Longevity risk sharing for income-based mortality heterogeneity: An assessment framework for equitability

Presenter: Gayani Thalagoda

Joint work with: Katja Hanewald, Andrés Villegas, Jonathan Ziveyi CEPAR and the School of Risk and Actuarial Studies, UNSW Sydney

32nd Colloquium on Pensions and Retirement Research November 27 2024

Not-so-hidden inequalities in longevity:

Impact on retirement outcomes

in their superannuation balances than poor

in their superannuation balances than men

Why does it matter in longevity pooling?

- Global interest: Financial well-being for retirees
- Innovative solutions: Longevity pooling
 - * Mechanism: Pool and share
 - * Key characteristic: Mortality-linked benefits
- Concerns: Equitable retirement product design (Ayuso et al., 2017; Holzmann et al., 2020; Van Raalte et al., 2023)

Differences in lifespan behavior by socioeconomic status \rightarrow

'Unfair' wealth transfers that disproportionately benefit some groups ightarrow

Inequitable distribution of benefits → Redistributive unfairness

- Intentionally addressing longevity inequalities is important

Addressing longevity inequalities:

Link to pension policy reforms

Ensure member outcomes for differing needs and circumstances

Our work

Research question: How to assess the equitability of a given pooling arrangement?

Our findings:

- 1. Not accounting for longevity inequalities lead to higher wealth transfers
- Transfers are directly proportional to the proportion of the low-income group in the pooling arrangement
- 3. Pooling requires a trade-off between ensuring equitability and volatility reduction

Modelling contribution: A framework to assess equitable longevity pooling arrangements

- 1. Can quantify the wealth transfers due to pooling participants with unequal wealth and lifespans
- 2. Can tell who is subsidizing whom
- 3. Can help detect whether a benefit structure leads to an equitable longevity pooling arrangement

Heterogeneity in longevity pooling arrangements

		Measurement		Effectiveness		
		Mean	Variance	Distribution	Pool composition	Pool size
	Age-linked longevity (multi-cohort)	Milevsky and Salisbury (2016) Chen et al. (2023)				
Heterogeneity dimension	Wealth	Sabin (2010) Donnelly (2014) Bernhardt and Qu (2023)			Bernhardt and Donnelly (2020)	
geneit	Wealth-linked longevity	Milevsky (2020)	Milevsky (2020)			
Hetero	Disability	Hieber and Lucas (2022) Kabuche et al. (2024)				
_	Gender longevity	Sabin (2010)				
	Wealth and Longevity	Dhaene and Milevsky (2024)				

Gap: Coherently assessing the impact of longevity heterogeneity and wealth heterogeneity at the distribution level to assess the redistributive fairness in benefits

Comparing means is not enough...

Measuring inequality: Gini coefficient Income inequality: Gini coefficient, 2023 Our World in Data The Gini coefficient measures inequality on a scale from 0 to 1. Higher values indicate higher inequality Depending on the country and year, the data relates to income measured after taxes and benefits, or to 0.35 0.4 0.45 0.5 0.55 Plata source: World Bank Dougsty, and Inscriptive Bufform (2004) Australia: 0.34 USA: 0.4 Sri Lanka: 0.38 Zimbabwe: 0.50 Colombia: 0.55 Germany: 0.32

Australia: 0.07 USA: 0.11 Sri Lanka: 0.09 Zimbabwe: 0.20 Colombia: 0.11 Germany: 0.08

Source: https://ourworldindata.org

$$G^X = \frac{\text{expected absolute difference between all possible pairs of values}}{2 \times \text{mean of the distribution}} = \frac{\Delta \lambda}{2\bar{x}}$$

Relative (operational) effectiveness of pooling depends on...

- 1. Inequalities in wealth distributions
- 2. Inequalities in lifespan distributions
- 3. Pool composition
- 4. Pool size

Our work: Decomposing and disentangling inequalities

Gini Measure	Definition	Description
Wealth Gini (G^W)	$G^W = rac{\Delta W}{2\sum_{k=1}^K rac{n_k}{n} W_k}$	Measures inequality in wealth distribution
Lifetime Gini (G^{T_x})	$G^{\mathcal{T}_{x}} = rac{\Delta \mathcal{T}_{x}}{2\sum_{k=1}^{K}rac{n_{k}}{n}\mathbb{E}[\mathcal{T}_{x_{k}}]}$	Measures inequality in lifespan distribution
Benefit Gini (<i>G</i> ^B)	$G^B = rac{\Delta B}{2\sum_{k=1}^K rac{n_k}{n} \int_{f 0}^\infty f_{x_k}(a) u_k^B(x) dx}$	Measures inequality in benefit distribution

Adapting Gini Measure for Wealth, Lifetime, and Benefit Inequality

Decomposing Gini (Permanyer et al, 2023): $\underline{\Delta(d)}_{\text{total inequality}} = \underbrace{\sum_{g=1}^G S_g I_W^g}_{\text{within}} + \underbrace{\sum_{g=2}^G \sum_{h=1}^{g-1} S_{gh} I_B^{gh}}_{\text{between}} = \underbrace{\sum_{g=1}^G S_g I_W^g}_{\text{gh}} + \underbrace{\sum_{g=2}^G \sum_{h=1}^{g-1} S_{gh} \underbrace{(A_{hg} + A_{gh})}_{\text{inequitability}}}_{\text{inequitability}}.$

Gini-based assessment framework

Lifespan Inequality: $\{f_{X_L}(t), f_{X_H}(t)\}$

Age	Low	High
Low		
High		
ΔL		

Initial wealth Inequality : {W_L, W_H}

\$	Low	High
Low		
High		
ΔW		

Pool composition: $p = \{p_1, 1-p_1\}$ Pool size: $N = \{n_1, N-n_1\}$

Payout rule

Longevity risk sharing rule

Benefit profile (Tontine payment)

Present Value of Benefits

\$	Low	High
Low	Within Low transfers	From High to Low
High	From Low to High (Inequitable)	Within High transfers
ΔΒ		

🕡 w

What is the dollar amount of transfers?

(2)

Who is transferring to whom?

Model setup: Capturing lifespan inequality

- Use data from Chetty et al. (2016) on income linked mortality heterogeneity
- Apply Gompertz-Makeham + Compensation Law of Mortality to obtain the (m,b) parametrization

Hazard Rates

Age-at-death Distribution

Model setup: Capturing initial wealth inequality

- Initial investment: (\$100,000,\$100,000)
- Pool composition: (50%, 50%)
- Pool size: (2500,2500)
- Closed pool

Applying the assessment framework (Milevsky, 2015: Unpooled)

Age	Low	High
Low	11.02	5.71
High	5.13	9-79
ΔL	10.85	

Initial wealth W= {\$100000, \$100000)

\$	Low	High
Low	0	0
High	0	0
ΔW	0	

Pool composition: p ={ 0.5, 0.5} Pool size: n={2500,2500}

Benefit rule

Sharing rule Natural rule: Unpooled

Benefit inequality

Cumulative Present Value of Benefits

\$	Low	High
Low	3225	0
High	0	1591
ΔG	4816	

(w

What is the dollar amount of transfers?

Who is transferring to whom?

Applying the assessment framework (Milevsky, 2015: Pooled)

Age	Low	High
Low	11.02	5.71
High	5.13	9.79
ΔL	10.85	

Initial wealth W= {\$100000, \$100000)

\$	Low	High
Low	О	0
High	О	0
ΔW	0	

Pool composition: p ={ 0.5, 0.5} Pool size: n={2500,2500}

Benefit rule

Sharing rule Natural rule: Pooled (Ignore inequalities)

Benefit inequality

Cumulative Present Value of Benefits

\$	Low	High
Low	1570	472
High	1245	822
ΔG	4082	

What is the dollar amount of transfers?

Who is transferring to whom?

Applying the assessment framework (Milevsky, 2015: Proportional benefits)

Age	Low	High
Low	11.02	5.71
High	5.13	9.79
ΔL	10.85	

Initial wealth W= {\$100000, \$100000)

\$	Low	High
Low	О	0
High	О	0
ΔW	0	

Pool composition: p ={ 0.5, 0.5} Pool size: n={2500,2500}

Benefit rule

Sharing rule Natural rule: Pooled (Proportional benefit)

Benefit inequality

Cumulative Present Value of Benefits

\$	Low	High
Low	1570	475
High	813	822
ΔG	3680	

What is the dollar amount of transfers?

Who is transferring to whom?

Wealth transfers and equitability

	Pool size (Low, High)	(500,4500)		(2500,2500)		(4500,500)	
	Pool composition	10:90		50:50		90:10	
Natural rule	Advantage (A_{gh})	0	0	0	0	0	0
(Unpooled)	Wealth transfers $(S_{gh}A_{gh})$	0	0	0	0	0	0
Natural rule	Advantage (A_{gh})	2489.87	471.82	2489.87	471.82	2489.87	471.82
(Pooled-ignored)	Wealth transfers $(S_{gh}A_{gh})$	248.99	424.63	1244.93	235.91	2240.88	47.18
Natural rule	Advantage (A_{gh})	1626.63	949.33	1626.63	949.33	1626.63	949.33
(Prop. benefits)	Wealth transfers $(S_{gh}A_{gh})$	162.66	854.39	813.31	474.66	1463.96	94.93

- Not accounting for income-linked inequalities leads to higher 'unfavourable' transfers
- Accounting during benefit sharing reduces 'unfavourable' transfers
- 'unfavourable' (inequitable) transfers increase with the proportion of the low-income group

Final Thoughts

To pool or not to pool?

Decomposition	Low income	High income
Low income	3225	0
High income	0	1591
Inequitable transfer	0	

Decomposition	Low income	High income
Low income	1570	475
High income	813	822
Inequitable transfer	813	

Unpooled Case

Pooled Case

Key takeaways: Trade-off between equitability and volatility

- Pooling has the potential to reduce volatility
- Being mindful about 'unfavourable' transfers is also important

Conclusion

- Differences in lifespan behavior by socioeconomic status ightarrow

'Unfair' wealth transfers that disproportionately benefit some groups oInequitable distribution of benefits o Redistributive unfairness

- Novelty: We go beyond studying means for assessing longevity inequalities

- Contribution: We develop a coherent framework to assess the equitability
 - 1. Quantify the wealth transfers due to pooling participants with unequal wealth and lifespans
 - 2. Tell who is subsidizing whom
 - 3. Help detect whether a benefit structure leads to an equitable longevity pooling arrangement
- Research output: A practical assessment tool for retirement income providers and policymakers

Future work

- 1. Comprehensive analysis of other payout rules
- 2. Decide the best risk management strategy
 - Pool or not to pool
 - Optimum benefit payout rule
- 3. Who to pool with whom

Thank you

Gayani Thalagoda g.thalagoda@student.unsw.edu

References

- [1] Van Raalte, A. A., Sasson, I., & Martikainen, P. (2018). The case for monitoring life-span inequality. *Science*, 362(6418), 1002–1004. https://doi.org/10.1126/science.aau5811 Measures: Gini, SD, IQR. Age at death distribution vary; The life expectancy from this distribution is 72 years for blacks and 77 years for whites.
- [2] Gavrilov, L. A., & Gavrilova, N. S. (2005). Reliability Theory of Aging and Longevity. In Handbook of the Biology of Aging (pp. 3–42). Elsevier. https://doi.org/10.1016/B978-012088387-5/50004-2
- [3] Permanyer, I., Sasson, I., & Villavicencio, F. (2023).Group- and individual-based approaches to health inequality: Towards an integration. *Journal of the Royal Statistical Society Series A: Statistics in Society*, 186(2), 217–240. https://doi.org/10.1093/jrsssa/qnac001
- [4] Milevsky, M. A. (2020). Swimming with wealthy sharks: Longevity, volatility and the value of risk pooling. *Journal of Pension Economics and Finance*, 19(2), 217–246. https://doi.org/10.1017/S1474747219000040
- [5] Chetty, R., Stepner, M., Abraham, S., Lin, S., Scuderi, B., Turner, N., Bergeron, A., & Cutler, D. (2016). The Association Between Income and Life Expectancy in the United States, 2001-2014. JAMA, 315(16), 1750. https://doi.org/10.1001/jama.2016.4226

Discussion on practical implementation

Feasibility