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Introduction

Annuity Puzzle–Conflict between theory and practice

Yaari (Econometrica, 1965): If there is no bequest motive, then the
rational investor should convert all the savings into an actuarially fair
annuity upon retirement.

Davidoff et al. (AER, 2005): Under relaxed model assumptions, a
substantial allocation of retirement savings to life annuities is
expected.

Benartzi et al. (JEP, 2011): Very few retirees choose to voluntarily
annuitize a substantial portion of their retirement savings.
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Introduction

Annuity Puzzle–Conflict between theory and practice

According to the Investment Company Fact Book published by the
Investment Company Institute, as of year-end 2022, the U.S.
retirement assets totaled $33.6 trillion, with less than 7% of assets
held as annuity reserves.

Figure: US Retirement Market Assets
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Introduction

Slogan: Buy annuity and have a good sleep!

Figure: David G. Klein Illustration for The Annuity Puzzle by Richard Thaler
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Introduction

Explanations

Decreased asset liquidity: Pang and Warshawsky (IME, 2010);
Peijnenburg et al. (EJ, 2017)

Lack of bequest motivates: Lockwood (RED, 2012)

Incomplete annuity market: Horneff et al. (JEDC, 2008); Koijen et al.
(RoF, 2011)

Unfair annuity pricing: Mitchell et al. (AER, 1999)

Default risk of annuity providers: Agnew et al. (AER, 2008)

6 / 25



Introduction

Mortality risk, longevity risk, stochastic mortality, and mortality uncertainty

Mortality risk: The remaining lifetime is random.

Longevity risk: Risk of living longer than expected.

Stochastic mortality: The mortality rate itself is stochastic.
1 Individual level: Stochastic mortality caused by health shocks can

partly explain annuity puzzle (Reichling and Smetters, AER, 2015).
2 Population level: Longevity improvement has made annuity puzzle even

more puzzling.

Mortality uncertainty: No matter the mortality rate is stochastic or
deterministic, it is uncertain due to limited knowledge, imperfect or
unknown information. Recall Knightian uncertainty (Knight, 1921)
and Ellsberg paradox (Ellsberg, 1962).
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Introduction

Motivating questions

1 Certainty: Would you buy annuity if you can certainly live to 100
years old?

2 Risk: Would you buy annuity if you can live to 100 years old with a
known chance? (Known unknown)

3 Uncertainty: Would you buy annuity if you can live to 100 years old
but with an unknown chance? (Unknown unknown)
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Model description

Stochastic environment

Stochastic basis: A complete filtered probability space (Ω,F ,F,P),
where P is a reference probability measure.

Individual at the age of y , i.e., (y).

Remaining lifetime of (y): τy (a nonnegative random variable).

Force of mortality: λy+s := λy (s) : R+ → R+ (a nondecreasing,
deterministic function in s ∈ R+).

Survival probability:

tpy = P[τy > t] = exp

(
−
∫ t

0
λy+sds

)
.

Death density:

fτy (t) = λy+t exp

(
−
∫ t

0
λy+sds

)
.
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Model description

Recursive utility

Epstein-Zin recursive utility with mortality risk

J(t) = Et

[ ∫ ∞

t

f
(
c(s), αs , J(s)

)
ds

]
with actuarial subjective discount factor

αt = ρ+ λy+t

and normalized aggregator of consumption and utility

f (c , α, v) =
(1− γ) v

1− 1/ϕ

( c(
(1− γ)v

) 1
1−γ

)1−1/ϕ

− α

 ,
where γ > 0 is the relative risk aversion coefficient, and ϕ > 0 is the
elasticity of intertemporal substitution (EIS) coefficient.

If ϕ = 1/γ, then the recursive discounted utility reduces an additive
discounted utility:

J(t) = Et

[ ∫ ∞

t

e−
∫ s
t
αudu × c(s)1−γ

1− γ
ds

]
.
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Model description

Complete annuity market

In a complete annuity (CA) market which refers to the availability of
a complete set of annuities at actuarially fair prices and with any
maturities, the rational retiree will convert all the retirement savings
into an annuity.

Initial retirement saving:

x0 = E
[ ∫ τy

0
e−rscA(s)ds

]
=

∫ ∞

0
e−

∫ s
0 (r+λy+u)du cA(s) ds.

Time-t actuarial present value of the future annuity payments:

XA(t) = Et

[ ∫ τy

t
e−r(s−t) cA(s) ds

]
=

∫ ∞

t
e−

∫ s
t (r+λy+u)du cA(s) ds,

which satisfies

dXA(t) =
(
(r + λy+t)XA(t)− cA(t)

)
dt, XA(0) = x0.
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Model description

Complete bond market

In analogy to the CA market, it is the complete bond (CB) market
wherein pure discount bonds are available for all maturities but
annuities are absent.

Initial retirement saving:

x0 =

∫ ∞

0
e−r s cB(s) ds.

Time-t actuarial present value of the future bond payments:

dXB(t) =
(
rXB(t)− cB(t)

)
dt, XB(0) = x0.
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Model description

Mortality uncertainty

Alternative probability measures:

d Q
d P

∣∣∣∣
Ft

=exp

{∫ t∧τy

0

[
log(θ(s))− θ(s) + 1

]
λy+s ds

+

∫ t

0
log(θ(s)) dZ (s)

}
,

where Z (s) := 1{τy≤s} −
∫ s
0 1{τy>u}λy+udu is a martingale associated

with the single jump process 1{τy≤s}. Refer to Shen and Su (NAAJ,
2019).

Q dynamics:
1 Subjective mortality intensity: λQy+t = θ(t)λy+t .

2 Actuarial subjective discount factor: αQ
t = ρ+ θ(t)λy+t .

3 Survival probability: tp
Q
y := Q[τy > t] = exp

(
−
∫ t

0
θ(s)λy+sds

)
.
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Model description

Relative entropy and penalty

Relative entropy:

D(Q|P) := EQ
[
log

(
d Q
d P

)]
= EQ

[ ∫ t∧τy

0

g(θ(s))λy+sds

]
,

where g(θ) := θ log θ − θ + 1.

Penalty:

1

ψ
× Γ(t, θ) =

1

ψ
× EQ

t

[ ∫ ∞

t

1− γ

(1− 1/ϕ)2
J(s) g

(
θ(s)

)
λy+sds

]
,

where ψ > 0 is the ambiguity aversion parameter on the subjective
mortality model.
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Model description

Statement of problem

Objective:

J(c , θ; t, x) := EQ
x ,t

[ ∫ ∞

t
f
(
c(s), αQ

s , J(s)
)
ds

]
+

1

ψ
× Γ(t, θ).

Problem: Finding optimal consumption strategy and perturbation
function in the robust framework

V (t, x) = max
c∈C

min
θ∈T

J(c , θ; t, x), t > 0 and x > 0,

where C and T are the admissible spaces for consumption strategies
and perturbation functions.
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Model description

Annuity equivalent wealth

The annuity equivalent wealth (AEW) can be computed by solving

VA

(
x0
)
= VB

(
AEW

)
,

where VA and VB denote the value functions under the CA and CB
markets, respectively.

AEW indicates the amount of initial wealth needed in order to
compensate the absence of annuity in the CB market. It quantifies
the utility indifference price of mortality/longevity risk pooling.

Milevsky and Huang (NAAJ, 2018): the utility value of longevity risk
pooling δ = AEW

x0
− 1.
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Main results

Optimal strategies

Theorem 1.

The worst-case perturbation function associated with the optimization problem can be
computed via

θ∗A(t ;ψ) = θ∗B(t ;ψ) ≡ θ∗(ψ) = exp
(
ψ(1− 1/ϕ)

)
for all t > 0,

where ψ > 0 is the robust preference parameter and ϕ > 0 is the EIS coefficient. The
robust optimal consumption strategy is

c∗□(t;ψ) =
X ∗

□(t)

K□(t;ψ)
= c∗□(0;ψ)× exp

{∫ t

0

[
G̃□(ψ)λy+u − ϕ(ρ− r)

]
du

}
,

where “□” can be either “A” or “B”, X ∗
□ denotes the optimal wealth associated with

c∗□ and θ∗□, and

K□(t;ψ) =

∫ ∞

t

exp

{
−

∫ s

t

(
β + G□(ψ)λy+u

)
du

}
ds,
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Main results

Optimal strategies (cont’d)

Theorem 1 (cont’d).

is assumed to be bounded, for any t ≥ 0. The parameter β = (1− ϕ) r + ϕρ is the
weighted average between the risk-free interest rate and subjective discount rate.
Moreover, we have

G̃A(ψ) = 1− GA(ψ), G̃B(ψ) = −GB(ψ),

GA(ψ) = (1− ϕ) + GB(ψ), GB(ψ) = ϕ θ∗ +
ϕ2

ψ(1− ϕ)
g(θ∗).

The value function can be computed via

V□(t, x ;ψ) =
[
K□(t ;ψ)

]− 1−γ
1−ϕ x1−γ

1− γ
.
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Implications and numerical examples

Implications

Optimal perturbed mortality curve:

λ∗y+t = θ∗ × λy+t = eψ(1−1/ϕ) × λy+t .

The larger the value of ψ is, the larger the value of |θ∗ − 1| becomes.

If the EIS ϕ < 1 (empirically supported by Yogo, RES, 2004), then
θ∗ < 1, meaning that the worst-case perturbed probability measure
corresponds to an improved mortality (longevity risk) scenario.

Otherwise, if the EIS ϕ > 1 (empirically supported by Bansal and
Yaron, JoF, 2004), then θ∗ > 1, meaning that the worst-case
perturbed probability measure corresponds to a deteriorated mortality
(mortality risk) scenario.
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Implications and numerical examples

Implications (cont’d)

If 1/ϕ = γ, then the optimal perturbation functions become

θ∗ = eψ(1−γ).

Shen and Su (NAAJ, 2019) show that if γ > 1 (resp. γ < 1) the
worst-case perturbed mortality curve corresponds to a longevity risk
(resp. mortality risk) scenario.

When ϕ = 1/γ = 1 which corresponds to the log utility case, the
worst-case perturbation function equals unity, i.e. θ∗ = 1.
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Implications and numerical examples

Subjective mortality model

We calibrate the Gompertz mortality model λGM
y = w1 exp(w2 y) into the 2015 -

2019 U.S. mortality table extacted from the Human Mortality Database. The
parameters are estimated to be ŵ1 = 5.01× 10−5 and ŵ2 = 8.39× 10−2 for
female, and ŵ1 = 8.10× 10−5 and ŵ2 = 8.25× 10−2 for male.
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Figure: Probability density function (left panel) and survival probability function
(right panel) of the retiree’s remaining life time RV τ65.
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Implications and numerical examples

Implications (cont’d)

Annuity equivalent wealth, AEW(ψ):

1 Since GA(·) = (1− ϕ) +GB(·) implies
[
KA(·)

]1/(1−ϕ) ≥
[
KB(·)

]1/(1−ϕ)
,

AEW(ψ) is always greater than x0.
2 If the EIS ϕ < 1 (resp. ϕ > 1), then AEW(ψ) is increasing (resp.

decreasing) in ψ > 0.
3 Mortality uncertainty may be a potential contributor to the enduring

annuity puzzle.
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Implications and numerical examples

Sensitivity analysis of AEW in response to ψ
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Figure: The AEW with varying ψ when x0 = 100, the EIS ϕ = 0.5 (left panel)
and ϕ = 1.5 (right panel).
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Conclusions

Conclusions

Proposed and studied a revamped LCM in which there is an
incorporation of mortality model uncertainty.

Derived the optimal robust consumption rules and worst-case
mortality curves as well as the associated AEW in explicit forms.

Key findings
1 For a typical retiree having EIS smaller than one, the worst-case

perturbed mortality curve corresponds to an improved mortality
scenario.

2 Mortality ambiguity aversion will lower the optimal
consumption-to-wealth ratio.

3 If mortality uncertainty is ignored by the retiree, then the value of
annuity will be under-estimated, causing a lower than expected annuity
demand.

4 Our main results still hold under generalized model settings.

Future research: i) stochastic mortality with uncertainty; ii) life
annuity → deferred annuity/VA/tontine; iii) health model uncertainty.
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Thank you for your attention

Q&A

Email: y.shen@unsw.edu.au

Homepage: www.unsw.edu.au/staff/yang-shen
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