ln \left(\widehat{\mu}_m(x,t)\right)^{cv} \right)^2 + \lambda \sum_{m=1}^{M} w_m^2.$$

Lasso Regression (Gunes, Wolfinger, and Tan 2017):

$$\widehat{\mathbf{w}}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{t=t_1}^{t_{n_y}} \sum_{x=x_1}^{x_{n_a}} \left(\ln \mu(x,t) - \sum_{m=1}^{M} w_m \ln \left(\widehat{\mu}_m(x,t)\right)^{cv} \right)^2 + \lambda \sum_{m=1}^{M} |w_m|.$$

Competing Model Averaging Techniques

Bayesian Model Averaging (Hoeting et al. 1999).

$$\mathbb{P}(\Psi|\mathcal{D}) = \sum_{m=1}^{M} \mathbb{P}(\Psi|L_m, \mathcal{D}) \mathbb{P}(L_m|\mathcal{D}) = \sum_{m=1}^{M} w_m \mathbb{P}(\Psi|L_m, \mathcal{D}).$$

BMA weights using projection bias Kontis et al. (2017):

$$w_m^{ ext{bias}}(h) pprox rac{e^{-0.5| ext{Projection Bias}_m|}}{\sum_{m=1}^M e^{-0.5| ext{Projection Bias}_m|}}, \ \forall m=1,2,\ldots,M.$$

BMA weights using cross-validation mean square errors CVMSE:

$$w_m^{\mathsf{CVMSE}}(h) \approx rac{e^{-0.5\mathsf{CVMSE}_m(h)}}{\sum_{m=1}^M e^{-0.5\mathsf{CVMSE}_m(h)}}, \ \forall m = 1, 2, \dots, M.$$

Model Confidence Set (Shang and Haberman 2018).

Model Selection Risk

- A Case Study: England and Wales, Males and Females.
- ▶ Human Mortality Database: 1960 to 2015 and ages 50 89.

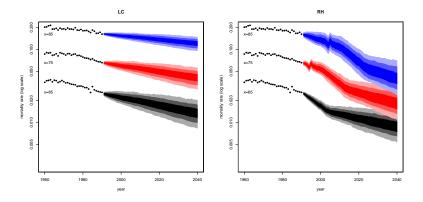


Figure 4: Fan charts for England and Wales males mortality rates at ages 65, 75, and 85. Shades in the fan represent prediction intervals at the 50%, 80% and 95% level.

Individual Mortality Models Forecasting Performance

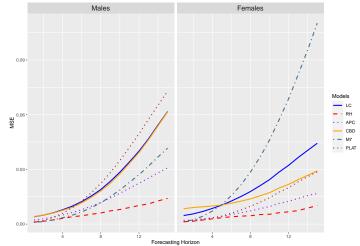


Figure 5: Mean squared errors of different mortality models for various forecasting time horizons using England and Wales males mortality data (left) and females (right).

Combination Weights for Mortality Models

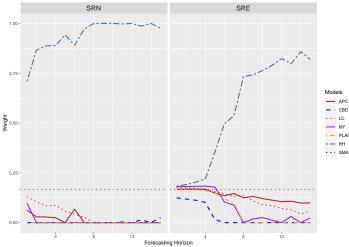


Figure 6: Horizon-specific optimal combining weights learned using different meta-learners for England and Wales males mortality data from 1960 to 1990 and ages 50 to 89.

Final Mortality Rate Forecasts

- Use the weights generated using elastic net regression.
- Super-learner mortality model for forecasting one-year-ahead mortality rates for males:

$$\ln \left(\widehat{\mu}(x, t_{ny+1}) \right)_{\mathsf{SRE}} = (0.18 \ \widehat{\mathsf{LC}}) + (0.18 \ \widehat{\mathsf{RH}}) + (0.17 \ \widehat{\mathsf{M7}}) + \\ (0.18 \ \widehat{\mathsf{PLAT}}) + (0.18 \ \widehat{\mathsf{APC}}) + (0.14 \ \widehat{\mathsf{CBD}}).$$

Super-learner mortality model for forecasting fifteen-year-ahead mortality rates for males:

$$\ln \left(\widehat{\mu}(x, t_{n_y+15}) \right)_{\text{SRE}} = (0.22 \ \widehat{\text{LC}}) + (0.48 \ \widehat{\text{RH}}) + (0.23 \ \widehat{\text{PLAT}}) + (0.04 \ \widehat{\text{APC}}) + (0.04 \ \widehat{\text{CBD}}).$$

Produce the mortality forecasts from the test data using LC, RH, APC, CBD, M7, and PLAT and substitute them into the super-learner.

Performance of Stacked Regression Ensemble

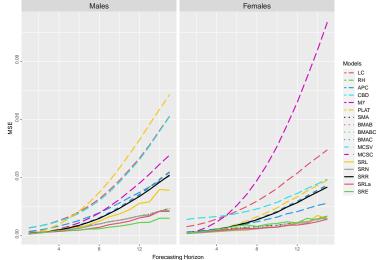


Figure 7: MSEs of the one-step-ahead to 15-step-ahead mortality rate forecasts using different mortality methods and forecast horizons for England and Wales male mortality data and females.

Base Error Reduction

 $\blacktriangleright \ \mathsf{BER} = \mathsf{MSE}_{\mathsf{Base Learner}} - \mathsf{MSE}_{\mathsf{SR}}.$

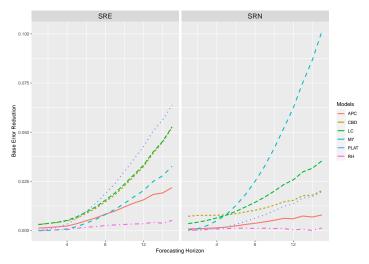
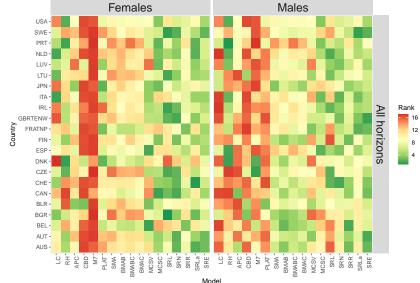


Figure 8: Base error reduction for the top-ranked model combination methods, namely SRE and SRN for males and females, respectively.



Stacked Regression Ensemble in Different Countries

Figure 9: Heat maps showing the average ranks of mortality models across different countries for males and females.

Stacked Regression Ensemble in Different Countries

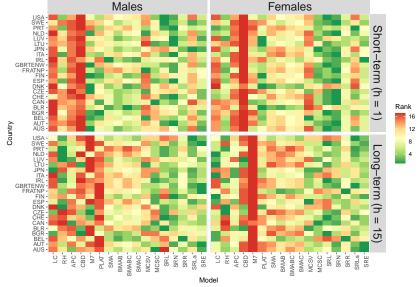


Figure 10: Heat maps showing the average ranks of mortality models across different horizons and countries for males and females.

Conclusion

- Using 44 populations from the Human Mortality Database, stacking mortality models increases predictive accuracy.
- Stacked regression (SR) achieved an average accuracy of 13 49% and 20 – 90% over the individual mortality models for males and females.
- SR also achieved better predictive accuracy than other model combination methods.
- The weights for combining the individual mortality models vary depending on the meta-learner, forecasting horizon, country, and gender.
- Estimating weights or choosing the individual mortality models via cross-validation proves to be a crucial step.
- Our results confirm the superiority of SR over the individual and other model combination methods in forecasting the mortality rates.

Future work

- Selecting a meta-learner based on the mortality data features (Talagala, Hyndman, and Athanasopoulos 2018).
- Add more mortality models to the family of the GAPC models.
- Develop a model combination that simultaneously generates the central mortality projections and their corresponding probabilistic distributions to the mortality rate forecasts
- Learning the optimal weights using the integrated cross-validated predictions.
- Develop the CoMoMo package for mortality model combinations.

Thank You!

Contact: s.kessy@unsw.edu.au

References

Bergmeir, Christoph, Mauro Costantini, and José M. Benítez. 2014. "On the Usefulness of Cross-Validation for Directional Forecast Evaluation." *Computational Statistics & Data Analysis* 76 (August): 132–43. https://doi.org/10.1016/j.csda.2014.02.001.

Breiman, Leo. 2004. "Stacked Regressions." *Machine Learning* 24 (1): 49–64. https://doi.org/10.1007/bf00117832.

Doumpos, Michael, and Constantin Zopounidis. 2007. "Model Combination for Credit Risk Assessment: A Stacked Generalization Approach." *Annals of Operations Research* 151 (1): 289–306. https://doi.org/10.1007/s10479-006-0120-x.

Gunes, Funda, Russ Wolfinger, and Pei-Yi Tan. 2017. "Stacked Ensemble Models for Improved Prediction Accuracy." *Sas*, 1–19.

Hoeting, Jennifer A, David Madigan, Adrian E Raftery, and Chris T Volinsky. 1999. "Bayesian Model Averaging: A Tutorial," 36.

Khairalla, Mergani A, Xu Ning, Nashat T AL-Jallad, and Musaab O El-Faroug. 2018. "Short-Term Forecasting for Energy Consumption Through Stacking Heterogeneous Ensemble Learning Model." *Energies* 11 (6). https://doi.org/10.3390/en11061605.