

Scenarios-based portfolio management: from theory to practice

David Bell, The Conexus Institute

28th Colloquium on Pensions and Retirement Research

7 December 2020

Hypothetical scenario

March 2020:

- \longrightarrow COVID-19 fear and equity markets have fallen by 40%
- \longrightarrow But central banks are intervening in markets and providing liquidity and support
- \longrightarrow A portfolio manager identifies two possible scenarios for the next 12 months:
- 1. Equities fall another 20% (30% likelihood)
- 2. Equities rally 50% (70% likelihood)

Incorporating scenarios into portfolio construction

How can insight into market scenarios be efficiently incorporated into portfolio management decisions?

- 1. We explore how academic research techniques address this problem
- 2. We consider the practical challenges regarding industry application

Relevant literature

- 1. Single-period mean-variance efficient portfolio construction
- \longrightarrow Markowitz (1952), Tobin (1958), Sharpe (1963)
- 2. Multi-period utility maximization
 - a. Terminal wealth: Balduzzi and Lynch (1999), Johannes et al. (2014)
 - b. Lifetime income: Samuelson (1969), Merton (1969), Viceira and Campbell (2001)

Relevant literature

- 3. Regime-switching
- \rightarrow Honda (2003), Graflund and Nilsson (2003), Guidolin and Timmermann (2007)
- 4. Parameter uncertainty
- \rightarrow Barberis (2000), Hoevenaars et al (2014)
- 5. Robust portfolio construction
- \rightarrow Peijnenburg (2011)

Analysis

Explore the effectiveness of different approaches to acknowledging scenarios. Problem setting:

- \rightarrow Seek to maximise utility of terminal wealth assuming CRRA preferences (Ar = 5)
- \longrightarrow Institutional constraints: no leverage or net short positioning
- \longrightarrow Two assets, each with normal i.i.d. returns

	'Bad' Scenario		'Good' Scenario	
	Exp. Return	Volatility	Exp. Return	Volatility
Cash	0%	0%	0%	0%
Stocks	-20%	18%	40%	18%

Maximising utility

Detail objective function

$$U(W_T) = \frac{W_T^{1 - A_R}}{(1 - A_R)}$$

Solution technique:

- Determine distribution to be sampled from
- Sample from this distribution to approximate the distribution of outcomes
- Consider different weights and compare which one maximises expected utility

Alternative portfolio construction approaches

Four alternative portfolio construction approaches

	Approach 1	Approach 2	Approach 3	Approach 4
Description	Use the most likely scenario	Take a mean of the expectations	Account for parameter uncertainty in expected returns	Sample from both distributions
Mean	50%	29%	29% (p/u: 32.1%)	N/A
Volatility	18%	18%	18%	N/A

Simulated distributions

Sample summary statistics

Comparison of sample summary statistics

	Approach 1	Approach 2	Approach 3	Approach 4
Description	Use the most likely scenario	Take a mean of the expectations	Account for parameter uncertainty in expected returns	Sample from both distributions
Mean	50%	29%	29% (p/u: 32.1%)	N/A
Volatility	18%	18%	18%	N/A
Mean (sampled)	50%	29%	29%	29%
Volatility (sampled)	18%	18%	36.8%	36.8%

Optimal allocations ____

Optimal allocations

	Approach 1	Approach 2	Approach 3	Approach 4
Description	Use the most likely scenario	Take a mean of the expectations	Account for parameter uncertainty in expected returns	Sample from both distributions
Optimal allocation	100%	100%	42.5%	40%

Efficiency assessment

We use CEW (certainty equivalent wealth) to compare outcomes.

	Approach 1	Approach 2	Approach 3	Approach 4
Description	Use the most likely scenario	Take a mean of the expectations	Account for parameter uncertainty in expected returns	Sample from both distributions
CEW	-80.8%	-80.8%	-0.04%	N/A

Discussion of results

- \rightarrow Ignoring information about expected returns is inefficient (Approach 1)
- →Ignoring information about the variability in outcomes is inefficient (Approach 1 and Approach 2)
- →In this case, using parameter uncertainty appears a reasonable proxy to sampling from both distributions
- →Sampling from both distributions is most efficient (if applying a sampling-based solution technique)

In practice

- →It appears intuitive to make full use of scenario-based information when constructing portfolios
- \longrightarrow In practice there are a range of challenges:
- 1. Large universe of assets
- 2. Potentially more than two scenarios
- 3. Correlation structure required (and possibly correlation scenarios)
- 4. Parametrisation challenges need to derive well-formed parameters for each asset / scenario combination
- 5. Computational challenges curse of dimensionality

In practice

 \longrightarrow Nonetheless, some interesting reflections:

 \longrightarrow Use scenarios, where available, to sense-check parameter estimates

 \longrightarrow Acknowledge that there can be great uncertainty in estimates of expected return

Conclusion

- →The academic literature has considered techniques for accommodating scenario-based views on assets
- \rightarrow Ignoring the uncertainty created by divergent scenarios can generate significant utility cost
- \longrightarrow In practice there are many factors which make a pure scenarios-based approach difficult
- →But there is the possibility to integrate some of the academic techniques into industry practice

