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The number of Aussies aged over 100 grew by more than 30 per
cent between 2013 and 2018.
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Contributions

I We propose new mortality models which can incorporate
advanced ages:

1. Smooth Threshold Life Table (STLT) Model
2. Dynamic Smooth Threshold Life Table (DSTLT) Model

I We discover a new law of mortality, called ”advanced-age
mortality acceleration”.
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Data

HMD Dataset

1. For ages between 65 to 100+, we use the interval-censored
data from Human Mortaltiy Database (HMD) for the
Netherlands.

Augmented Dataset (HMD+CBS)

1. For ages 65 - 92, we use the interval-censored cohort data
from Human Mortaltiy Database (HMD) for the Netherlands.

2. For ages 92 and above, we use individual-level ages at death
data from the Centraal Bureau voor de Statistiek (CBS) of
the Netherlands, 1986-2015.
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Augmented Data: HMD+CBS
We plot the qx = dx/lx : the empirical conditional probability of
death between ages x and x + 1 for individuals surviving to age x ,
of the augmented dataset (HMD+CBS).

Figure 1: Observed Netherlands Death Probabilities
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Notations

I X : age at death of an individual from the population, a
continuous random variable

I f (x): probability density function of X

I F (x): cumulative distribution function (cdf) of X

I S(x) = 1− F (x): survival function of F

I h(x) = f (x)/(1− F (x)): force of mortality, or hazard
function, corresponding to F

I dx : the number of deaths between integer ages x and x + 1

I Ex : the population exposed to the risk of death between
integer ages x and x + 1. Ex is approximated by the midyear
population at age x

I lx : the number of survivors to age x

I mx = dx/Ex : the central rate of death at age x

I qx = dx/lx : the empirical conditional probability of death
between ages x and x + 1 for individuals surviving to age x .
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Some Existing Models for Advanced Age Mortality
Modelling

Static Models

1. Gompertz-Makeham Law

2. Logistic models

3. Heligman-Pollard model

4. Coale-Kisker method – used by Lee & Carter (1992)

5. Extreme Value Theory based method (Watts et al., 2006,
Thatcher, 1999)
Threshold Life Table (TLT) – Li et al. (2008)

Dynamic Models

1. Combined Models
e.g. Lee-Carter+Coale-Kisker; Lee-Carter+TLT

2. Watts-Dupuis-Jones (WDJ) Model – Watts et al. (2006)
Only for highest attained ages

3. Cairns-Blake-Dowd Model – Cairns et al. (2006)
Gompertz model with time-varying parameters
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Gompertz-Makeham Law of Mortality

The force of mortality in the Gompertz model is

h(x) = B exp(Cx). (1)

Gompertz modelled adult mortality with two parameters:

I a positive scale parameter B that represents the level of
mortality,

I and a positive shape parameter C that measures the rate of
increase in mortality with age.

The Makeham, or Gompertz-Makeham, law of mortality has an
extra parameter A represents mortality resulting from causes.

h(x) = A + B exp(Cx). (2)
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Logistic Models

A general class of logistic models was formulated by Perks (1932).
he hazard function in Perks’s model is of the form

h(x) = A +
B exp(Cx)

1 + D exp(Cx)
. (3)

Setting A = 0 in (3) gives the three-parameter Beard model
(Beard, 1971):

h(x) =
B exp(Cx)

1 + D exp(Cx)
. (4)

Kannisto (1992) noticed that modern data for h(x) at high ages
can be well-fitted by one of the simplest forms of the logistic
model, in which logit(h(x)) is a linear function of x . The resulting
Kannisto model specifies the hazard function as

h(x) =
B exp(Cx)

1 + B exp(Cx)
. (5)



10/31

Heligman-Pollard Model

qx
1− qx

= A(x+B)C +D exp(−E [ln x−lnF ]2)+GHx , x = 1, 2, 3, . . . .

(6)

I A,B,C ,D,E ,F ,G ,H are constants

I The terms A(x+B)C , D exp(−E [ln x − lnF ]2) and GHx

represent early childhood mortality, accidental mortality, and
senescent mortality, respectively.

I The old age mortality component is similar to the
Gompertz-Makeham law of mortality.
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Coale-Kisker Model

k(x) = k(x − 1)− R, x ≥ x0, (7)

where k(x) = ln(mx/mx+1), R is a constant to be determined, and
the extrapolation starts at integer age x0. Applying the formula up
to age x = x1, we find

R =
(x1 − x0)k(x0) + ln(mx0)− ln(mx1)

1 + 2 + · · ·+ (x1 − x0)
. (8)

The method requires an assumption of the age x1 at which the life
table is closed as well as the value of the central death rate at this
closing age. The age from which to start extrapolating also must
be subjectively decided. Coale & Kisker (1990) use
x0 = 84, x1 = 110,mx1 = 1.0.
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Cairns-Blake-Dowd Model

log hi ,j = κ0,j + κ1,j(xi − x̄), (9)

where hi ,j is the force of mortality in year j at age xi , and κ0,j , κ1,j ,
are latent time-varying variables typically modelled as a bivariate
random walk with drift. The model can be rewritten in the form of
a Gompertz model with time-varying parameters:

log hi ,j = logBj + xi logCj , (10)

where Bj = exp(κ0,j − κ1,j x̄) and Cj = exp(κ1,j).
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Our Proposed Models

I Smooth Threshold Life Table (STLT) Model

I Dynamic Smooth Threshold Life Table (DSTLT) Model
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The Threshold Life Table (TLT) Model, Li et al. (2008)

The model is piecewise, and comprises the non-tail part of the
distribution following the Gompertz-Makeham law of mortality,
with the tail following a Generalized Pareto Distribution (GPD).
The model is completely defined by:

F (x) = 1− exp

(
− B

lnC
(C x − 1)

)
x ≤ N (11)

and

F (x) = Fγ(x) =


1− S(N)(1 + γ( x−N

θ ))−
1
γ , γ > 0, x > N

1− S(N) exp(−( x−N
θ )), γ = 0, x > N

1− S(N)(1− |γ|( x−N
θ ))

1
|γ| , γ < 0, N < x < N + θ

|γ| ,

(12)

which ensures the continuity but not smoothness at the threshold
age N, see Li et al. (2008).
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Adding a Smooth Constraint at N

We want h1(N) = h2(N) where h1 is the hazard function
corresponding to (11) and h2 the hazard function corresponding to
(12). We have

1

θ + γ(x − N)
= C xB at x = N

⇒ θ =
1

CNB
.

Implications:

1. Removes the discontinuity in the force of mortality.

2. Provides a functional link between the Gompertz and GPD
distributions, which makes the extreme age modelling more
robust.

3. Satisfies the compensation law of mortality
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The Smooth TLT (STLT) Model

So the TLT model now becomes the STLT model with the
parameter θ eliminated:

F (x) = 1− exp

(
− B

lnC
(C x − 1)

)
x ≤ N; (13)

and

F (x) =


1− S(N)(1 + γ(CNB(x − N)))−

1
γ , γ > 0, x > N

1− S(N) exp(−(CNB(x − N))), γ = 0, x > N

1− S(N)(1− |γ|(CNB(x − N)))
1

|γ| , γ < 0, N < x < N + θ
|γ| ,

(14)



17/31

Parameters Estimation – MLE

The likelihood, considering interval-censored data, can be written
as

L(B,C , γ;N) =

[
N−1∏
x=65

(
S(x)− S(x + 1)

S(65)

)dx τ−1∏
x=N

(
S(x)− S(x + 1)

S(65)

)dx
](

S(τ)

S(65)

)lτ

(15)

where, τ is the observed maximum attained age for the cohort.

l1(B,C ;N) =

N−1∑
x=65

dx ln(S(x)− S(x + 1)) + lN ln(S(N))− l65 ln(S(65)), (16)

where S(x) = exp(−B/ lnC (C x − 1)), and the second being

l2(γ, θ;N) =

τ−1∑
x=N

dx ln (S(x)− S(x + 1)) + lτ ln (S(τ))− lN ln(S(N)), (17)

where S(x)/S(N) = (1 + γ((x − N)/θ))−1/γ .
l = l1 + l2.
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Model Fitting

We use a constructed hypothetical cohort. The required values of
dx and lx can be computed using the actual probabilities of death
qx by assuming an arbitrary number, say, 100,000, for the size of
radix (l0).

Figure 2: Schematic for threshold life table fit to the cohort, N=92
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Highest Attained Age

Let Y = X − N denote the exceedance of an individual aged X
over threshold age N. In both the TLT and STLT, the distribution
of Y conditional on X > N is a GPD of the form:

FY (y) =

{
1−

(
1 + γ y

θ

)−1/γ
, y > 0, γ 6= 0

1− e−γ/θ, y > 0, γ = 0.
(18)

When γ < 0, the highest age at death of individuals in the
population is

ω = N − θ

γ
= N +

θ

|γ|
. (19)
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Results

Table 1: Estimated gamma, highest attained age ω, and threshold age N,
female 1901 cohort

Regime γ̂ SE(γ̂) ω̂ SE(ω̂) N
TLT, HMD only -0.307 0.0143 106.33 0.526 91
STLT, HMD only -0.237 0.0451 108.98 2.245 97
TLT, HMD+CBS -0.240 0.0070 109.59 0.388 91
STLT, HMD+CBS -0.191 0.0132 111.78 0.976 97
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TLT v.s. STLT – HMD Only

Figure 3: LEFT: HMD data; RIGHT: HMD+CBS.



22/31

TLT VS STLT – Goodness of fit

Table 2: SSEs under the TLT and STLT, HMD+CBS data

Females Males

Cohort TLT STLT TLT STLT

1893 0.17 0.18 0.45 0.45
1894 0.20 0.16 0.48 0.50
1895 1.00 0.93 0.26 0.26
1896 0.16 0.10 0.61 0.69
1897 0.72 0.80 0.34 0.39
1898 0.10 0.08 0.35 0.28
1899 0.33 0.27 0.12 0.14
1900 0.84 0.74 0.54 0.50
1901 0.08 0.08 0.51 0.51
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STLT v.s. Heligman-Pollard and Coale-Kisker

Figure 4: Fitted lines for STLT, Heligman-Pollard and Coale-Kisker
methods, female 1901 cohort
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The fitted STLT for All Cohorts below Age 90

Figure 5: LEFT: Below age 90; RIGHT: Above age 90
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The Dynamics of Fitted Parameters – Females

Figure 6: The index corresponds to the cohort, eg. index 1 corresponds
to the 1893 cohort.
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The Dynamic STLT Model

We model B in the STLT as the following function of time:

Bt = exp(a + bt), (20)

while keeping γ and θ = 1/(BtC
N
t ) constant through time. Then

Ct = (1/(θBt))1/N = θ−N exp(−N(a + bt)) (21)

N is also assumed to be constant across all cohorts, which is
consistent with the compensation law of mortality (late-life
mortality convergence), (e.g. Gavrilov & Gavrilova 1979, Gavrilov
& Gavrilova 1991).
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DSTLT–Model Fitting, Females

Fitting this model using MLE, we obtain the parameter estimates
with the estimated threhold age N = 98.

Table 3: Estimated parameters for the DSTLT, females

Parameter Estimate Standard Error 95% Confidence Interval

a -10.26 0.023 (-10.31, -10.22)
b -0.085 0.0033 (-0.092, -0.079)
θ 2.58 0.0087 (2.56, 2.60)
γ -0.174 0.0057 (-0.185, -0.163)
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DSTLT v.s. CBD – Females

Figure 7: Out-of-sample predicted DSTLT and CBD curves for the
1902-1908 female cohorts
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DSTLT v.s. CBD – Residuals, Females

Figure 8: DSTLT and CBD model residuals, females. Blue points
correspond to the DSTLT; red points correspond to the CBD model
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Discussion 1– Tail Behavior of the Lifetime Distribution

1. The probability of dying within 1 year may reach 1 at a finite
age ⇒ There is a fixed upper limit to the length of human life.

2. The probability remains below 1 at finite ages, but
nevertheless tends asymptotically to 1. ⇒ “Life is unlimited
but short”.

3. The probability of dying within 1 year may asymptote to a
limit less than 1.⇒ There is no fixed upper limit to the length
of human life.
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Discussion 2– Laws of Mortality

1. Gompertz-Makeham law of mortality

2. Compensation law of mortality

3. Late-life mortality deceleration

Our models satisfy all the three laws above plus a new law –
“advanced-age mortality acceleration”, which allows for a finite
limit to human life span.


