### - Time-Varying Risk Aversion and Investment Switching: Evidence from an Australian Superannuation Fund -

This research is undertaken collaboratively by researchers from the University of Sydney<sup>1</sup> and Aware Super<sup>2</sup>



### **Presented by Kiarna Rosandic**

<sup>1</sup>Kiarna Rosandic, Junhao Liu, and Susan Thorp <sup>2</sup> Shang Wu

### **1. Motivations**

- As the compulsory system continues to mature, *deficiencies* in trustee obligations become more apparent.
- Concerns around the industry's long-standing use of simple risk tolerance questionnaires.
- More resources directed towards reviewing the *validity* of and *refining* methodologies for measuring risk attitudes.

• This heightened industry focus serves as the core purpose for this research:

To measure the accuracy of the three risk measures in predicting investment allocation and switching decisions during COVID-19.

### **2. Data**

Survey and administrative data on 3,305 subjects, extracted in two waves:

- Wave 1 First State Super (1,868 respondents) in *February 2020* (prior to COVID-19).
- Wave 2 First State Super (494 respondents) and StatePlus (943 respondents) in July 2020 (during COVID-19).

#### The survey design includes three data collection methods for eliciting risk attitudes:

- 1. Income Questions.
- 2. Simulator Task.
- 3. Self-Reported Risk Attitude.

The survey responses are then matched with *administrative reports* of actual individual member behaviour.

The combination of stated and revealed preference data helps mitigate unobserved heterogeneity and validates results as risk aversion is measured in complementary ways.

# **3.1. Survey Design – Income Questions**

Hypothetical questions regarding a member's choice between staying with their current "safe" job or moving to a new "risky" job with uncertain income potential.


- Example "suppose you have the opportunity to take a new job, with a 50-50 chance it will double your income and a 50-50 chance it will cut it by 10%. Would you take the new job?"
- If the member *decided to switch* to the new job, then an *upper bound* of constant relative risk aversion is obtained. Responses are then grouped into categories 1 to 6:

| Response Category | Response                                                                                                 |
|-------------------|----------------------------------------------------------------------------------------------------------|
| 1                 | Would not take the new job.                                                                              |
| 2                 | Would take the new job, with a 50-50 chance it will <i>double</i> or cut your income by <b>10%</b> .     |
| 3                 | Would take the new job, with a 50-50 chance it will <i>double</i> or cut your income by <b>20%</b> .     |
| 4                 | Would take the new job, with a 50-50 chance it will <i>double</i> or cut your income by a <i>third</i> . |
| 5                 | Would take the new job, with a 50-50 chance it will <i>double</i> or cut your income in a <i>half</i> .  |
| 6                 | Would take the new job, with a 50-50 chance it will <i>double</i> or cut your income by <b>75%</b> .     |

### **3.2. Survey Design – Simulator Task**

A member is provided with a slider to place their self-reported position on the risk-return trade-off.

- The investment risk-return profiles vary from a very *safe* option (Option A) to the *riskiest* option (Option H).
- This method first sets the upper and lower CRRA bounds as integers, *ranging from 1 to 8*, and then *calibrates the distribution* (mean and variance) of the log return rates of each option.



## **3.3. Survey Design – Self-Reported Risk Attitude**

"Rate your preference when it comes to investment choices from your superannuation, from a scale of 0 (less risk, lower but more stable returns) to 10 (more risk, higher but more variable returns), or if you are not sure."

 Whilst this does not provide a direct CRRA measure, empirical literature proves a significant correlation between self-reported risk attitudes and CRRA measures exist (see for example, Dohmen et al., 2011).<sup>1</sup>

<sup>1</sup> Dohmen, T., Falk, A., Huffman, D., Sunde, U., Schupp, J., & Wagner, G.G. (2011). Individual Risk Attitudes: Measurement, Determinants, and Behavioural Consequences. *Journal of the European Economic Association, 9*(3), 522-550.

## **4.1. Results - Research Question 1**

How does stated risk aversion vary by member characteristics? What was the impact of COVID-19 on member stated risk aversion?

#### **KEY FINDINGS:**

- Members (who, on average, were typically "essential" workers) exhibited less risk aversion during COVID-19.
- More risk averse if a member is:
  - 1. Female.
  - 2. Older.
  - 3. Low-income earner.
  - 4. Previously under Defined Benefit plans.

|                      | Model 1     | Model 2        | Model 3       |
|----------------------|-------------|----------------|---------------|
| No. of Observations  | 2,495       | 3,305          | 3,210         |
| Dependent Variable   | Income CRRA | Simulator CRRA | Risk Attitude |
| Mean                 | 4.923       | 4.173          | 4.410         |
| During COVID-19      | -0.330      | -0.076         | -0.069        |
|                      | (-2.32)     | (-0.92)        | (-0.68)       |
|                      | **          |                |               |
| Female               | 0.461       | 0.335          | 0.610         |
|                      | (4.63)      | (5.75)         | (8.61)        |
|                      | ***         | ***            | ***           |
| Age <u>&gt;</u> 55   | 0.976       | 0.333          | 0.495         |
|                      | (6.73)      | (3.93)         | (4.78)        |
|                      | ***         | ***            | ***           |
| Income in            | -0.270      | -0.159         | -0.443        |
| Accumulation Phase   | (-2.17)     | (-2.16)        | (-4.95)       |
| <u>≥</u> \$78,000    | **          |                |               |
| Income in Pension    | -0.393      | -0.076         | -0.204        |
| Phase≥\$41,600       | (-2.32)     | (-0.78)        | (-1.72)       |
|                      |             | 0.004          | *<br>0.400    |
| Pension Phase (i.e., | 0.448       | 0.364          | 0.400         |
| Decumulation Phase)  | (2.74)      | (3.94)         | (3.56)        |
| Previous Defined     | 0.823       | 0.614          | 0.572         |
| Benefit Member       | (4.92)      | (6.30)         | (4.83)        |
|                      | (4.92)      | (0.30)         | (4.03)        |
| <u> </u>             |             |                |               |

/ultivariate Regression. Note: \* = 10%, \*\* = 5%, \*\*\* = 1%,

## 4.2. Results - Research Question 2A

#### How do member stated risk preferences impact on asset allocation decisions?

We test a sub-sample of '*active*' members, who construct their own portfolio by investing in a mix of investment options.

#### **KEY FINDINGS:**

- *More risk averse* members are more likely to allocate a higher percentage to *defensive* assets.
- Older and low-income earners are more likely to allocate a higher percentage to defensive assets.
- Members with *higher balances* are more likely to allocate a higher percentage to growth assets.

|                       | Model 1           | Model 2           | Model 3           |
|-----------------------|-------------------|-------------------|-------------------|
| No. of Observations   | 717               | 943               | 926               |
| Dependent Variable    | Growth Allocation | Growth Allocation | Growth Allocation |
| Mean                  | 0.462             | 0.467             | 0.468             |
| IncomeCRRA            | -0.009            |                   |                   |
|                       | (-2.91)           |                   |                   |
|                       | ***               |                   |                   |
| Simulator CRRA        |                   | -0.018            |                   |
|                       |                   | (-4.31)           |                   |
|                       |                   | ***               |                   |
| Risk Attitude         |                   |                   | -0.022            |
|                       |                   |                   | (-6.11)           |
|                       | 0.024             | 0.017             |                   |
| During COVID-19       | 0.034             | 0.017             | 0.019             |
|                       | (1.01)            | (0.62)            | (0.67)            |
| Age <u>&gt;</u> 55    | -0.065            | -0.069            | -0.055            |
|                       | (-2.33)           | (-2.82)           | (-2.21)           |
|                       | **                | ***               | **                |
| Incomein              | 0.050             | 0.037             | 0.036             |
| Accumulation Phase    | (2.51)            | (2.15)            | (2.07)            |
| <u>&gt;</u> \$78,000  | **                | **                | **                |
| Member Balance $\geq$ | 0.033             | 0.029             | 0.025             |
| \$250,000             | (2.11)            | (2.15)            | (1.82)            |
|                       | **                | **                | *                 |

Multivariate Regression. Note: \* = 10%, \*\* = 5%, \*\*\* = 1%.

## 4.3. Results - Research Question 2B

#### How do member stated risk preferences impact on investment switching?

Only **7.5%** of the sample switched investment options during COVID-19.

#### **KEY FINDINGS:**

- Income CRRA model is statistically significant – it's design measures some degree of the tendency to deviate from the status quo.
- Members are *more likely* to make an investment switch if they are:
  - 1. Non-homeowners.
  - 2. Non-MySuper members.

|                     | Model 1  | Model 2  | Model 3  |
|---------------------|----------|----------|----------|
| No. of Observations | 1,377    | 1,839    | 1,784    |
| Log Likelihood      | -346.716 | -459.558 | -444.586 |
| Dependent Variable  | Switch   | Switch   | Switch   |
|                     | -0.010   |          |          |
| Income CRRA         | (-3.28)  |          |          |
|                     | ***      |          |          |
| Simulator CRRA      |          | -0.0005  |          |
|                     |          | (-0.13)  |          |
|                     |          |          |          |
| Risk Attitude       |          |          | -0.003   |
|                     |          |          | (-0.97)  |
|                     |          |          |          |
| Homeowner           | -0.072   | -0.054   | -0.052   |
|                     | (-3.70)  | (-3.26)  | (-3.07)  |
|                     | ***      | ***      | ***      |
| MySuper             | -0.075   | -0.072   | -0.069   |
|                     | (-3.31)  | (-3.69)  | (-3.47)  |
|                     | ***      | ***      | ***      |

Marginal Effects of Logit Estimates. Note: \* = 10%, \*\* = 5%, \*\*\* = 1%.

# **4.4. Results - Research Question 2C**

#### Conditional on switching, how do member risk preferences impact on the likelihood of a defensive switch?

Out of the members who switched during COVID-19, 80% made a defensive switch.

#### **KEY FINDINGS:**

- All three models find that higher levels of risk aversion are associated with a higher likelihood of conducting a defensive switch.
- This is statistically significant in two out of the three models – suggests some usefulness in the risk measures in predicting member switching decisions.

|                                                                      | Model 1                  | Model 2                 | Model 3                |  |
|----------------------------------------------------------------------|--------------------------|-------------------------|------------------------|--|
| No. of Observations                                                  | 109                      | 139                     | 134                    |  |
| Log Likelihood                                                       | -45.313                  | -55.329                 | -54.531                |  |
| Dependent Variable                                                   | Defensive Switch         | Defensive Switch        | Defensive Switch       |  |
| Income CRRA                                                          | 0.001<br>(0.09)          |                         |                        |  |
| Simulator CRRA                                                       |                          | 0.054<br>(2.71)         |                        |  |
| Risk Attitude                                                        |                          |                         | 0.047<br>(2.22)<br>**  |  |
| Retire With Debt                                                     | -0.243<br>(-3.45)<br>*** | -0.139<br>(-1.98)<br>** | -0.138<br>(-1.91)<br>* |  |
| Marginal Effects of Logit Estimates. Note: * = 10%.** = 5%.*** = 1%. |                          |                         |                        |  |

• Those who do not expect to retire with debt are more likely to make a defensive switch.

### **5. Conclusions and Contributions**

#### 1. Compares the predictive power of measurements of risk attitudes.

- To our knowledge, this is the first paper that *compares* three common methods of measuring risk attitudes and their ability to *predict* investment allocation and switching decisions.
- The risk measures predict that more risk averse members are more likely to:
  - 1. Invest a higher proportion in defensive assets.
  - 2. Not switch.
  - 3. Conditional on switching, make a defensive switch.

#### 2. Provides empirical evidence of the impact of COVID-19 on risk attitudes.

- Our findings show that, *despite significant market volatility during COVID-19*, average member risk aversion *decreased*.
- This may be sensitive to the sample of predominately "essential workers," where lower labour income risk may have offset concerns surrounding volatility in the financial markets domain.

# **6.1. Appendix – Survey Design: Income Questions**

#### Survey Design – Income Questions.

- We model a member's utility over their lifetime income, Y, where CRRA,  $\gamma$ , may differ across individuals:  $U(Y) = \frac{Y^{1-\gamma}}{1-\gamma}$
- Take, for example, members in *Response Category 3*. By accepting the new job when the downside risk is 20%, but declining when it is one-third, these members reveal a risk aversion between 2.00 and 3.77.

| Response<br>Category |          | le Risk of<br>y Job | Bounds | on CRRA | Average<br>CRRA | •                                                                                                                                                                                                                                       |
|----------------------|----------|---------------------|--------|---------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Accepted | Rejected            | Lower  | Upper   |                 | $0.5 \ \frac{2^{1-\underline{\gamma}_3}}{1-\gamma_3} + 0.5 \ \frac{(1-\frac{1}{3})^{1-\underline{\gamma}_3}}{1-\gamma_3} = \frac{1^{1-\underline{\gamma}_3}}{1-\gamma_3} \to \underline{\gamma}_3 = 2.00$                               |
| 1                    | None     | 10%                 | 7.53   | 8       | 7.53            | $1-\underline{\gamma}_3$ $1-\underline{\gamma}_3$ $1-\underline{\gamma}_3$ $-$                                                                                                                                                          |
| 2                    | 10%      | 20%                 | 3.77   | 7.53    | 5.65            | $0.5 \ \frac{2^{1-\overline{\gamma}_3}}{1-\overline{\gamma}_3} + 0.5 \ \frac{(1-20\%)^{1-\overline{\gamma}_3}}{1-\overline{\gamma}_3} = \frac{1^{1-\overline{\gamma}_3}}{1-\overline{\gamma}_3} \rightarrow \overline{\gamma}_3 = 3.77$ |
| 3                    | 20%      | 1/3                 | 2.00   | 3.77    | 2.88 🥆          | $0.5 \frac{1}{1-\overline{\gamma}_3} + 0.5 \frac{1}{1-\overline{\gamma}_3} - \frac{1}{1-\overline{\gamma}_3} \rightarrow \gamma_3 - 5.77$                                                                                               |
| 4                    | 1/3      | 50%                 | 1.00   | 2.00    | 1.50            |                                                                                                                                                                                                                                         |
| 5                    | 50%      | 75%                 | 0.30   | 1.00    | 0.65            |                                                                                                                                                                                                                                         |
| 6                    | 75%      | None                | 0.00   | 0.30    | 0.15            | Average of 2.00 and 3.77 = 2.88.                                                                                                                                                                                                        |

### **6.2. Appendix – Survey Design: Simulator Task**

We selected Option A and H to have median 1-year returns of **2.5% and 7.5%**, respectively.

| Option | Return | Mean Log Return |
|--------|--------|-----------------|
| A      | 0.0250 | 0.0247          |
| В      | 0.0320 | 0.0315          |
| С      | 0.0390 | 0.0383          |
| D      | 0.0461 | 0.0451          |
| E      | 0.0533 | 0.0519          |
| F      | 0.0605 | 0.0587          |
| G      | 0.0677 | 0.0655          |
| Н      | 0.0750 | 0.0723          |

To calibrate this measure, the *log standard deviation of Option E* (found by the coefficient of variation) is *fixed* (given Australian households typically exhibit a *moderate* degree of risk aversion).

The other log standard deviations then follow from the set CRRA parameters, ranging from 1 to 8.

| Option | Mean Log | Standard Deviation | <b>CRRA</b> Value |
|--------|----------|--------------------|-------------------|
|        | Return   | of Log Returns     |                   |
| А      | 0.0149   | 0.0005             | 8.00              |
| В      | 0.0262   | 0.0401             | 7.50              |
| С      | 0.0374   | 0.0622             | 6.50              |
| D      | 0.0487   | 0.0851             | 5.50              |
| E      | 0.0600   | 0.1135             | 4.50              |
| F      | 0.0687   | 0.1368             | 3.50              |
| G      | 0.0774   | 0.1742             | 2.50              |
| Н      | 0.0862   | 0.2555             | 1.00              |

# **6.2. Appendix – Survey Design: Simulator Task**

Assuming a current member balance of \$100,000 and a 10-year investment horizon, the following CRRA parameter derivation is summarised to the respondent in the table below:

| Option | Self-Reported Investment Strategy                               | <b>CRRA Value</b> |
|--------|-----------------------------------------------------------------|-------------------|
| A      | Possible, but unlikely return range = +\$15,650 to +\$16,500    | 8.00              |
|        | Most likely return = +\$16,050                                  |                   |
| В      | Possible, but unlikely return range = -\$3,300 to +\$74,500     | 7.50              |
|        | Most likely return = +\$29,900                                  |                   |
| С      | Possible, but unlikely return range = -\$8,000 to +\$129,700    | 6.50              |
|        | Most likely return = +\$45,400                                  |                   |
| D      | Possible, but unlikely return range = -\$13,000 to +\$204,400   | 5.50              |
|        | Most likely return = +\$62,700                                  |                   |
| E      | Possible, but unlikely return range = -\$21,000 to +\$319,800   | 4.50              |
|        | Most likely return = +\$82,100                                  |                   |
| F      | Possible, but unlikely return range = -\$27,300 to +\$443,700   | 3.50              |
|        | Most likely return = +\$98,800                                  |                   |
| G      | Possible, but unlikely return range = -\$39,800 to +\$681,500   | 2.50              |
|        | Most likely return = +\$116,900                                 |                   |
| Н      | Possible, but unlikely return range = -\$63,900 to +\$1,451,400 | 1.00              |
|        | Most likely return = +\$136,700                                 |                   |

# **6.3. Appendix - Correlation Between Risk Measures**

#### Correlation between risk measures.

|                    | Income CRRA | Simulator CRRA | Self-Reported Risk<br>Attitude |
|--------------------|-------------|----------------|--------------------------------|
| Income CRRA        | 1.00        | -              | -                              |
| Simulator CRRA     | 0.26        | 1.00           | -                              |
| Self-Reported Risk | 0.32        | 0.48           | 1.00                           |
| Attitude           |             |                |                                |

- Positive pairwise correlations indicate some consistency across the three risk measures.
- All three risk measures are distinct from each other and cannot be considered equivalent.