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Abstract

This paper considers variable annuity contracts embedded with guaranteed minimum
accumulation benefit (GMAB) riders when policyholder’s proceeds are taxed. These con-
tracts promise the return of the premium paid by the policyholder, or a higher stepped
up value, at the end of the investment period. A partial di↵erential valuation framework,
which exploits the numerical method of lines, is used to determine fair fees that render
the policyholder and insurer profits neutral. Two taxation regimes are considered; one
where capital gains are allowed to o↵set losses and a second where gains do not o↵set
losses, reflecting stylized institutional arrangements in Australia and the US respectively.
Most insurance providers highlight the tax-deferred feature of a variable annuity. We show
that the regime under which the insurance provider is taxed significantly impacts supply
and demand prices. If losses are allowed to o↵set gains then this enhances the market,
narrowing the gap between fees, and even producing higher demand than supply fees. On
the other hand, when losses are not allowed to o↵set gains, then the demand-supply gap
increases. When charging the demand price, we show that insurance companies would be
profitable on average. Low (high) Sharpe ratios are not as profitable as policyholders are
more likely to stay long (surrender).
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1 Introduction and Motivation

Variable Annuities are highly popular in the US where the net asset value is approximately
1.93 trillion as of June 2019 (Insured Retirement Institute, 2019). Conversely, there is a
very thin market for VAs in Australia and Europe. The VA market is relatively immature
in Australia1. In Europe, the VAs’ market was worth 188 billion in 2010 (EIOPA, 2011).
However, after the Global Financial Crisis, their popularity decreased and various life insurers
stopped o↵ering such contracts2. VAs are among the few assets which grow tax-deferred within
the US and Australia3. Indeed, investors willing to save more than the guaranteed pension
employer contributions can invest in a VA, gaining exposure to the equity markets, profiting
from a tax-deferred investment to then annuitize the account value upon retirement (Stanley,
2017).

VAs o↵er an opportunity to participate in the equity market while providing minimum
guarantees in case of poor market performance. We focus on GMABs which promise the return
of the premium payment, or a higher stepped up value at the end of the accumulation period
of the contract4. The policyholder can surrender their contract anytime prior to maturity,
incorporating often underestimated lapse risk. This is the risk that policyholders exercise
their surrender options at a di↵erent rate than assumed at inception of the contract. Indeed,
Moody’s Investor Service (2013) highlights that underpricing lapse risk leads to significant
write-downs and earnings charges for insurers.

Taxation levels are known to a↵ect household financial behavior, yet few studies focus
on the e↵ect of institutional settings on the demand of insurance products including variable
annuities (VAs). All proceeds for the policyholder, be it at maturity or surrender, are assumed
to be taxed creating a valuation wedge between the insurer and policyholder. We study the
e↵ect of three taxation arrangements: no tax, losses o↵set (or not) other capital gains on
variable annuities (VAs). We aim to identify the extent to which taxation structures a↵ect
supply and demand prices for VAs to ascertain whether this might explain the lower popularity
of such contracts outside the US. We find that allowing for losses to o↵set gains narrows the
gap between supply and demand fees, often yielding demand fees that exceed supply, whereas
the no o↵set case increases the gap. Given the fee mismatch, we find a distorted demand
of this product under our taxation and market assumptions which mirrors the Australian
context. Yet, we find that insurance companies charging demand fees that lie lower than
their supply break-even fees are profitable on average, benefit from any tax setting, and are
particularly a↵ected by the Sharpe ratio of the underlying fund.

The greater part of the existing literature has focused on risk-neutral valuation of VA

1There are only a few notable players which includes AMP Financial Services, BT Financial Group and
MLC (Vassallo et al., 2016).

2For instance, Prudential’s GMAB o↵ering Pru Flexible retirement has been closed for business since 2018
(Prudential UK, 2018).

3Both countries have a high share of private occupational or private pension savings to finance retirement.
The Australian superannuation system, similar to 401(k) plans, is valued at 3 trillion as of December 2019
and is projected to increase to 3.5 trillion by 2020 (The Association of Superannuation Funds of Australia
Limited, 2020). Maximizing their retirement savings is a high stakes problem in both countries.

4There are various types of guarantees embedded in variable annuity contracts and these can be classified
into two broad categories namely; guaranteed minimum living benefits (GMLBs) and guaranteed minimum
death benefits (GMDBs). GMLBs can be further divided into four subcategories as follows: guaranteed
minimum accumulation benefits (GMABs), guaranteed minimum income benefits (GMIBs) and guaranteed
minimum withdrawal benefits (GMWBs). A GMIB guarantees an income stream upon maturity of a GMAB
for a given term if the policyholder chooses to annuitize. A GMWB guarantees a certain level of withdrawals
during the life of the contract.
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contracts using a variety of techniques without considering income and wealth tax. Bauer
et al. (2008); Bacinello et al. (2011) and Kélani and Quittard-Pinon (2013) provide universal
pricing frameworks for various riders embedded in VA contracts when the underlying fund
dynamics evolve under the influence of geometric brownian motion (GBM) and Lévy mar-
kets, respectively. Incorporating a surrender option is a recent development that addresses
the underpricing of lapse risk5. Bernard et al. (2014) note that it can always be optimal for
the policyholder to surrender the contract anytime prior to maturity if the underlying fund
value exceeds a certain threshold. As a means of disincentivizing early surrender, the authors
consider an exponentially decaying surrender charge and use numerical integration techniques
to determine optimal surrender boundaries. Various authors have since extended the frame-
work in Bernard et al. (2014) to incorporate realistic market dynamics and computationally
e�cient methods6. These valuation frameworks determine fees which lie much higher than
those observed in the market partly because taxes are not considered. Our general setting,
considering two tax regimes, can be simplified to assess the classical case in the literature
where taxes are not considered.

However, it is well known that taxes a↵ect household financial behavior. Souleles (1999);
Johnson et al. (2006) and Parker (1999) show that US households’ consumption is significantly
a↵ected by income tax refunds as well as changes in social security taxes, covering old age
survivor and disability insurance (OASDI) and health insurance (DI), respectively. These
findings contradict classical life-cycle theory as these tax-related cash-flows are expected and
considered in their optimal decision making. Taxes also influence how to finance savings.
Multiple studies show that taxes should a↵ect portfolio allocation and asset holding in tax-
deferred accounts7. However, as highlighted by Poterba (2002), little attention has been
paid to the e↵ect of institutional setting taxation on the demand of insurance products.
Exceptions include Gruber and Poterba (1994); Gentry and Milano (1998) and Gentry and
Rothschild (2010) who find that tax incentives enhance the demand of health insurance for
self-employed, variable annuities and life annuities, respectively. Similarly, Horne↵ et al.
(2015) show that purchasing VAs embedded with GMWB riders would increase when taxes
are deferred, enhancing the welfare of retirees.

Taxation e↵ects have been highlighted as possible explanation to the mismatch between
theoretical and empirical values of variable annuities (Milevsky and Panyagometh, 2001;
Brown and Poterba, 2006). Indeed, Moenig and Bauer (2015) resolve this partially by noting
that incorporating taxation in the risk-neutral valuation of GMWB riders yields fees that
closely match empirically observed values. In a subsequent paper, Moenig and Bauer (2017)
find that providers can attach free death benefit riders to guaranteed minimum benefits as a
strategy to disincentivize early surrender when income and capital gains taxation are consid-
ered. Ulm (2018) also highlight that, for the same taxation regime, the timing of tax a↵ects
VA policyholder’s value, with taxation at maturity being more advantageous than taxation
whenever proceeds are earned. In the same vein, this paper examines the impact of taxation

5Bauer et al. (2017) review the state of a↵airs with regards to the theoretical and empirical insights of
policyholder behavior in variable annuities, including lapse risk.

6Examples are Ignatieva et al. (2016) who provide a fast and e�cient framework for valuing guaranteed
minimum benefits using the Fourier space time-stepping algorithm and Kang and Ziveyi (2018) who incorporate
stochastic volatility and stochastic interest rates and solve the pricing with surrender resulting free-boundary
problem using the method of lines.

7See Black (1980) and Tepper (1981) for their seminal work or Fischer and Gallmeyer (2016) for a recent
review of the extensions to the Tepper-Black model. Chen et al. (2019) show that life insurance contracts with
guarantees contracts lead to a higher expected utility level than traditional long positions in stocks when tax
incentives are considered.
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on the optimal surrender boundaries for a GMAB when the policyholder behaves rationally
with respect to the post-tax value of the contract and we find that the presence of taxation
drives a substantial wedge between policyholder and insurer valuations.

These recent findings indicate that individuals might behave rationally with respect to
their aftertax benefits. However, a fruitful strand of literature indicates that households do
not behave rationally with respect to their financial planning and accumulation of retirement
savings or retirement income product purchase, and that this may be due to lack of financial
literacy (Lusardi and Mitchell, 2011, 2014; Bateman et al., 2018) or limited opportunities
for the current generation to engage in social learning Bernheim (2002). However, the same
literature on financial literacy indicates that high-income individuals and households score
higher in financial literacy and numeracy measures, and this holds across most developed
countries (Lusardi and Mitchell, 2011). This also translates to complex product ownership8

and better financial decision making (Agnew, 2006). Since VA ownership is more prevalent
in high-income households Brown and Poterba (2006), we focus on high-income individuals
marginal rate of taxation.

The remainder of the paper is structured as follows: Section 2 presents the partial di↵er-
ential valuation problem to be solved with the aid of the method of lines algorithm. Section
3 analyzes the case when capital losses incurred on the GMAB can be used to o↵set taxable
income from other investments. Section 4 presents the extension in which capital loss made
on the contract by the policyholder is not recognised by the government for taxation purposes.
Finally, Section 5 analyzes the profit and loss statements of these products under the various
tax regimes considered to assess the impact of the moneyness and tax. Concluding remarks
are presented in Section 6.

2 Model and Valuation Approach

In this section we provide an overview of the tax treatment of pension funds and VA con-
tracts across the markets that we will study, namely the US, Australia and Europe. The
tax treatment of losses is raised as a major di↵erence that may drive the di↵ering demand of
GMAB riders embedded in VAs. The valuation framework for a VA contract embedded with
a GMAB is subsequently presented. It uses a partial di↵erential equation approach that is
solved by the fast and accurate method of lines algorithm. Details about the implementation
are provided.

2.1 Tax treatment of pension savings and VAs

Pension funds, mutual funds and retirement income arrangements have di↵ering tax treatment
across countries and products. Whether VAs are viewed as a part of an occupational and
second pillar retirement account or a third pillar account will a↵ect their tax-treatment.

The tax-treatment of pension fund contributions and benefit payments can be broadly clas-
sified into two approaches: Taxed, Tax-Exempt (TTE) and Exempt, Exempt, Taxed (EET)
(Bateman, 2017). The former indicates a taxation on contributions and earnings and pay tax-
exempted benefits, whereas the latter indicates that contributions and earnings are exempted

8Indeed Poterba and Samwick (2003) indicate that households share of tax-advantaged assets increase with
marginal income tax rate. Similarly, Inkmann et al. (2010) find that annuity ownership in the UK increases with
financial wealth. These households are also more likely to seek financial advice (Finke et al., 2011; Hackethal
et al., 2012; Calcagno and Monticone, 2015) and hence benefit from tax management (see e.g. Hackethal et al.
(2012) for Germany and Cici et al. (2017) for the US.
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and benefit payments are not. Australia’s approach to the taxation of superannuation, simi-
lar to 401(k) plans in the US, has significantly evolved over the years, moving through many
regimes. Currently, Australia operates under a TTE approach, which has only been adopted
by a few nations9. The Australian approach of flat-rate taxation for contributions and earn-
ings introduces inequity between low- and high-income earners. Most countries, including the
US and most European countries10, operate under a backloaded post-paid expenditure EET
tax approach for pension and mutual funds, which encourages participation, creates higher
voluntary contributions, delays retirement, and is simpler to tax (Bateman, 2017).

However, whether the product falls under an EET or TEE approach depends on the type
of plan elected. In the US, a retiree may have three di↵erent account types, namely; (i) tax-
deferred accounts, (ii) taxable accounts, and (iii) tax-free accounts. Tax-deferred accounts
are those where withdrawals are taxed at the ordinary income rate and investment earnings
are tax-deferred until the investment is withdrawn, taxable accounts are those where earnings
such as capital gains are taxed at favourable rates while other earnings such as interest are
taxed at the normal income rate. Tax-free accounts are those where earnings and withdrawals
are not taxed. VA earnings typically fall under the first account type and an EET approach,
e↵ectively making private pension contributions to a VA account a tax-deferred investment
(OECD, 2016; Moenig and Bauer, 2015). In Europe, earnings on VA contracts embedded
with GMAB riders are typically tax-deferred, or in some cases tax-free after a certain waiting
period11. For instance, in Switzerland earnings are taxable on the guarantee but the gains on
the index-based return might be tax-free after a waiting term ranging between 7 to 10 years.
France has a similar approach but decreases liable taxes over time from 35% if surrendered
before the end of the fourth year to either tax free if earnings are below a given threshold or
7.5% if they lie above. In the UK, age, rather than the term is a factor for benefiting from
tax-advantages. If you are aged 55 years or older, then you might take the VA as a tax-free
lump sum12.

Treatment of capital losses is another factor to consider when analysing retirement benefits.
In the US, for retirement accounts that are receiving favourable tax treatment, it is generally
not possible to o↵set capital gains with losses. However, losses under non-qualified plans such
as commercial variable annuity contracts are deductible in the same manner as lump sum
distributions (IRS, 2016). This is the case in Australia as well for certain VA products13

as losses made on the product can be used to o↵set gains from other income sources. This
is the case as commercial VAs in Australia have the same tax-treatment as unsegregated
assets in a self-managed super fund (Australian Taxation O�ce, 2017a). These are defined
as assets that are not specifically set aside for paying a superannuation income stream. In
contrast the ordinary income that is earned from segregated pension assets, such as the
compulsory superannuation, is tax-exempt. In Germany capital losses on the sale of stock
can be transferred to future years (PKF-International, 2016).

The level of the capital gains tax varies across countries too. In Australia there is no sep-

9Denmark and New Zealand are among the few nations which have also adopted this approach to the
taxation of private pensions.

10Excluding Denmark as mentioned above.
11These products are typically paid on a single premium basis and any subsequent additional purchase would

be seen as a new product falling under new conditions. In Australia, VA products with GMAB riders tend to
o↵er flexibility to partially withdraw or pay additional premiums whilst promising that fees will fall within a
pre-specified range.

12Kalberer and Ravindran (2009); Junker and Ramezani (2010).
13For instance, the MyNorth product o↵ered by AMP Financial Services https://www.amp.com.au/

personal/super-and-retirement/products/superannuation/mynorth-super
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arate tax rate for capital gains (Australian Taxation O�ce, 2017b). Instead the capital gains
are added to taxable income and taxed at the regular marginal income tax rate. Further-
more, the withdrawal from retirement accounts (superannuation) can consist of tax-free and
taxable components depending on the tax liability upon contribution into the fund. Tax-free
components of superannuation include post-tax contributions, also known as non-concessional
contributions. Concessional contributions, on the other hand, are liable to tax upon with-
drawal as they are before tax contributions. These include employer contributions and salary
sacrifice contributions. Furthermore, taxable decumulation withdrawals have taxed and un-
taxed elements. The actual tax rate depends on the age of the withdrawal and the proportion
of the fund which is considered tax-free14.

Similar to the approach in Moenig and Bauer (2015)15, we abstract from these compli-
cations and define a unique marginal e↵ective tax rate which the policyholder is liable to.
Furthermore, we assume that the policyholder is a high net worth individual and therefore
all investment earnings will fall under the highest tax bracket16.

2.2 VA Embedded with a GMAB

A Guaranteed Minimum Accumulation Benefit (GMAB) rider discussed in this paper involves
a policyholder entering into a VA contract by investing an initial amount x0 into a mutual
fund. Upon maturity of the contract, the policyholder is promised the greater of the minimum
guarantee that is determined by a fixed roll-up rate �, G(�) = x0e�t, and the fund value. In
order to finance this guarantee, the insurer charges a continuously compounded fee at rate
q which is deducted as a percentage of the fund. Assume that the underlying (S⌫)17 follows
a standard geometric Brownian motion (GBM)18 under the risk-neutral measure such that
dS⌫ = rS⌫d⌫ + �S⌫dW⌫ . The VA fund value (x⌫) can be expressed as x⌫ = e�q⌫S⌫ where q
is the fee rate. Applying Ito’s Lemma to the process (x⌫) yields the following dynamics:

dx⌫ = (r � q)x⌫d⌫ + �x⌫dW⌫ . (1)

Furthermore, although the income of the policyholder is taxable, they are not taxed until
early surrender or maturity. This is consistent with the tax-deferred EET treatment of VAs.
The taxable income of the policyholder at maturity can be re-written as:

[max(G(�), xT )� x0 � C0 � y(T )]+, (2)

where C0 is any additional up front cost incurred on top of the premium x0 which we will
assume to be 0, [z]+ = max (z, 0) and y(T ) is the numerical value of the total fees paid from

14The taxed element is the amount that the fund has already paid tax for at a rate of 15%. The taxed element
of the taxable component is liable to a lower tax rate compared to untaxed element. In order to compute the
total tax paid, a proportional basis is used, that is, the proportion of a withdrawal that is considered tax-free
is equal to the proportion of the entire fund that is considered tax-free.

15As a contrast Moenig and Bauer (2015) considers the taxes on VA payouts as well as the taxes the
policyholder would face in a potential replicating portfolio.

16As of 2018 in Australia, individuals in the highest tax bracket with income of 180,001 and over pay
54,097 tax plus 45c for each 1 over 180,000. Income is not taxed if it is under 18,200. Above this

threshold, individuals pay 19c for each 1 over 18,200. If their taxable income lies within the range 37,001
and 90,000, they pay 3,572 plus 32.5c for each 1 over 37,000. For the income bracket 37,0001 to 90,000,
individuals pay 20,797 plus 37c for each 1 over 90,000 (Australian Taxation O�ce, 2019).

17We reserve the use of t for the time to maturity and ⌧ for the tax rate. Therefore, we use ⌫ to denote the
time elapsed since the inception of contract.

18We use GBM despite its pitfalls, such as the underestimation of the tails of the asset return distribution.
However, an equivalent analysis would naturally follow with the use of sophisticated modelling frameworks.
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the fund throughout the life of the contract. In general, y(⌫) =
R ⌫
0 q ·x(s)ds is the cumulative

fees paid at time ⌫19. This specification reflects the institutional setting in Australia20.
We assume two tax treatments for losses. First, we assume that the taxable income cannot

be negative in this case because capital losses incurred on the variable annuity account cannot
be o↵set against other income to reduce total taxes paid. This is in line with the approach
in Moenig and Bauer (2015) in which there are no o↵setting investments and capital losses
are not incurred in the GMWB product. The case when losses o↵set gains is presented as an
extension that reflects the tax treatment in Australia.

In addition to this, the GMAB contract permits the policyholder to surrender early. Pol-
icyholders are not eligible for the guarantee if they surrender early (Kang and Ziveyi, 2018).
If the policyholder surrenders the contract at time ⌫ from the inception of the contract, the
insurer will pay �⌫x⌫ , where (1� �⌫) is the surrender penalty that is charged as a percentage
of the current fund value. In the event of early surrender at time ⌫, the taxable income will
thus be

[�⌫x⌫ � x0 � C0 � y(⌫)]+. (3)

Let up(x, y, ⌫) be the value of the GMAB contract for the policyholder where x represents
the fund value, the accumulative fees paid is y(⌫) =

R ⌫
0 q · x(s)ds and the time elapsed since

the inception of the contract is ⌫. Here, the definition of y(⌫) is notationally equivalent to
dy = q · x(⌫)d⌫. Using risk-neutral hedging arguments akin to path-dependent options, such
as Asian options21 (Shreve, 2004), we obtain the following solution of the contract for the
policyholder up(x, y, ⌫). Appendix A provides details about the steps followed to obtain the
following pricing partial di↵erential equation:

1

2
�2x2upxx + xq · upy + (r � q) · xupx � rup � upt = 0. (4)

Note that we applied the transformation t = T � ⌫ and t represents the time to maturity
on the contract. We consider taxes on the boundary condition of the policyholder’s valua-
tion function, where the policyholder elects to surrender or receives the final payout from the
GMAB contract. In order to obtain the contract value from the policyholder’s perspective,
we solve Equation (4) subject to the following boundary conditions:

up(x, y, 0) = max (x,G(�))� ⌧
⇥
max (x,G(�))� y � x0 � C0

⇤
+
, (5)

up(s(t, y), y, t) = s(t, y)�t � ⌧
⇥
s(t, y)�t � y � x0 � C0]+, (6)

up(0, y, t) = (G(�)� ⌧ [G(�)� y � x0 � C0]+)e
�rt, (7)

upx(s(t, y), y, t) = �t � ⌧�tI
�
s(t, y)�t � y � x0 � C0 > 0

 
, (8)

19The MyNorth product disclosure statement o↵ered by AMP Financial Services (AMP, 2017) states on p26
‘guarantee fees you have paid represent the cost base of your asset. A capital gain may arise if the guarantee
payments received exceed the guarantee fees you have paid.’ Thus the fees paid are tax deductible

20Note that if y(⌫) is removed from the cost base, as it is the case in the U.S., the product would not produce
capital losses if the policyholder stays until maturity.

21Augmenting the state space in this manner is similar to the approach used in deriving pricing equations
for path-dependent options, such as Asian options (Shreve, 2004). In the case of the Asian Option, one would
typically introduce a new state variable y(t) = 1

T ·
R t

0
x(⌫)d⌫ and the payo↵ at maturity would be given by

max{y(T ) � K, 0}. Given this boundary condition and a linear partial di↵erential equation for the function
up(x, y, t) obtained using risk neutral hedging arguments, one can obtain a solution for up. Here we follow a
similar approach in introducing the new variable y.
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where � is the proportion that the policyholder is allowed to keep subsequent to surrender,
x0 is the initial fund value (that is, the ‘premium’), C0 is the initial upfront cost, ⌧ is the
tax rate, G(�) is the guarantee amount and s(t, y) is the the minimum fund value to trigger
surrender, given that there are still t years to maturity and $y is accumulated values of fees
paid thus far. The free boundary, s(t, y), must be computed along with the valuation solution
u. The first two boundary conditions, Equations (5) and (6), represent the post-tax payo↵ at
maturity or upon surrender, which occurs for rational agents when the fund value x exceeds
s(t, y). Equation (7) is the present value of the taxable income at maturity when the fund value
is zero as given by Equation (2) 22. Hence, in this case the guarantee is paid with certainty
and the payo↵ is deterministic. Also note that it is usually the case that G(�) < y+x0+C0, so
there is no tax and the right hand side simplifies to G(�)e�rt. The final boundary condition,
Equation (8), enforces the continuity of ux at the boundary x = s(t, y).

The boundary conditions Equations (5) - (8) are in fact not su�cient for solving PDE
(4) over the computational domain {x, y, t 2 [0, X] ⇥ [0, Y ] ⇥ [0, T ]}, with X and Y being
su�ciently large enough to be close to ‘infinity’. Using Fichera Theory23, we note that we
must add an additional boundary condition to Equations (5) - (8) not only for theoretical
reasons but also for practical reasons. Indeed, for su�ciently large fees paid, the taxable
amount is zero. Hence, the option reduces to the case where taxation is not considered. In
this case, the solution up must be independent of the fees paid. Thus we can approximate
upy(x, Y, t) = 0. We refer to Appendix B for more details on the additional boundary.

Allowance for capital losses to o↵set gains
Now we explore the case in which capital losses on the GMAB rider can immediately

be used to o↵set other income sources, as is the case for nonqualified plans in the US and
Australian variable annuities. In most European countries, these life insurance products fall
under advantageous life insurance-specific tax treatments and hence no capital losses can be
used to o↵set gains. Mathematically, this entails the following replacement

⌧(�tx� y � x0)+ ! ⌧(�tx� y � x0),

in the boundary conditions (5), (6), (7) and (8). In this case, however, the additional condition
at y = Y will be di↵erent as high levels of fees paid do not lead to the no-taxation case as
high fees will incur losses that will o↵set any gains on the product. This is discussed in more
detail in Appendix B.

Insurer’s perspective
As highlighted above, tax is a friction that distorts the valuation of the contract. This

yields di↵erent results for the policyholder and insurers. The government receives a proportion
of the payout, either at surrender or maturity, creating a gap between the value for the
policyholder and the insurer’s liabilities. To obtain the value of the contract from the insurer’s
perspective, henceforth to be referred to as the insurer’s liabilities, the partial di↵erential
equation (4) must be solved subject to boundary conditions which reflect the total before tax
payments the insurer must make to the policyholder. The boundary conditions are equal to
the boundary conditions in Equations (5) - (8) when ⌧ = 0. In this case, the initial net profit
of the insurer is x0 � ui, where x0 is the initial premium paid by the policyholder and ui is
the value of the insurer’s liabilitites.

22This scenario is unlikely in practice, however the boundary condition is necessary for a well-posed problem.
23Fichera Theory, as discussed in Oleinik (2012), provides a mathematically sound means of determining

which boundaries require a Dirichlet condition in order to have a well-posed problem. The interested reader is
referred to Appendix B.
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Fair fee
In presence of taxation, the fee that renders the contract fair for the policyholder will

di↵er from the insurer’s fee. We obtain these fees by solving the PDE (4) subject to the
policyholder boundary conditions, and subject to the insurer’s boundary conditions assuming
⌧ = 0. We denote the policyholder fair fee qp as:

qp = min {q : x0 = up(x0, 0, T )}.

This is the minimum fee rate such that the value of the contract at its inception, when the
time to maturity t is T and y = 0, is equal to the initial premium paid by the policyholder.
In other words, the net profit to the policyholder is zero. Similarly, the insurer perspective
fair fee rate qi can be determined implicitly as

qi = min {q : x0 = ui(x0, 0, T )}.

It is the smallest fee rate such that at the inception of the contract, when t = T and y = 0,
the liabilities of the insurer are equal to the initial amount they receive from the policyholder.
This sets the net profit of the insurer to be zero.

Roll-up guarantee
GMAB have typically long maturities. Keeping the guarantee fixed over time may dilute

the value of the insurance feature as years pass by. Hence, GMAB products commonly include
roll-up features that increase the value of the guarantee at a pre-specified rate, increasing the
attractiveness of the product over time. We also analyse the case when the product o↵ers a
roll-up guarantee. In this case, upon maturity of the contract the policyholder receives an
amount G(�) = x0e�T where � is a continuously compounded guarantee growth rate amount.
This guaranteed growth rate is commonly known as a ‘roll up’, which locks in a growth rate
for the investment. Due to no-arbitrage, we require that �  r. The existence of fair fees may
impose an even stronger constraint on �. In our analysis, we choose values of � for which a
reasonable fair fee can be found using the algorithm.

2.3 Implementation and calibration

In order to solve the Equation (4) subject to the initial and boundary conditions (5) - (8), we
utilize the numerical method of lines algorithm. This is accomplished by truncating to the
computational domain {(x, y, t) 2 [0, X]⇥ [0, Y ]⇥ [0, T ]}.

It is well known that the method of lines is a fast, accurate and e�cient algorithm for
solving such free-boundary problems (Kang and Ziveyi, 2018; Meyer and Van der Hoek, 1997;
Chiarella et al., 2009). To obtain the contract values, Equation (4) is discretised in the t
and y directions and continuity is maintained in x. Time is discretized uniformly starting at
inception t0 up to maturity T , and the spatial variable y representing the total fees paid is
discretized between y0 = 0 and Y which is a su�ciently large number. Appendix C describes
the step-by-step implementation of the method of lines algorithm used for the valuation of
the contract. Since this algorithm provides contract values, we can find fair fees using the
bisection method.

In order to assess the attractiveness of GMAB riders in presence of taxation, we perform a
numerical analysis based on the calibrated parameters presented in Table 1. Unless otherwise
stated, these parameters will be used throughout the remainder of the paper. Table 1 presents
the calibrated risk-free rate r, volatility �, tax rate ⌧ , initial premium x0, roll-up rate �,
maturity T and penalty  for Australia, US and Europe. In the remainder of the paper we will
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denote these markets as Australia, United States and Europe despite the valuation framework
not reflecting the array of particularities present in the di↵erent economies. We are rather
interested in assessing to which extend the financial market and institutional characteristics,
reflected by the risk-free rate r and volatility � as well as marginal tax rate levels, a↵ect our
valuation exercise which includes the guarantee fees paid as a part of the cost base. The
values of x0 are chosen to be 100 as a convenient numerical value, since it is only the ratio
G(�)
x0

= e�T which a↵ects pricing. The maturity in all markets is assumed to be 15 and the
surrender penalty is arbitrarily chosen to be  = 0.005.

Table 1: Financial base case parameters for Australia, US and Europe and sensitivity analysis

r � ⌧ x0 � T 
Australia 3% 20% 22.5% 100 1.5% 15 0.005
US 3% 19% 15% 100 1.5% 15 0.005
Europe 3.4% 31% 20% 100 1.5% 15 0.005
Sensitivity 2.5%, 3.5% 15%, 25% 17.5%, 27.5% - 1%,2% - 0.010

For Australia, we select r based on the historical average of the cash rate in Australia,
from 2009 - 2018, and � based on ASX200 VIX, from 2009-2018. The marginal tax rate
⌧ is calculated based on the 0.45 marginal income tax rate, multiplied by the discount of
0.50 for capital gains. This is the case for such investments in the Australian tax system
(Australian Taxation O�ce, 2018). For the US, r is chosen to be the average 3 month T-Bill
rates from 1988 - 2018, and volatility is selected as the historical average of the VIX index
from 1991 - 2018. The marginal tax rate is chosen to be the capital gains tax rate in the
US (Policy, 2010). Under Europe, we provide calibrated parameters based on the market
data from Germany, being the largest economy in the EU. The risk-free rate is the average
of interest rates from 1988 - 2017. Volatility is estimated as the average of the VDAX-NEW
index from 2009 onwards. As before, ⌧ is taken to be the capital gains tax rate in Germany
(PKF-International, 2016).24 Appendix E shows the sensitivity analysis performed for the
alternative parameterization. Overall the results are robust to the alternative specifications
and are hence omitted of the main manuscript.

In addition, the following numerical parameters are used for the method of lines algorithm
with the number of points in the x grid given by J1 = 300 and the number of points used in
the y grid being J2 = 100 . The upper limits of the x and y grids are set to be four times the
strike, that is, X = Y = 4G. The time grid contains N = 52⇥ 15 = 780 points such that �t
is one week. We also provide some justification for the choice of J1 and J2 in Table 2. As
evident in Table 2 it is reasonable to assume that the solution converges to the nearest dollar
for J1 = 300 and J2 = 100.

3 VA when capital losses can o↵set other gains

We first consider the case where capital losses can be used to o↵set capital gains from other
investments. We are interested in the value of the contract from the policyholder and insurer

24We use di↵erent time periods for the analysis of the risk-free rate because of lack of available data for
Australia. However, we do not view an analysis based on pre and post-GFC for US and Europe, compared to
a post-GFC for Australia as a shortcoming as Australia was virtually una↵ected by the GFC (Reserve Bank
of Australia, 2017).
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Table 2: Contract values for parameters in Table 1 and policyholder fair fee q = 0.0198 which
illustrates numerical convergence

J1
J2

100 200 300 400

100 100.110 100.108 100.105 100.102
200 100.035 100.033 100.032 100.030
300 100.001 99.999 99.999 99.998
400 99.983 99.982 99.981 99.980

perspectives where we will infer surrender boundaries in assessing the attractiveness of the
GMAB rider in various financial market settings.

3.1 Insurer liabilities and policyholder contract values

In this subsection we discuss the impact of increasing the level of taxation to the insurer
liabilities and policyholder contract values. From an insurer’s perspective, the value is the
one that applies for accounting and regulatory capital considerations. Indeed, insurers have
to hold certain funds notwithstanding the marginal tax rate that policyholders have to pay
to the government.

Figure 1: Contract values from the policyholder and insurer perspective as a function of fees
charged for the Australian base case parameters as presented in Table 1.
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(b) Varying roll-up guarantee rates �

In Figure 1(a) we present contract values from the policyholder and insurer perspective as
a function of fees charged for the Australian25 base case parameter (first row in Table 1). We
observe that the insurer’s liability curve represented by the broken lines appears to be quite
robust to changes in the tax rate. This suggests that it is the policyholder who bears most of
the burden of taxation. Policyholders are more likely to alter their surrender behavior so as
to obtain a certain post tax value which results in a higher fee income for the variable annuity
provider. We also remark that, for any given tax rate, the insurer’s liability and policyholder
derived value decreases as the fee rate increases. This is quite intuitive as high fee rates

25Rationale for US and Europe is similar and is omitted for a concise discussion.
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allow the insurer to collect a large amount of fees during the lifetime of the contract, typically
exceeding what the insurer has to pay upon maturity or surrender. A less obvious fact that we
find is that the policyholder’s option to surrender does not alter the aforementioned intuitive
conclusion.

We also observe that the policyholder is not always going to prefer a lower tax rate. For
higher fee rates, the policyholder value actually shifts up as the tax rate increases, suggesting
that they are better o↵. This is because at fee rates much larger than qp, for which the
numerical values are shown in Table 3, the policyholder can expect to pay a large amount
of fees, implying a larger value for y. Therefore if the tax rate decreases, the policyholder
obtains less value from the tax deduction associated with having paid these fees.

At fee rates considerably lower than qp, the cumulative fees paid will be low so there
is no significant tax advantage. Under these circumstances, a higher tax rate decreases the
policyholder value of the contract. Figure 1(b) demonstrates that these conclusions also hold
for various roll-up rates of the guarantees. As the roll-up rate increases, the insurer’s cost
of provisions and policyholder value increases, conforming to expectations as the guarantee
increases with �. We observe as well that higher roll-up fee rates reduce the gap between the
policyholder’s and insurer’s fee26. In other words, the roll-up guarantee decreases the gap
between the fee that the policyholder is willing to pay and the insurer is willing to accept.

Furthermore we note in Figure 1 that for larger (than fair) fee rates, the policyholder value
curve is above the insurer liabilities curve. Using the simple identity

GovtValue = InsurerLiabilities� PolicyholderValue,

we can note that for these large fee rates, the value to the government (GovtValue) is negative.
A large fee rate is beneficial to both the insurer and the policyholder in that the policyholder is
able to use the higher fee paid to o↵set their taxable income, while the insurer can obviously
collect more fees. This is akin to Moenig and Bauer (2017) who note that adding a free
death benefit nudges a favorable policyholder behavior, increasing the value to the insurer. In
both the aforementioned cases, the policyholder and insurer both gain at the expense of the
government. In particular, the total tax revenue from the policyholder will be reduced but
the e↵ect of the insurer should be analysed further as done in Section 5. Indeed, the delayed
surrender will increase the fee revenue of the insurer, increasing its profits. Depending on
the corporate taxation regime the insurer falls under, the additional revenue will yield to
additional tax liabilities towards the government. In Figure 1 the intersection between the
insurer liability curve and the policyholder contract value curve represents the fee at which
the value of the contract to the government is zero.

Table 3 summarizes the policyholder and insurer fair fees (qp and qi respectively), that is,
the fees that render the contract fair for either the policyholder and insurer in three financial
markets and policy settings. Before inspecting the e↵ect of the tax wedge in the valuation of
the product, we highlight that the fair fees under the no taxation case, classical in the VA
pricing literature, yields qp = qi. As expected, in the no tax case the valuation curves coincide
and the value that both policyholder and insurer are willing to pay or accept in order to enter
the contract coincide. Furthermore, we note that both the policyholder and insurer fair fee
increases for higher roll-up guarantee � as suggested in Figure 1(b). Indeed, higher � increase
the minimum accumulation benefit, making the product more attractive for the policyholder
and more expensive to provide for the insurer, especially as the spread between the risk-free
rate and � decreases.

26This is the policyholder qp and insurer fee qi that yield a value of x0 = 100.
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Table 3: Fair fees (% p.a.) from the policyholder (qp) and insurer (qi) perspectives when
capital losses can be used to o↵set gains from other investments, at various tax rates (⌧) and
roll-up guarantees (�).

a Australia

�=0.0 �=0.010 �=0.015 �=0.020
⌧ qp qi qp qi qp qi qp qi

0 1.17 1.17 2.33 2.33 3.35 3.35 5.04 5.04
0.175 n.a. n.a. 1.35 2.41 2.47 3.40 4.80 4.94
0.225 n.a. n.a. 0.80 2.44 1.97 3.42 4.61 4.91
0.275 n.a. n.a. 0.24 2.45 1.25 3.44 4.14 4.87

b United States

�=0.0 �=0.010 �=0.015 �=0.020
⌧ qp qi qp qi qp qi qp qi

0 1.00 1.00 2.06 2.06 2.99 2.99 4.53 4.53
0.10 0.57 1.03 1.59 2.10 2.56 3.02 4.34 4.51
0.15 0.30 1.04 1.26 2.13 2.25 3.04 4.16 4.50
0.20 n.a. 1.02 0.84 2.15 1.81 3.06 3.87 4.48

c Europe

�=0.0 �=0.010 �=0.015 �=0.020
⌧ qp qi qp qi qp qi qp qi

0 3.01 3.01 4.98 4.98 6.56 6.56 8.93 8.93
0.15 2.05 3.17 4.17 5.07 6.02 6.51 9.08 8.59
0.20 1.57 3.24 3.73 5.10 5.70 6.49 9.22 8.47
0.25 0.97 3.33 3.13 5.14 5.23 6.47 9.45 8.32

Notes: ‘n.a.’ implies that a fair fee does not exist. In other words, for all fee rates q, the value of the contract

is less than x0 = 100 due to the absence of a guarantee roll up.
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We note that the insurer fair fee, qi, is more robust to the taxation rate as compared to the
policyholder fair fee, qp. This aligns with the illustrations in Figure 1, where the valuation
curve of the insurer remained stable for a given �. We observe that the policyholder fee,
qp, typically decreases with tax rates, whereas insurer fee, qi, increases for higher tax rates.
As earlier discussed, policyholders act so as to maximize post-tax value, and increasing tax
rates reduce the potential gains for the market. This a↵ects their surrender behavior, which
increases the uncertainty on the insurer side, increasing qi. However, the roll-up fee a↵ects
this conclusions. For high roll-up fees, such as � = 2% for the three markets considered, the
insurer fee decreases with tax rates. We hypothesize that this is due to the advantageous
surrender behavior. Higher � will incentivize policyholders to stay in the contract, reducing
the uncertainty on the insurer’s side, decreasing qi.

Considering taxation and the potential for losses to o↵set gains creates a gap between qp

and qi. We observe that the absolute gap increases as tax increases. If we perform our analysis
solely on the grounds of this gap, we could argue that a market could not exist as the inequality
qp > qi rarely holds, except whenever we find ourselves in the European market, Table 3c with
a roll-up guarantee fee of � = 2%. However, in Section 5 it becomes clear that a profitable
market can still exist on average. Note, however, that whenever qp > qi holds the policyholder
and insurer will be satisfied with any fee rate q 2 [qi, qp]. This corresponds to a net of � reward
over variability strictly under 5%. As the roll-up rate � increases, and gets closer to the risk-
free rate, r, the guarantee provided becomes more attractive to the policyholder as virtually
guarantees the risk-free rate, with no risk and unlimited (but bounded) upward potential from
the financial markets as indicated by the boundary conditions. This suggests that, for higher
�, the policyholder is more willing to enter this market for higher tax rates ⌧ , increasing qi

and potential losses under the EET tax regime on scope, receiving both a higher minimum
maturity guarantee and higher tax reimbursements from the government.

In summary, the results in Table 3 suggest that the attractivennes of the rider is very closely
related to the relationship between the roll-up guarantee fee �, risk-free rate r and volatility
�, more so than the the taxation level, ⌧ . Allowing for losses to o↵set gains enhances the
market for high roll-up rates, as the policyholder fee qp increases with tax rates, indicating
that a policyholder is more willing to enter a contract under such a taxation regime compared
to the no tax case. Indeed, the insurer can gain up to 52bps in this context, at the expense of
the government reimbursing part of the losses to the policyholder. In contrast, as suggested
by the analysis in Section 4, not allowing for losses to o↵set gains widens the valuation gap
and lowers the product’s attractiveness.

3.2 Optimal surrender behaviour

An insightful way of visualizing policyholder surrender behaviour is to plot the surrender
boundaries. Recall that the surrender boundary is represented by the function s(t, y) as
discussed in Section 2.2. It is the minimum fund value required to trigger rational surrender,
as a function of the time to maturity of the contract, t, and y which is the cumulative fees
paid by the policyholder up to time t.

For the purpose of presenting surrender profiles, we assume that the fee rate that is
actually charged on the contract is qp, which delivers zero profit to the policyholder. We
assume � = 0.01527 and the base case parameters for each financial market as described in

27Results are highly sensitive to � and these values were chosen arbitrarily for the countries since roll-up rate
for purely GMAB products are not available.
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Table 1, that is qp equals 1.97, 2.25 and 5.7 for Australia, US and Europe as depicted in Table
3, respectively.

Figure 2: Optimal surrender boundary for parameters calibrated to various markets (o↵set
allowed)

Figure 2 indicates that the surrender surface s(t, y) is monotonically decreasing in y. This
is because, all else equal, having already paid a greater sum of fees will reduce taxable income.
Hence the policyholder is willing to tolerate a smaller fund value upon surrender. This e↵ect
is amplified for greater marginal rates of taxation. We also note that the surrender behavior
is always beneficial for the insurer, since the policyholder is only likely to surrender after
having paid a lot of fees. Therefore the insurer also benefits, owing to greater fee collections
as long as the policyholder is invested in the contract. Hence, if early surrender is contingent
on the policyholder having paid a large amount of fees, then the insurer is not disadvantaged
as much. Taxation causes the rational policyholder to act in a manner that turns out to be
of neither benefit or detriment to the insurer, as demonstrated in Figure 1(a).
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Figure 3: Surrender boundaries for fixed time t and total fee paid y (o↵set allowed)
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(a) t = 7.5 for varying cumulative fees y paid.
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(b) y = 20, for varying time to maturity t
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(c) y = 30, for varying time to maturity t
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(d) y = 40, for varying time to maturity t

Note: the Australian market parameters as of table 1 are considered.

Figure 3 shows the impact of taxation on surrender for varying times-to-maturities and
cumulative fees paid. Figure 3(a) shows the evolution of the surrender value when the contract
is halfway from maturity. We note that as the taxation rate increases, the policyholder is less
willing to surrender for smaller values of y due to the lower fee rate being charged. However,
after a given value of y that remains virtually the same under the various tax levels, higher
fees make policyholders more willing to surrender for higher fee rates as the benefits of tax
reimbursement from the government are greater.

Figures 3(b), 3(c) and 3(d) show the evolution of the surrender boundaries for three levels
of accumulated fees, y = 20, 30, 40 for varying time to maturity t. We note that t = 15 and
t = 0 indicate that the contract has just started or is about to mature, respectively. First,
we observe that the policyholder is more incentivized to surrender for larges values of y as
indicated by the lower boundaries that trigger rational surrender. This behavior follows from
the greater tax benefit.

However, later on in the contract, when t approaches zero, the presence of tax reduces the
volatility in the final payo↵, since the government absorbs a portion of both losses and gains.
Indeed, as t ! 0 the surrender penalty approaches zero and hence the boundaries approach the
guaranteed amount G(�). Thus the policyholder is more willing to remain invested at higher ⌧
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for smaller t, which is indicated by the surrender boundary being shifted up. This is consistent
with Bernard et al. (2014). If the policyholder has any amount in the fund exceeding 100,
then they would prefer to surrender �t (and keep the fraction e��t) before maturity rather
than pay fees in the time interval �t for a guarantee which has a low probability of ending
up in the money. When the tax rate, ⌧ , is set equal to zero, we reproduce results from the
setting which has been extensively studied in the literature (Bernard et al., 2014; Shen et al.,
2016).

4 VA when capital losses do not o↵set other gains

In the following section we consider the case where capital losses cannot o↵set gains from
other investments, which is the case in previous literature (Moenig and Bauer, 2015). More
specifically, if the tax base exceeds the pay-o↵ of the asset then the di↵erence may not be
claimed as a capital loss to take advantage of tax benefits. This implies that the value of the
contract is always positive to the government.

4.1 Insurer liabilities and policyholder contract values

In this subsection we discuss the e↵ect of taxation to the insurer liabilities and policyholder
contract values. Contrary to Section 3, losses cannot o↵set capital gains and therefore tax is
only paid when gains are incurred. This will a↵ect the behavior of the policyholder as they
will try to avoid losses, that is, they will try to receive as much value of their contract while
minimizing the fees paid. This will have a distortionary e↵ect in the viability of such products
in this taxation regime, especially for high marginal tax rates.

Figure 4: Contract values from the policyholder and insurer perspective as a function of fees
charged, when no o↵sets allowed
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(a) Contract values for various tax rates
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(b) Contract values for various roll-up
guarantee rates

Figure 4 presents the contract values from the policyholder and insurer perspective as
a function of fees charged when no o↵set is allowed. In Figure 4(a) we observe three clear
patterns. Firstly, we observe that the insurer and policyholder value functions decrease when
the fee charged increases (for a given tax rate). Contrary to what is observed in Figure 1,
charging a higher, than the fair, fee does not stabilize the value function as the increasing value
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Table 4: Fair fees (% p.a.) from the policyholder and insurer perspectives when capital losses
cannot be used to o↵set gains from other investments, at various tax rates

a AU

�=0.0 �=0.010 �=0.015 �=0.020
⌧ qp qi qp qi qp qi qp qi

0 1.17 1.17 2.33 2.33 3.35 3.35 5.04 5.04
0.175 0.25 1.21 1.32 2.47 2.35 3.53 4.15 5.21
0.225 n.a. 1.13 0.87 2.46 1.92 3.54 3.79 5.22
0.275 n.a. 0.88 0.24 2.37 1.28 3.51 3.30 5.22

b US

�=0.0 �=0.010 �=0.015 �=0.020
⌧ qp qi qp qi qp qi qp qi

0 1.00 1.00 2.06 2.06 2.99 2.99 4.53 4.53
0.10 0.14 1.02 1.55 2.12 2.49 3.08 4.08 4.64
0.15 n.a. 0.93 1.24 2.16 2.18 3.13 3.80 4.68
0.20 n.a. 0.68 0.85 2.16 1.79 3.14 3.46 4.70

c EU

�=0.0 �=0.010 �=0.015 �=0.020
⌧ qp qi qp qi qp qi qp qi

0 3.01 3.01 4.98 4.98 6.56 6.56 8.93 8.93
0.15 1.54 3.39 3.75 5.45 5.35 7.02 7.77 9.34
0.20 1.02 3.30 3.24 5.53 4.84 7.12 7.30 9.41
0.25 0.45 2.99 2.66 5.53 4.27 7.15 6.76 9.47

Notes: ‘n.a.’ implies that a fair fee does not exist. In other words, for all fee rates q, the value of the contract

is less than x0 = 100 due to the absence of a guarantee roll up.
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of the cumulative fees paid, y, is of no advantage to the policyholder. Indeed, contrary to the
o↵set case, higher fee payments yield lower gains with no reimbursement from the government.
Hence, the value decreases with the fee. The same trend holds for the insurer, however, the
reasoning di↵ers. The insurer value function is calculated as the di↵erence between the out-
going cash-flows paid to the policyholder and the in-flowing payments from the policyholder.
The greater fee income, for a given guarantee, the lower this di↵erence will be.

Secondly, we observe that the separation between the insurer and policyholder valuation
curves (for a given tax rate) increases as tax increases. This is partially caused by the limited
variation in the insurer valuation curve. Indeed, Figure 4(a) suggests that the insurer valuation
curve is robust to the taxation rate. However, the value to the policyholder decreases with
tax rate (for a given fee) as all gains are taxed at a higher rate. This wedge between the
policyholder and insurer value reflects the increasing value of the contract to the government
as the tax rate increases. Thirdly, we observe that the fee at which the policyholder value
curve hits 100 is 30 to 50% lower than the fee the insurer is willing to charge in order to break
even.

In Figure 4(b) we observe that the values to the policyholder and insurer increase as the
roll-up guarantee rate, �, increases. The higher guarantee, the more valuable the contract
will be and the higher fee the policyholder will be willing to pay. As a counterparty, the
product becomes more expensive for the insurance company to o↵er, increasing the out-flow
payments, and liability, accordingly. Similar to Figure 1(b), the valuation gap decreases
as the guarantee increases, narrowing the gap between the fair fees, and liabilities for the
policyholder and insurer.

This behavior becomes clear in Table 4 where we observe three trends. Firstly, the fair
policyholder fee, qp, decreases as the tax rate increases, for the three financial and policy
settings studied (Table 4a, 4b and 4c). As observed in the valuation curves, the after-tax
capital gains decrease with higher tax rates, lowering the attractiveness of the product to the
policyholder. This holds for all studied roll-up rates, �28. Note, however, that the no roll-up
case is very unattractive to the policyholder, to the extend that fair fees do not exist. In other
words, the value of the product is always lower than the initial premium 100.

Secondly, we observe that the interaction between the fair fee of the insurer, qi, and the
tax rate, ⌧ , highly depends on the roll-up rate �. Whenever the product does not o↵er a
roll-up, the fee decreases as tax-rate increases. This follows from the surrender behavior of
the policyholder. The non-decreasing guarantee, � = 0, degrades the value of the product
soon for the policyholder, which leads to undesirable early surrender. This e↵ect is starker
the greater the tax rate is. However, when the roll-up guarantee rate is positive, we observe
the opposite behavior, that is, qi increases with the tax rate. Note that this increase is not
substantial and seems to plateau after a certain level is reached. This is a direct consequence
of the taxation regime considered. For higher tax rates, the policyholder acts as to maximize
post-tax value. This leads them to stay longer, or up to maturity, invested in the contract as
to benefit from a positive market performance of the underlying fund, or receive the minimum
guarantee amount. This renders the contract being more expensive for the insurer to provide,
hence increase qi. We observe, however, that this is not a monotonic increase in all cases. For
the Australian base case parameters, Table 4a, we observe that the fees increase for low tax
rates and subsequently decrease. However, the level never reaches the policyholder demand
price. This is further analyzed in Section 4.2.

28We note that the risk-free rate for the European setting is much greater than � as given in Table 1.
However, performing this analysis for � closer to r yield an analogous interpretation.
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Thirdly, we observe that the maximum fee, qp that the policyholder is willing to accept
is always smaller than the minimum fee, qi the insurer is willing to o↵er. This di↵erence
becomes greater as tax rates increase as qp generally decreases and qi generally increases.

4.2 Optimal surrender behavior

We observed in the previous subsection that there were a few non-monotonic relationships
between the roll-up guarantee, �, tax rate ⌧ and the financial parameters. Here we present
the early surrender surface s(t, y) as discussed in Section 2.2. Similar to Subsection 3.2, we
assume that the fee rate that is actually charged on the contract is qp, which delivers zero
profit to the policyholder and � = 0.015. Furthermore, we assume the base case parameters
for each financial market as described in Table 1, that is qp equals 1.97, 2.25 and 5.7 for
Australia, US and Europe as depicted in Table 3, respectively.

Figure 5 depicts the surrender behaviour s(t, y) for varying cumulative fees paid and time
to maturity. The ‘valley of surrender’, a combination of values of cumulative fees paid y
and time to maturity t is driven by the fact that capital losses cannot be claimed on the
contract. From Figure 5, we note that the policyholder will be less eager to surrender as
the cumulative fees paid stops increasing beyond a certain point. This is because the tax
advantages associated with paying a large amount of fees are gradually fading away due to
capital losses not impacting the policyholder’s taxable income. A brief financial justification
of the valley of surrender is provided in Appendix D. We find that the phenomenon is present
in all countries considered by the depth and monotonicity depend on the market parameters
considered. We observe as well that the valley of surrender is not a smooth line which might
explain the results of the fees in Table 4.

Figure 6 shows the impact of taxation on surrender for varying times-to-maturities and
cumulative fees paid. Figure 6(a) shows the e↵ect of total fee paid y when the contract is
halfway through maturity. We observe that for low fee paid, the policyholder’s boundary
always exceeds the no tax case. Furthermore, the surrender boundary increases for higher tax
rates. This resonates with the explanation of Subsection 3.2 and Sections 4. Indeed, reducing
the post-tax value through higher taxes delays surrender as individuals are maximizing their
post-tax value. However, for too high rates, this e↵ect dissipates. We observe that, for the
parameters considered, the surrender boundary is lower than the ⌧ = 0 case for y > 32 for
the lowest tax considered. Hence, Figures 6(b), 6(c), 6(d) highlight this distortion and its
relationship with the time to maturity. Overall the surrender boundaries in the presence of
tax exceed those with taxes except when paid fees are too high (Figure 6(d)). From these
figures we observe two features of the valley of surrender; firstly, it is a phenomenon that
appears for particular fee ranges. Secondly, it causes a break in the surrender boundary that
is monotone but not smooth. For higher t, that is, when the contract is closer to inception
that it is to maturity (t = 0), high fee rates disrupt the surrender boundary, increasing it
beyond the ⌧ = 0 case. For high fees, the non-linearity introduced through the non-allowance
of losses, distorts the relationship between fees paid, tax rates and maturity. This translates
to non-monotone relationships in the fair fees for some parameterizations.
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Figure 5: Optimal surrender boundary for various markets (capital gains only)
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Figure 6: Surrender boundaries for fixed time t and total fee paid y (no o↵set allowed)
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(a) t = 7.5 for varying cumulative fees y paid.
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(b) y = 20, for varying time to maturity t
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(c) y = 30, for varying time to maturity t
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(d) y = 40, for varying time to maturity t

5 Profit and Loss analysis

To complement our analysis of the viability of the product, we are interested in the profit
and loss statements for varying interest rates r, volatility � and tax rates ⌧ . These values
provided in Table 529 result from the simulation of the fund under the real-world measure.
The surrender boundary, already precomputed from the method of lines solution of the PDE,
was used to determine whether the surrender condition is met. The average of 10 000 Monte
Carlo simulations is shown, hence, the results in Table 5 are expectations under the real-world
measure.

The profit and loss (P&L) tables provide an overview of the surrender fee that the insurer
receives upon early surrender, the cost of providing the guarantee, as well as the management
fees required to fund the insurance product. The implicit surrender behavior leads to the
calculation of a surrender rate, defined as the proportion of insurance contracts that are
terminated prior to maturity. Also, our simulations allow us to analyze the average time
elapsed in the contract before surrender (if any). Finally, the net profit is calculated as the
management fees, complemented by the surrender fee reduced by the guarantee cost. The last

29Full details are provided in the online appendix F in Tables F.2,F.3, F.4 and F.5.
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row also shows the net profit quantiles in order to inform about their skewness and level. The
results presented in the second, third set of results correspond to the case without taxation,
with taxation and without the possibility to o↵set losses, and taxation with the option to
o↵set, respectively. Furthermore, varying Sharpe ratios (SR) are considered.

First, we analyze the top left cell of Table 5. For a given risk-free rate, taxation rate and
implied fair fee (qp), we observe that surrender is more likely for higher SRs, that is, higher
rewards-to-variability ratios. This is intuitive as a higher potential outside of the insurance
contract, for given parameters, will incentivize the policyholder to leave the contract. More
frequent lapses are associated with more surrender fees being collected and a lower average
time in the contract. However, this increase in surrender fees is insu�cient to overcome the
loss of regular management fees, reducing the overall net profit of the product. This behavior
is consistent across risk-free rates. We should note that the early surrender in the high SR
market is undesirable for the insurance company. As the underlying fund performs well,
the probability of having to pay the guarantee if the policyholder stays up to maturity is
significantly reduced. However, as the fees are linked to the performance of the underlying,
the fee income would increase with the market performance. In that case, the insurance
contract would be very profitable. It turns out that the policyholder only stays until maturity,
according to our rational boundaries, if the guarantee option is non-zero. In that case, it is
detrimental for the insurer as the net profit is decreased by the guarantee cost. This is the
case for low SRs. In Table F.2 we find that for low SR and lower (higher) r the net profit
reduces (increases) as the guarantee cost becomes more (less) expensive. For high SR and
lower (higher) r we find that surrenders happen less (more) often, increasing (decreasing) the
net profit.

Taxation yields lower net profit in our base case30 as reflected by a substantial increase
in surrender, to the extent that it can amount 100% of the cases. Again, surrender fees do
not su�ce to compensate the loss of regular fee income, decreasing the net profits. For high
SR, we find that the average time elapsed can be less than half the maturity. For the same
risk-free rate, r, we find that allowing for losses to o↵set gains increases the net profit of the
insurer, especially for high SR cases. Overall, it was clear from the previous sections that
insurers could charge a higher fee under this tax regime, increasing their management fees
accordingly. This, together with comparable surrender fees, increases the net profit of the
product. Table F.4 shows that this e↵ect is greater for higher taxes, that is, higher taxes lead
to more surrenders, lower management fees, and overall lower net profit.

For a given �, the SR a↵ects the µ drift under the real-world, and the average return
of the underlying. The second half of Table 5 shows the interaction of � and SR. Similarly
to what happened for the r analysis, when ⌧ = 0, we find that higher SRs increase the net
profit as the fees are linked to the performance of the fund. However, after attaining a certain
SR, rational surrender starts to kick-in, decimating the management fees, and subsequent net
profit. Overall, an insurer is better o↵ in a scenario with SR=0.25 for the base case parameters
as the policyholders will stay until maturity, and the management fees will greatly exceed
any guarantee cost paid. Low reward-to-variability ratios entail high guarantee cost which
correspond almost one-to-one with the management fees received, providing a very low net
profit. Whenever tax is considered, we observe that taxing gains, for both the no o↵set and
o↵set case a↵ect the gains in a similar manner as r.

30We note that for r = 0.025 the net profit slightly increases, rising the interesting question of what happens
in a low interest rate environment. However, this analysis is out of scope and we analyze scenarios close to the
calibrated parameters in Table 1.
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Finally, considering higher roll-up rates, � = 0.02 leads to higher guarantee cost in all
scenarios, which intuitively follows from the greater growth rate. However, as suggested in
the previous sections, the policyholder and insurer fee reflect this already, demanding and
supplying a higher fee. This yields higher management fees, which overall increase the net
profit for high SR (SR=0.25 and 0.45), but decrease the net profit for low SRs as the guarantee
becomes more expensive to supply. We note as well that increased roll-up rates have a positive
e↵ect in surrender. Indeed, people stay longer on average (compare first and third row). For
high roll-up rates, we observed a limited e↵ect of taxes on the net profit. Indeed, providing
a guarantee which is close to the risk-free rate a↵ects policyholder behavior as to make them
stay longer invested in the contract, paying higher fees. From a P&L perspective, it seems
that o↵ering high roll-ups is the best way to mitigate the e↵ect of taxation on the product.
However, as shown in Table F.5, o↵ering a lower roll-up has the opposite e↵ect. Higher net
profit for low SR and lower net profit for higher SR. Here the e↵ect of taxation is greater as
low roll-ups lead to 100% of the policyholder to surrender before maturity.
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Table 5: Profit and Loss profiles for r = 0.03 (first half) and � = base (second half). Here SR denotes the Sharpe ratio, and ‘mgmt fees’
denotes the management fees in basis fees. qp is the fair fee implied by the parameter set considered in each block.

(BASE Parameters) r=0.03, ⌧ = 0 (qp = 3.32%) r=0.03, no o↵set (qp = 1.92%) r=0.03, o↵set (qp = 1.97%)
SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45

Surrender fee 0 0.3831 6.8623 5.06E-06 2.3287 7.4236 0 1.8858 7.3462
Guarantee cost 29.998 0 0 7.2757 0 0 7.9411 0 0
Mgmt fees 48.917 59.245 24.8215 31.1907 30.5879 15.2211 31.73 32.9456 16.405
Surrender Rate 0% 100% 100% 0.02% 100% 100% 0% 100% 100%
Avg time elapsed 15 14.497 6.0104 15 12.2795 6.1216 15 12.8382 6.3975
Net profit 18.92 59.63 31.68 23.915 32.91 22.64 23.79 34.8314 23.7512
Net Profit Qtiles 17.2,18.9,20.7 58.9,59.3,59.6 30.9,31.7,32.5 21.7,23.9,26.0 32.6,33.0,33.3 22.3,22.7,23.0 21.6,23.8,26.0 34.5,34.9,35.2 23.4,23.8,24.1

� = 0.25, tax free (qp = 5.43%) � = 0.25, no o↵set (qp = 3.91%) � = 0.25, o↵set (qp = 5.00%)
SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45

Surrender fee 0 0 6.211 0 0.0564 7.2973 0 3.90E-06 6.3151
Guarantee cost 61.46 13.47 0 45.6133 2.09E-05 0 56.7 5.3872 0
Mgmt fees 65.17 85.62 47.16 52.4865 69.3425 26.4297 61.4143 80.9474 45.5969
Surrender Rate 0% 0% 100% 0% 97.15% 100% 0% 0.03% 100%
Avg time elapsed 15 15 7.06 15 14.92 5.4782 15 15 7.296
Net profit 3.72 72.15 53.37 6.8733 69.3989 33.727 4.7143 75.5603 51.912
Net Profit Qtiles 2.2,3.7,5.1 69.3,71.8,74.5 51.7,54.0,55.9 5.0,6.8,8.6 69.7,69.8,70.0 33.3,33.9,34.7 3.1,4.7,6.3 73.0,75.7,78.5 50.3,52.1,53.7

� = 0.02, ⌧ = 0 (qp = 5.04%) � = 0.02, no o↵set (qp = 3.79%) � = 0.02, o↵set (qp = 4.61%)
SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45

Surrender fee 0 0 5.3834 0 0.0051 6.6672 0 0 5.54
Guarantee cost 60.8298 18.8222 0 45.71 0.1564 0 55.99 11.3 0
Mgmt fees 65.0776 81.2308 49.6514 53.62 67.3915 27.8996 61.46 76.9 46.515
Surrender Rate 0% 0.00% 100% 0% 21.74% 100% 0% 0% 100%
Avg time elapsed 15 15 8.0086 15 14.993 6.042 15 15 8.04
Net profit 4.248 62.4086 55.0348 7.91 67.24 34.56 5.47 65.6 52.06
Net Profit Qtiles 2.8,4.2,5.6 60.1,62.2,64.4 53.3,55.5,57.4 6.3,7.9,9.6 67.3,67.4,67.4 33.7,34.7,35.5 3.9,5.4,6.9 63.3,65.6,67.9 50.5,52.2,53.6

Notes: the other parameters are given as in the base case in Table 1.

25



6 Conclusions

Insurance providers benefit from the tax-deferred nature of variable annuities. However, the
popularity of these products varies widely across countries. We show that the taxation regime,
institutional setting and Sharpe ratio of the market are some of the key drivers of such demand.
In this paper, we illustrate the impact of di↵erent tax systems on policyholder behaviour and
the implications for insurers. In particular, we assess and compare the cases when losses are
allowed to o↵set gains, and where losses are not allowed to o↵set gains. These two regimes
reflect features of institutional arrangements in Australia, US and most European countries.

Most modeling frameworks abstract from the friction induced by taxation. Hence, they
obtain that the fee that the policyholder is willing to pay (demand fee) coincides with the
fee that the insurer is willing to charge (supply fee). However, upon introducing taxation, we
show there are wide gaps between these two fees heavily influenced by underlying policyholder
behavior reflecting our allowance for the policyholder to surrender.

We formulate the valuation of a GMAB contract from the policyholder and insurer’s
perspective as a free boundary problem which is solved using the method of lines. The corre-
sponding policyholder fair fee and insurer fair fee are computed. The numerical results show
how the risk-free rate r, volatility � and surrender penalty  impact the optimal surrender
behaviour. This impact is determined by the fees that the policyholder has cumulatively paid
and also on the particular taxation system.

We show that allowing for losses to o↵set gains enhances the market, yielding for some
market parameters, a demand fee that exceeds the supply. However, the tax regime alone
is not a sole driver of the attractiveness of the product. We show that it is possible for the
demand to lie below the supply fee. This is the case where losses are not allowed to o↵set gains.
In this case, the gap between supply and demand widens, and policyholders are only willing
to enter the contract at very low fee levels. This also impacts their surrender behaviour since
they are more likely to maintain the contract to its maturity in order to receive the guarantee.

The profit and loss analysis shows that, despite charging the (low) demand fee, insurance
providers would break even and return a profit on average. Introducing taxes benefits the
insurance company at the expense of the government. When losses o↵set gains, policyholders
retain their policies for longer in order to receive the higher tax reductions reflecting their
increased losses. If losses are not allowed to o↵set gains, then individuals retain their contracts
longer in order to maximize the post-tax value. Profitability of the insurer varies with the
Sharpe ratio. Low and high Sharpe ratio markets are not as profitable. For low Sharpe ratios,
policyholders are more likely to retain the policy until maturity and receive the benefit of the
guarantee, diluting the insurer’s profit. For high Sharpe ratios, the higher returns outside of
the product incentivizes the policyholder to surrender since the guarantee o↵ered can quickly
become out of the money.

References

Agnew, J. R. (2006), “Do behavioral biases vary across individuals? Evidence from individual
level 401 (k) data,” Journal of financial and Quantitative Analysis, 41, 939–962.

AMP (2017), “MyNorth Super and Pension Guarantee Product Disclosure Statement - Part
B,” .

Australian Taxation O�ce (2017a), “The e↵ect capital gains and capital losses

26



have on an SMSF’s claim for ECPI,” retrieved from https://www.ato.gov.au/

Super/Self-managed-super-funds/In-detail/SMSF-resources/SMSF-technical/

Self-managed-super-funds-and-tax-exemptions-on-pension-assets/?anchor=

Theeffectcapitalgainsandcapitallosseshav#Theeffectcapitalgainsandcapitallosseshav,
accessed: 3-04-2018.

— (2017b), “How tax applies to your super,” retrieved from https://www.

ato.gov.au/individuals/super/in-detail/withdrawing-and-paying-tax/

withdrawing-your-super-and-paying-tax/?page=3, accessed: 13-02-2018.

— (2018), “The discount method of calculating your capital gain,” re-
trieved from https://www.ato.gov.au/General/Capital-gains-tax/

Working-out-your-capital-gain-or-loss/Working-out-your-capital-gain/

The-discount-method-of-calculating-your-capital-gain/, accessed: 22-12-2018.

— (2019), “Individual income tax rates,” .

Bacinello, A. R., Millossovich, P., Olivieri, A., and Pitacco, E. (2011), “Variable annuities: A
unifying valuation approach,” Insurance: Mathematics and Economics, 49, 285–297.

Bateman, H. (2017), “Taxing Pensions - The Australian Approach,” in Unknown, ed. Un-
known, Unknown: Unknown, chap. 7, pp. 1–37.

Bateman, H., Eckert, C., Iskhakov, F., Louviere, J., Satchell, S., and Thorp, S. (2018), “In-
dividual capability and e↵ort in retirement benefit choice,” Journal of Risk and Insurance,
85, 483–512.

Bauer, D., Gao, J., Moenig, T., Ulm, E. R., and Zhu, N. (2017), “Policyholder exercise
behavior in life insurance: The state of a↵airs,” North American Actuarial Journal, 21,
485–501.

Bauer, D., Kling, A., and Russ, J. (2008), “A universal pricing framework for guaranteed
minimum benefits in variable annuities,” ASTIN Bulletin: The Journal of the IAA, 38,
621–651.

Bernard, C., MacKay, A., and Muehlbeyer, M. (2014), “Optimal surrender policy for variable
annuity guarantees,” Insurance: Mathematics and Economics, 55, 116–128.

Bernheim, B. D. (2002), “Taxation and saving,” Handbook of public economics, 3, 1173–1249.

Black, F. (1980), “The tax consequences of long-run pension policy,” Financial Analysts
Journal, 21–28.

Brown, J. R. and Poterba, J. M. (2006), “Household ownership of variable annuities,” Tax
Policy and the Economy, 20, 163–191.

Calcagno, R. and Monticone, C. (2015), “Financial literacy and the demand for financial
advice,” Journal of Banking & Finance, 50, 363–380.

Chen, A., Hieber, P., and Nguyen, T. (2019), “Constrained non-concave utility maximization:
An application to life insurance contracts with guarantees,” European Journal of Operations
Research, 273, 1119–1135.

27



Chiarella, C., Kang, B., Meyer, G. H., and Ziogas, A. (2009), “The evaluation of American
option prices under stochastic volatility and jump-di↵usion dynamics using the method of
lines,” International Journal of Theoretical and Applied Finance, 12, 393–425.

Cici, G., Kempf, A., and Sorhage, C. (2017), “Do financial advisors provide tangible benefits
for investors? Evidence from tax-motivated mutual fund flows,” Review of Finance, 21,
637–665.

EIOPA (2011), “Report on variable annuities,” https://eiopa.europa.eu/Publications/Reports/Report-
on-Variable-Annuities.pdf, accessed: 17-01-2019.

Finke, M. S., Huston, S. J., and Winchester, D. D. (2011), “Financial Advice: Who Pays,”
Journal of Financial Counseling and Planning Volume, 22, 19.

Fischer, M. and Gallmeyer, M. (2016), “Taxable and tax-deferred investing with the limited
use of losses,” Review of Finance, 21, 1847–1873.

Gentry, W. M. and Milano, J. (1998), “Taxes and Investment in Annuities,” Tech. rep.,
National Bureau of Economic Research.

Gentry, W. M. and Rothschild, C. G. (2010), “Enhancing retirement security through the
tax code: the e�cacy of tax-based subsidies in life annuity markets,” Journal of Pension
Economics & Finance, 9, 185–218.

Gruber, J. and Poterba, J. (1994), “Tax incentives and the decision to purchase health in-
surance: Evidence from the self-employed,” The Quarterly Journal of Economics, 109,
701–733.
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Appendices

A The Governing Partial Di↵erential Equation

Applying Ito’s Lemma in conjunction with the formula for dx in Equation (1) yields

du = uxdx+
1

2
uxx(dx)

2 + u⌫d⌫ + uydy

= uxdx+
1

2
�2x2uxxd⌫ + u⌫d⌫ + qxuyd⌫. (A.1)
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Now consider a portfolio consisting of a long position in the GMAB contract and ux units
short in the fund. The value of the portfolio can then be represented by ⇧ = u�uxx. Over a
small time interval d⌫ the corresponding change in portfolio value, given that a continuously
compounded fee at rate q is paid, is

d⇧ = du� ux(dx+ qxd⌫). (A.2)

Substituting the known value of du from Equation (A.1) into Equation (A.2) implies that

d⇧ =
1

2
�2x2 · uxxd⌫ + u⌫d⌫ + qx · uyd⌫ � qx · uxd⌫.

Since this portfolio has no random component, that is, it does not have a dx term, it must
accumulate at the pre-tax risk-free rate. Thus,

r(u� xux) =
1

2
�2x2 · uxx + u⌫ + qx · uy � qx · ux. (A.3)

In deriving the PDE (A.3), we assume the existence of a complete, no-arbitrage market
in which the participants (the policyholder and the insurer) can rebalance their portfolios
without transaction costs. Instead, taxation is considered from an individual’s perspective as
it manifests at the boundary conditions of (A.3), when the policyholder elects to surrender
or receives the final payout from the GMAB contract.

Re-arranging Equation (A.3) and applying the transformation t = T�⌫ where t represents
the time to maturity on the contract, u will satisfy the PDE

1

2
�2x2uxx + xq · uy + (r � q) · xux � ru� ut = 0. (A.4)

B Fichera theory

The Fichera function corresponding to a general PDE for u(x1, x2, ..., xn) of the form
nX

i=1

nX

j=1

aij
@2u

@xi@xj
+

nX

i=1

bi
@u

@xi
+ c = 0

on a boundary with inward pointing unit normal vector n̂ = (n1, n2, .., nn) is defined in Meyer
(2001) as:

b(x) =
nX

i=1

✓
bi(x)�

nX

j=1

@aij
@xj

◆
ni

If we choose to label our variables as x1 = x, x2 = y and x3 = t, then for the PDE that we are
solving (equation (4)), the Fichera function at the boundary y = Y depends on the following
quantities:

n̂ = (n1, n2, n3) = (0,�1, 0) (the inward pointing unit normal vector of the plane y = Y )

b2(x) = q · x (the coe�cient of uy)

a21(x) = a22(x) = a23(x) = 0 (coe�cient of uxy, uyy and uty respectively)

The other terms do not matter because n1 = n3 = 0. Thus the Fichera function is simply
b(x) = �q · x which is always negative on the solution domain (x and q are always positive).
According to the theory (Meyer (2001); Oleinik (2012)), if the Fichera function has negative
sign then it is possible to supply a Dirichlet condition at that particular boundary and have
a well posed problem. Thus, we permit ourselves to introduce a condition for u(x, Y, t) as it
is consistent with the mathematical theory.
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B.1 Justification of the Additional Boundary condition where y ! 1

We justify the approximation made to the case when large fees are paid and the taxable
income is zero, that is, uy(x, Y, t) = 0. This Neumann condition (a restriction imposed on the
derivative) could be re-interpreted as a Dirichlet condition (a restriction imposed on the value
of the solution, u, itself) with some additional financial reasoning as follows; putting uy = 0
into equation (4), we recover the following 2-dimensional PDE

1

2
�2x2uxx + (r � q) · xux � ru� ut = 0. (B.1)

which must be solved subject to the following boundary conditions

u(x, Y, 0) = max (x,G), (B.2)

u(s(t, Y ), Y, t) = s(t, Y )�t, (B.3)

u(0, Y, t) = Ge�rt, (B.4)

ux(s(t, Y ), Y, t) = �t. (B.5)

The boundary conditions (B.2) - (B.5) are obtained from the equations (5) - (8) in the limit
as y ! 1.

Solving (B.1) subject to boundary conditions (B.2) - (B.5) is equivalent to a GMAB rider
subject to the same fee rate and surrender penalties however without taxes. This is a sim-
plified version of the problem presented in Kang and Ziveyi (2018) where the authors also
incorporate stochastic volatility and interest. This GMAB can be priced using the method
of lines by discretizing equation (B.1) in t and maintaining continuity in x. The values of
the solution to (B.1) can be used as an approximate Dirichlet boundary condition for u(x, Y, t).

Note that this no longer holds whenever losses can o↵set capital gains as the value function
will be dependent on the tax rate even for high fees paid. However, a boundary condition
at y = Y is still required. Here, we use extrapolation to estimate the far field boundary at
y = Y , rather than supplying one as a Dirichlet condition, since it is di�cult to specify one
using financial reasoning as presented earlier in Section 2.2. The extrapolation proceeds as
follows: before starting the sweep from y = Y = yK to y = 0, we approximate the value
u(x, Y, tn) as the discounted value of u(x, Y, tn�1). That is,

u(x, Y, tn) = u(x, Y, tn�1)e
�r�t.

After the algorithm obtains a solution along the plane t = tn using this crude approximation,
we then modify the boundary value at u(x, Y, t) using linear extrapolation

u(x, Y, tn) = 2u(x, yK�1, tn)� u(x, yK�2, tn).

Numerical experiments suggest that further Gauss-Seidel iterations as described in Meyer
(2015) is not necessary as it does not greatly alter the results obtained.

C Method of lines implementation

In order to solve Equation (4), it is discretised in t and y directions and continuity is main-
tained in x. Let 0 = t0 < t1 < ... < tn < ..., tN = T be a uniformly space time grid
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and 0 = y0 < y1.... < yK = Y be the (uniform) grid for the spatial variable y. Denote
u(x, yk0 , tn0) = uk0,n0(x) = uk0,n0 . The following finite di↵erence approximations are used along
the line t = tn, y = yk (where we let uk,n = u to emphasise that u is presently being solved
for as a function of x):

ut =

(
u�uk,n�1

�t if n = 1, 2
3
2
u�uk,n�1

�t � 1
2
uk,n�1�uk,n�2

�t if n � 3,
(C.1)

and

uy =

(
uk+1,n�u

�y if k = K � 1,K � 2
3
2
uk+1,n�u

�y � 1
2
uk+2,n�uk+1,n

�y if k  K � 3,
(C.2)

The method of lines as presented in Meyer (2015) can be used to solve the system of equations
generated when Equations (C.1) and (C.2) are used to approximate a solution for the partial
di↵erential equation (4).

Substituting (C.1) into (4) will give:

1

2
�2x2uxx + xq · uy + (r � q) · xux � c̃u = f̂ (C.3)

where c̃ = r +

(
1
�t if n = 1, 2
3

2�t if n � 3

and f̂ =

(
�uk,n�1

�t if n = 1, 2

�4uk,n�1�uk,n�2

2�t if n � 3
Similarly (C.2) can be substituted into (C.3) to recover the equation:

1

2
�2x2uxx + (r � q) · xux � ĉu = F (C.4)

which is subject to equations (5) - (8) as boundary conditions on u, where

ĉ = c̃+

(
xq
�y if k = K � 1,K � 2
3xq
2�y if k  K � 3

and F = f̂ �
(
x · q · (uk+1,n

�y ) if k = K � 1,K � 2

x · q · (2uk+1,n

�y � uk+2,n

2�y ) if k  K � 3
These di↵erence schemes were chosen in light of the fact that u is known along the plane t = 0
(the payo↵ boundary condition) and also along the plane y = Y .

Solving Equation (C.4) requires the one dimensional Method of Line solution, which is
already discussed in great detail in Meyer (2015), which the following discussion is based on.
We first rewrite (C.4) as the two point boundary value problem

u0(x) = v(x), u(0) = (G� ⌧ [G� yk � x0 � C0]+)e
�rtn (C.5)

v0(x) = C(x)u+D(x)v + g(x), v(S) = �t � ⌧�tI{[S�t � y � x0 � C0 > 0} (C.6)

where S = s(tn, yk) is the free boundary that needs to be computed along with the solution
and

C(x) =
2ĉ(x)

�2x2

D(x) =
2(q � r)

�2x2

g(x) =
2F

�2x2
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The solution method of the system in (C.5) , (C.6) requires us to observe that the functions
u(x), v(x) are related through the Riccati transformation u(x) = R(x)v(x) +w(x). R(x) and
w(x) are solutions to the initial value problems

R0 = 1�D(x)R� C(x)R2, R(0) = 0 (C.7)

w0 = �C(x)R(x)w �R(x)g(x), w(0) = (G� ⌧ [G� yk � x0 � C0]+)e
�rtn (C.8)

We first solve equation (C.7) using the implicit Trapezoidal rule as detailed in Meyer (2015),
although in principle any standard technique for first order initial value problems can be
employed. Equation (C.7) depends only on the order of the di↵erence schemes being used.
Hence, in this case, there are actually only 4 possible solutions for R(x) (depending on if k
is greater than or less than K � 3, and if n is greater than or less than 2). Thus we solve
for R(x) outside the main loop and store the 4 separate solutions o↵-line. Once the values
of R(x) along the grid points are obtained, these known values can be used to solve equation
(C.8). This is also done using the trapezoidal rule for ODEs described in Chapter 3 of Meyer
(2015).
Now we turn our attention to finding the exercise point S = s(tn, yk). This is done by
considering the function �(x) = u(x) � R(x)w(x) � v(x) and noting that, by definition, it
equals zero for 0  x  S. Thus �(S) = u(S) � R(S)w(S) � v(S) = 0. Moreover, the
boundary conditions of equation (6) and (8) define what values u(S) and v(S) must take. In
order to compute the appropriate S, we define the functions:

vb(x) = �tn � ⌧�tnI{x� yk � x0 � C0 > 0}
ub(x) = �tnx� ⌧ [�tnx� y � x0 � C0]+

and see that value of S is the root of the equation �̃(x) = ub(x)� vb(x)R(x)� w(x).
These values are known on the points along x, so we find S by identifying where a sign change
occurs in function �̃. More specifically, one uses the fact that �̃(xs)·�̃(xs+1) < 0 then S occurs
in the interval [xs, xs+1]. We use linear interpolation to estimate S. If there are multiple sign
changes, we refer to the root computed at the previous iteration and choose the one that is
closest to it, as s(t, y) must be continuous for this particular problem. From general financial
reasoning, a small change in t or y should not produce a discontinuous jump in the surrender
behaviour for the GMAB.
Once S is found, the reverse sweep can proceed to solve for v(x). Using the same linear
implicit method used to find w(x), the initial value problem in equation (C.6) can be solved.
Since x = S is not a point in the chosen grid, in order to perform the first backward step from
x = S to the nearest grid-point, we estimate the values of C(S), R(S), g(S) and D(S) using
linear interpolation.
Since v(x) is computed for x < S, we set the solution as:

u(x) =

(
R(x)v(x) + w(x) if x < S

ub(x) if x � S

One sweeps backwards from y = Y to y = 0 for each time level, solving along a plane of
constant t = tn. Once this plane is computed, then we then move onto the next time step
t = tn+1 and repeat this process sweeping backwards along lines of constant y. Since we are
sweeping backwards in the grid for y and the initial condition at y = Y = yk is provided in
Section 2.2, this means that in Equation (C.4), the source term F will always be known. One
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advantage of this scheme is that Gauss-Seidel line iteration is not required since a forward
di↵erence approximation is used for uy and u is known along y = Y = yK . Typically Gauss
Seidel line iteration is required for PDEs with more than one spatial variable (Kang and
Ziveyi, 2018).

D Financial arguments explaining the origin of the valley of

surrender

Let CV (x, y, t) be the continuation value of the GMAB product. The surrender boundary
is represented by the set of points {(x, y, t) 2 R3|CV (x, y, t) = �tx � ⌧(�tx � y � x � C0)+}
We define the cross section as {(x, y) 2 R2|CV t(x, y) = �tx � ⌧(�tx � y � x � C0)+} Where
CV t(x, y) is a continuation value function defined for a specific point in time t (here we con-
sider cross sections of the surrender boundary are plotted along planes of constant t). A
relevant example is Figure 3(a).

Consider a point (x0, y0) that lies on the surrender boundary. Let (x0 + �x, y0 + �y)
also lie on the surrender boundary. Consider the case where (x0, y0) is chosen such that the
taxable income is equal to zero. Then for small �x and �y, applying the multivariable chain
rule we have:

CV t(x0 +�x, y0 +�y)� CV t(x0, y0) ⇡ �t�x.� I⌧�t⌧
CV t

x�x+ CV t
y�y ⇡ �t�x.� I⌧�t⌧.

where the indicator function I⌧ is 1 if taxable income (�tx � y � x0 � C0) is positive and is
equal to zero otherwise.

Re-arranging and solving for the slope gives:

�x

�y
=

⌧I⌧ � CV t
y

CV t
x � (1� ⌧I⌧ )�t

There are several things to note here:

1. The denominator is always negative

2. A discontinuity in �x
�y will be present due to the presence of the indicator function

3. The numerator is negative for I⌧ = 0 and positive otherwise.

Further justification is provided for points 1 and 3.

Increasing the ‘fund value’ x will push the policyholder ‘deeper’ into the surrender region
(since it is a minimum fund value that triggers surrender). In order for the the policyholder to
prefer surrender, the change in the continuation value by adding 1 dollar to the fund, which
is (CV t

x), must be less than the value yielded by that extra dollar upon immediate surrender,
which is (1� ⌧I⌧ )�t. This proves point 1.

We also note that CV t
y > 0, so the numerator is negative for I⌧ = 0. All else equal, if

more fees have been paid then this will allow for more tax deductions in the future. It is also
true that CV t

y < ⌧ . This is because the added value of an extra dollar of fee paid CV t
y will
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increase future payo↵s by at most ⌧ (due to the tax deduction). However due to the time
value of money, the increase in value is bound above by ⌧ . Hence the numerator is positive
for I⌧ = 1 This proves point 3.

Using points 1,2,3 the surrender cross section must be decreasing initial (for small y where
taxable income is greater than zero, I⌧ = 0), then make a sharp turn (derivative doesn’t
exist), and then increase after that (for large y where taxable income exceeds 0, I⌧ = 1). As y
approaches infinity the slope should go to zero since taxation is irrelevant at this point (and
we return to the y independent surrender boundary observed with a tax rate of zero).
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Online supplementary material

E Sensitivity analysis: impact of interest rates, volatility and

surrender penalties on surrender and fair fees

Table E.1: Sensitivity analysis: analysis of the impact of r, � and  on policyholder (qp) and
insurer (qi) fair fees. The rest of the parameters are given by Table 1.

Losses o↵set gains Capital gains only
�=0.20 r=0.03 �=0.20 r=0.03

qp qi qp qi qp qi qp qi

r=0.025 7.11 4.80 �=0.15 0.47 1.74 r=0.025 4.06 5.20 �=0.15 0.22 1.73
r=0.030 1.97 3.42 �=0.20 1.97 3.42 r=0.030 1.93 3.51 �=0.20 1.93 3.51
r=0.035 0.56 2.42 �=0.25 5.00 5.27 r=0.035 0.56 2.43 �=0.25 3.91 5.68

=0.005 =0.01 =0.005 =0.01
qp qi qp qi qp qi qp qi

⌧=0 3.35 3.35 ⌧=0 2.57 2.57 ⌧=0 3.35 3.35 ⌧=0 2.57 2.57
⌧=0.225 1.97 3.42 ⌧=0.225 1.23 2.60 ⌧=0.225 1.93 3.51 ⌧=0.225 1.24 2.64

In Table E.1, a higher r is accompanied by a lower fee rate. Since policyholders can obtain
a greater return in the risk-free market, they may be less interested to enter the contract for
the same level of maturity guarantee. Hence as reflected in Figures E.1(a) the surrender
boundary is shifted up implying that the policyholder is still willing to remain invested in the
contract in spite of the guarantee being worth less.

The combination of r = 2.5% and � = 20% creates the possibility for such a market to
exist as qp > qi. For this parameter choice, any rational policyholder and insurer are willing
to enter into a contract because the policyholder receives their fair value while the insurer
profits at the expense of the government. The problem of how to divide such profits is similar
to the well known ‘ultimatum game’ problem from game theory (see for example Güth et al.
(1982)). In this case, a likely equilibrium solution to this game is one where the insurer
charges the highest fee possible and the policyholder does not capture any of the gain. Such a
situation could materialise because the insurer is the agent who makes the o↵er in the game.
It is rational for the policyholder to accept any fee rate, no matter how low the o↵er is since
any positive net profit is preferable to rejecting the contract. Therefore, it is rational for the
insurer, the agent making the o↵er, to o↵er the fee rate that yields to them the highest profit
without any regard for the policyholder.
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Figure E.1: Impact of interest rates (a) and volatility (b) on optimal surrender at given
amounts of cumulative fees paid and times to maturity, with o↵sets allowed
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In Table E.1 we note that for higher values of �, qp increases faster than qi. This because
the higher fee rate which accompanies greater market volatility corresponds to more savings
for the policyholder when losses are allowed to o↵set gains. In contrast, when only losses
cannot be used to reduce tax payable, the policyholder fair fee is lower.

In Figure E.1(b), for small values of t a higher volatility causes the surrender boundary to
shift outwards. This is because the guarantee is more attractive in a highly volatile, uncertain
market. However early on in the contract, for larger time to maturity t, the surrender bound-
ary is shifted down due to the high fair fee rate which accompanies the increase in �. For a
particular time to maturity, we note that the surrender boundary continues to have a linear
dependency on y due to the marginal benefit of ⌧y associated with each additional dollar of
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fee paid.
In Table E.1 as  increases, qi decreases because the insurer is also able to collect more

from the larger surrender penalty they impose. The same is true for qp as observed in Table
E.1. From the insurer’s perspective, the higher surrender penalty also ensures the policyholder
stays in the contract for longer. Thus they can reduce the fee rate that they charge during
the life of the contract. Note that in the first row of Table E.1 that examines the sensitivity
to , qi,⇤ = qp,⇤ are identical since ⌧ = 0.

We also show the impact on optimal surrender after increasing . As shown in Figure
E.2, a higher surrender penalty shifts the surrender boundary upwards, since an increase in
surrender penalty is also accompanied by a decrease in the fair fee rate. This reduces the
policyholder’s incentive to surrender and as expected the di↵erence is always positive. The
surrender penalty is e↵ective for all values of y and t. Since the surrender boundary is higher,
the policyholder will require a higher fund value to trigger optimal surrender.

Figure E.2: Optimal surrender when  = 0.010 minus when  = 0.005
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We conclude our sensitivity analysis by summarising our findings as follows;

(i) a higher value of r implies a lower fee rate and an increase in revenue to the government,

(ii) a higher value of � implies a higher fee rate and a decrease in revenue to the government,

(iii) a higher value of r pushes up the policyholder surrender boundary for all values of y
and t,

(iv) a higher value of � will pull the surrender boundary down during early stages of the
contract due to a high fee rate, but pushes it up later on in the life of the contract since
the guarantee appears more attractive in a highly volatile and more uncertain market.

F Sensitivity analysis for the Profit and Loss analysis

Each of the tables below are constructed assuming that the policyholder fair fee qp is charged
for that respective parameter setting.
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Table F.2: Varying interest rates

r=0.025, tax free (qp = 5.04%) r=0.025, no o↵set (qp = 4.06%) r=0.025, o↵set (qp = 7.11%)
SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45

Surrender fee 0 0 5.156 0 1.1e-4 6.4556 0 0 4.4805
Guarantee cost 56.83 18.11 0 45.86 1.8445 0 74.8896 46.4382 0
Mgmt fees 63.05 78.475 48.8593 54.35 68.023 27.64 77.0478 94.7953 60.2695
Surrender Rate 0% 0% 49% 0% 0.69% 100% 0% 0% 100%
Avg time elapsed 15 15 8.0138 15 14.9998 5.769 15 15 7.6986
Net profit 6.221 60.363 54.02 8.49 66.1755 21.18 2.16 48.357 55.789
(BASE Parameters) r=0.03, tax free r=0.03, no o↵set r=0.03, o↵set

SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45
Surrender fee 0 0.3831 6.8623 5.06E-06 2.3287 7.4236 0 1.8858 7.3462
Guarantee cost 29.998 0 0 7.2757 0 0 7.9411 0 0
Mgmt fees 48.917 59.245 24.8215 31.1907 30.5879 15.2211 31.73 32.9456 16.405
Surrender Rate 0% 100% 100% 0.0002 1 1 0 1 1
Avg time elapsed 15 14.497 6.0104 15 12.2795 6.1216 15 12.8382 6.3975
Net profit 18.92 59.63 31.68 23.915 28.259 7.8 23.79 34.8314 23.7512

r=0.035, tax free (qp = 2.30%) r=0.035, no o↵set (qp = 0.56%) r=0.035, o↵set (qp = 0.56%)
SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45

Surrender fee 0 2.3864 7.551 0.274 3.4169 8.0565 0.2741 3.419 8.0574
Guarantee cost 5.58 0 0 0 0 0 0 0 0
Mgmt fees 38 37.11 17.02 9.873 9.1068 6.0718 9.8725 9.1043 6.0709
Surrender Rate 0% 100% 100% 1 1 1 1 1 1
Avg time elapsed 15 12.25 5.737 14.65 11.6981 7.5543 14.65 12.8382 7.5535
Net profit 32.42 39.496 24.57 10.14 12.523 14.128 10.15 12.524 14.128
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Table F.3: Varying volatility

� = 0.15, tax free (qp = 1.68%) � = 0.15, no o↵set (qp = 0.22%) � = 0.15, o↵set (qp = 0.47%)
SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45

Surrender fee 0.0022 2.6831 6.8103 0.5526 2.9691 6.5024 0.5526 2.9691 6.5024
Guarantee cost 0.1094 0 0 0 0 0 0 0 0
Mgmt fees 29.1212 25.3768 13.3015 3.6325 3.3717 2.6709 3.6325 3.3717 2.6709
Surrender Rate 12.43% 100% 100% 100% 100% 100% 100% 100% 100%
Avg time elapsed 14.9966 11.6862 6.2089 14.31 11.947 8.9255 14.31 11.947 8.9255
Net profit 29.01 28.0599 20.1118 4.1851 6.3408 9.1733 4.1851 6.3408 9.1733

� = 0.25, tax free � = 0.25, no o↵set � = 0.25, o↵set
SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45

Surrender fee 0 0 6.21 0 0.0564 7.2973 0 3.90E-06 6.3151
Guarantee cost 61.46 13.47 0 45.6133 2.09E-05 0 56.7 5.3872 0
Mgmt fees 65.17 85.62 47.16 52.4865 69.3425 26.4297 61.4143 80.9474 45.5969
Surrender Rate 0% 0% 100% 0% 97.15% 100% 0% 0.03% 100%
Avg time elapsed 15 15 7.06 15 14.92 5.4782 15 15 7.296
Net profit 3.72 72.15 53.37 6.8733 69.3989 33.727 4.7143 75.5603 51.912
(BASE PARAMETERS) � =base, tax free � =base, no o↵set � =base, o↵set

SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45
Surrender fee 0 0.38 6.862 5.06E-06 2.3287 7.4236 0 1.8858 7.3462
Guarantee cost 30 0 0 7.2757 0 0 7.9411 0 0
Mgmt fees 48.92 59.24 24.82 31.1907 30.5879 15.2211 31.73 32.9456 16.405
Surrender Rate 0% 100% 100% 0.02% 100% 100% 0% 100% 100%
Avg time elapsed 15 14.50 6.011 15 12.2795 6.1216 15 12.8382 6.3975
Net profit 18.91 59.62 31.69 23.915 28.259 7.8 23.79 34.8314 23.7512
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Table F.4: Varying taxation rate

⌧ = 0 ⌧ = 0.175, no o↵set ⌧ = 0.175, o↵set
SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45

Surrender fee 0 0.384 6.8598 0 1.9357 7.2912 0 1.303 7.1701
Guarantee cost 30.01 0 0 14.75 0 0 16.61 0 0
Mgmt fees 48.92 59.24 24.8405 37.08 37.9061 17.5272 38.46 42.4385 19.5754
Surrender Rate 0% 100% 100% 0% 100% 100% 0% 100% 100%
Avg time elapsed 15 14.49 6.0143 15 12.6502 5.875 15 13.44 6.2121
Net profit 18.91 59.62 31.7 22.33 39.84 24.82 21.85 43.74 26.74

⌧ = 0, tax free ⌧ = 0.275, no o↵set ⌧ = 0.275, o↵set
SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45

Surrender fee 0 0.384 6.8598 0.003 2.5692 7.5862 0.0029 2.566 7.59
Guarantee cost 30.01 0 0 0.0802 0 0 0.0774 0 0
Mgmt fees 48.92 59.24 24.8405 21.1409 20.469 11.5236 21.1409 20.48 11.52
Surrender Rate 0% 100% 100% 16.10% 100% 100% 15.90% 100% 100%
Avg time elapsed 15 14.49 6.0143 14.99 12.23 6.8181 14.9958 12.23 6.815
Net profit 18.91 59.62 31.7 21.06 23.03 19.11 21.07 23.05 19.1
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Table F.5: Varying roll-up rates

� = 0.01, tax free � = 0.01, no o↵set � = 0.01, o↵set
SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45

Surrender fee 0 2.23 7.3382 0.155 3.27 7.738 0.1577 3.27 7.738
Guarantee cost 5.4402 0 0 0 0 0 0 0 0
Mgmt fees 36.703 36.08 16.7845 14.965 13.49 8.3758 14.88 13.49 8.3758
Surrender Rate 0% 100% 100% 100% 100% 100% 100% 100% 100%
Avg time elapsed 15 12.2622 5.7263 14.77 11.49 6.9513 14.77 11.49 6.9513
Net profit 31.2627 38.3153 24.1227 15.12 16.75 16.11 15.03 16.75 16.11

� = 0.02, tax free � = 0.02, no o↵set � = 0.02, o↵set
SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45 SR=0.10 SR=0.25 SR=0.45

Surrender fee 0 0 5.3834 0 0.0051 6.6672 0 0 5.54
Guarantee cost 60.8298 18.8222 0 45.71 0.1564 0 55.99 11.3 0
Mgmt fees 65.0776 81.2308 49.6514 53.62 67.3915 27.8996 61.46 76.9 46.515
Surrender Rate 0% 0.00% 100% 0% 21.74% 100% 0% 0% 100%
Avg time elapsed 15 15 8.0086 15 14.993 6.042 15 15 8.04
Net profit 4.248 62.4086 55.0348 7.91 67.24 34.56 5.47 65.6 52.06
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