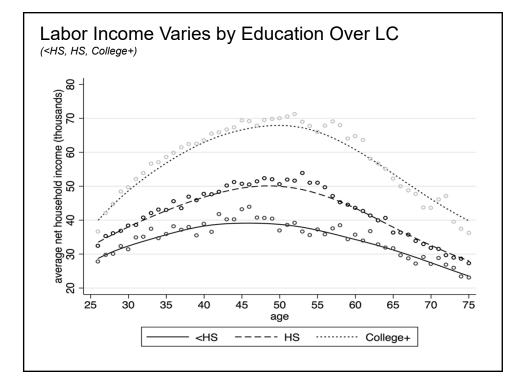
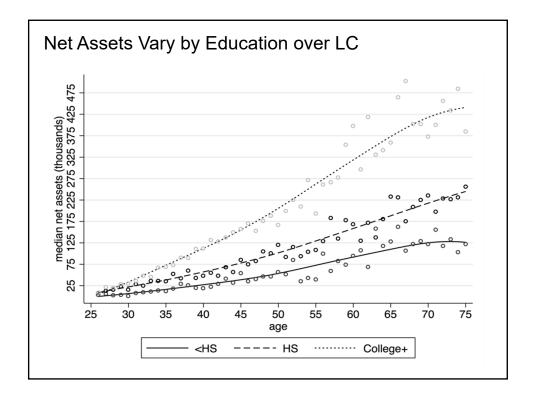
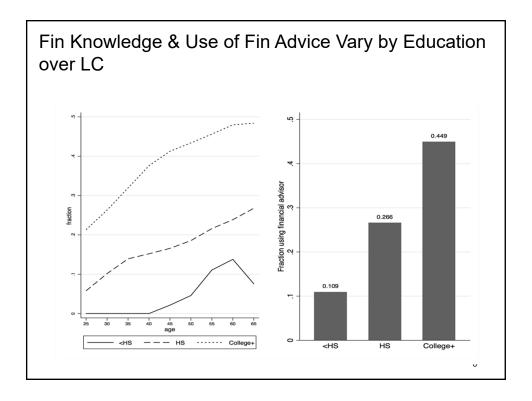

We propose:


- Financial knowledge is a form of human capital :
 - Raises expected return on saving, lowers borrowing rate, may help lower variance (diversification);
 - Is expensive to acquire in money, time, & utility terms.


May explain wealth heterogeneity:


- Diff's in income paths by education groups create different incentives for investment;
- In turn, produces differences in return exacerbating wealth inequality.
- Policy importance:
 - Policies that shift responsibility to consumers in a world of imperfect literacy could be harmful;
 - Policies that improve FK may have economic & welfare benefits.

4

Our model:

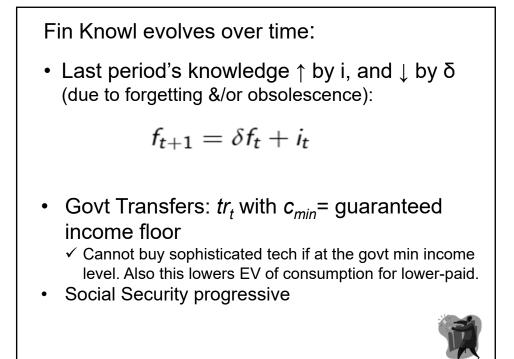
- Consumers max EU of life cycle consumption: function of household composition $n_t * u(c_t/n_t)$ where $n_t =$ HH equiv scale.
- Given budget constraint w/ uncertainty:
 - Net of tax labor income subject to shocks y_t ;
 - Stochastic OOP medical expenditures (when retired) oop_t;
 - Mortality tables;
 - Stochastic returns for sophisticated financial products > risk-free rate.

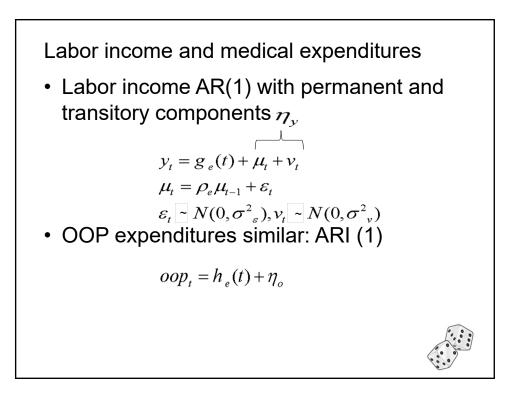
 \rightarrow No pref heterogeneity.

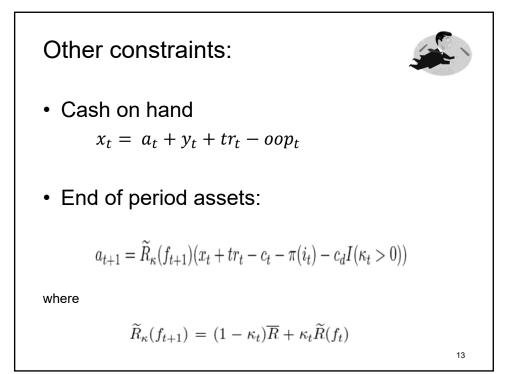
Two technologies available to transfer resources over time:

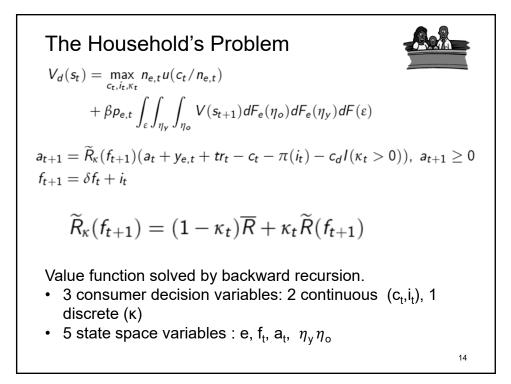
• Simple technology pays risk-free return

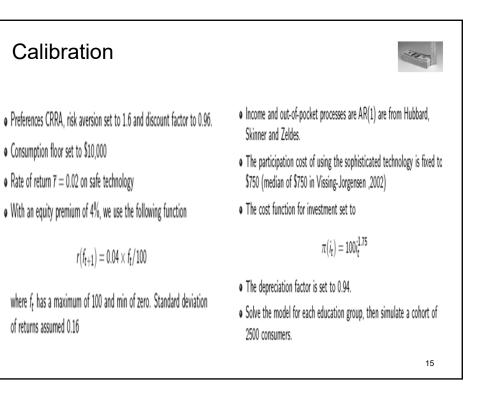
$$\overline{R} = 1 + \overline{r}$$

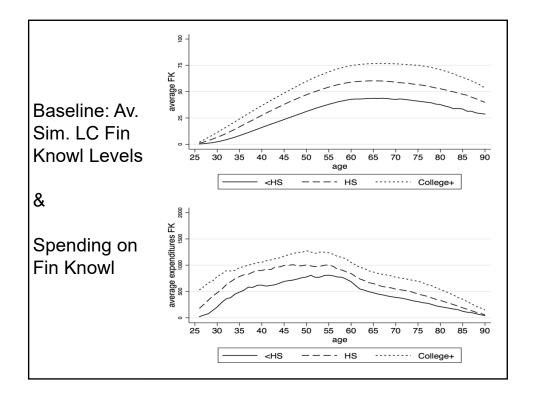

• Sophisticated technology pays an expected rate of return which depends on f_t

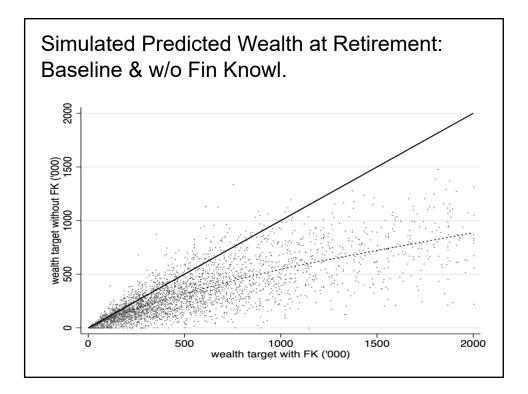

$$\tilde{R}(f_{t+1}) = \overline{R} + r(f_{t+1}) + \delta_{\varepsilon} \varepsilon_{t+1}$$

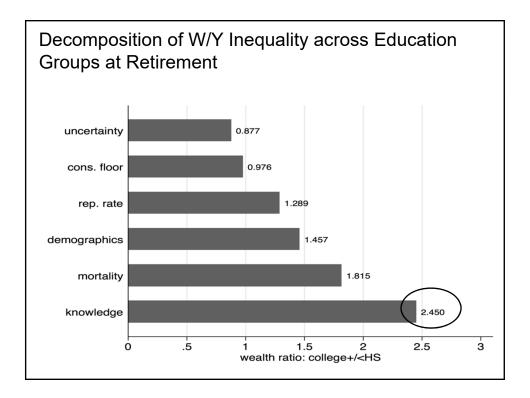

where $\epsilon_t \sim N(0,1)$ iid shock; middle term is excess returns due to investment; δ is st.dev. of returns on the sophisticated technology.


- To invest, must pay fixed costs c_d and allocate time π_i(i_t)
- $\kappa_t = 1$ if invest, = 0 else.


10







Baseline Parameter Values			
Relative risk aversion (<i>o</i>)	1.6		
Discount factor (β)	0.96	5	
Risk-free return (\overline{r})	0.02	2	
Max return for knowledge	0.04	ŀ	
investment $r(f_{max})$			
Inv'stmt prod'n f'n	π_{\circ}	50	
$\pi(i) = 50^{*i^{1.75}}$	${\pmb \Pi}_1$	1.75	
Fixed cost of partic. in soph			
tech (c _d)	750		
Depr. rate for fin knowledge	;		
(δ)	0.06		
Min consumption floor (Cmin)	10.0	00	
	10,0	00	16

Simulated & Observ Baseline Simulation			tirement (65) Coll/ <hs< th=""></hs<>
Med. Wealth (\$W)	95K	347K	3.66
Ave. Income (\$Y)	32K	48K	1.49
W/Y Ratio	2.98	7.3	2.45
% Poor $(w_t < 2y_t)$	0.39	0.17	0.45
% Part.($\kappa_t > 0$)	0.45	0.78	1.74
Data (PSID)			
Med. Wealth (\$W)	102K	365K	3.59
% Poor $(w_t < 2y_t)$	0.35	0.16	0.46
% Part. ($\kappa_t > 0$)	0.28	0.75	2.68
			19

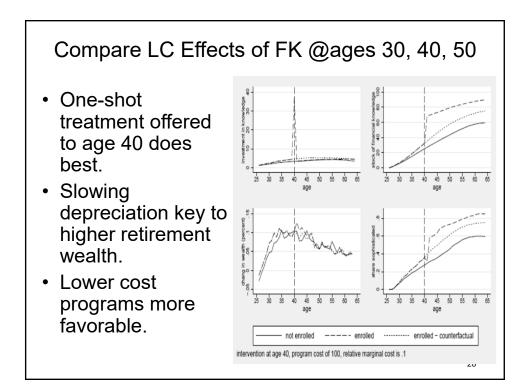
Decomposing Inequality

Sensitivity of ratio of median W/Y for college graduates to high school dropouts at retirement:


- With uncertainty alone: 0.88
- With consumption floor: 0.98
- Different replacement rates: 1.3
- Differences in demographics and mortality: 1.8
- Financial knowledge: 2.45

Paper Offers Much Sensitivity Analysis for Pref's & Costs

- Different risk aversion (σ=1.6 vs 1.1 or 3)
- Diff depreciation for fin knowledge (δ=.06 vs .03 or .09)
- Diff investmt prod'n f'n (π(i) = 100*i^{1.75} and 4 variants)
- Diff fixed cost of participation in sophisticated tech (*cd*=\$750 vs 500 and 1000)
- Diff. discount factors (β=.96 vs .94 and .98)



Baseline Simulati	on <u><hs< u=""> (</hs<></u>	<u>College</u> <u>C</u>	oll/ <hs< th=""></hs<>
Med. Wealth	95K	347K	3.66
W/Y	2.98	7.3	2.45
% Poor	0.39	0.17	0.45
% Partic.	0.45	0.78	1.74
% Low FK	0.54	0.21	0.39
Lower Cmin Flr	·		••••••
Med. Wealth	109K	361K	3.32
W/Y	3.42	7.6	2.22
% Poor	0.36	0.16	0.45
% Partic.	0.47	0.7	1.65
Low FK	0.52	0.19	0.37
Lower Ret. Incom	e		••••••
Med. Wealth	125K	412K	3.29
W/Y	4.08	9.01	[2.21]
% Poor	0.29	0.09	0.31
% Partic.	0.49	0.8	1.65
Low FK	0.49	0.16	0.32

Also Use Model For Program Evaluation of Employer-Provided Fin Knowl Programs

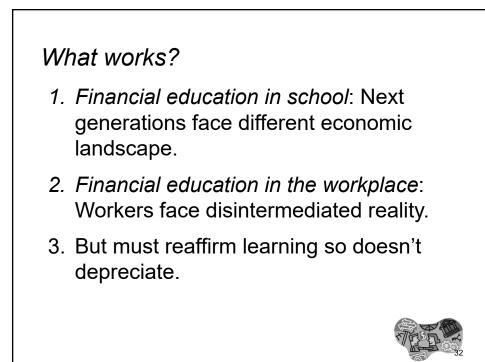
- Fin program can cut ee cost of investing in knowledge.
- Firm offers program & eligibility assigned randomly to all ees of a given age.
- Compare each (simulated) ee's outcome with and without access to program.
- Great advantage: we see actual counterfactuals! So can estimate selection bias.

Participant vs Nonparticipant Diff's

(conditional on being eligible):

- Participation in FK is endogenous.
 - Participants have higher earnings, more initial knowledge, and more wealth at baseline;
 - Nonparticipants are poorer, earn less, and have little financial knowledge at baseline.
- Selectiveness implies: average program effectiveness measure that assumes program *nonparticipants* could benefit as much as *participants* will be biased.

29


Illustration:

- If program participation assumed to be independent of retirement wealth, nonparticipants can help measure the counterfactual: Estimated program effect suggests retirement wealth up by 75%.
- \rightarrow But actually, effect is 1% and ns!
- Using wealth trend of nonparticipants as counterfactual grossly overestimates program effect.
- DD with eligibility yields smaller biases, compared to using participation.

Conclusions:

- Financial knowledge is *economically important* for understanding differences in LC wealth accumulation.
- Makes sense for some to remain unsophisticated, and for effects to fade in later life.
- Program evaluation needs to acknowledge endogeneity of FK program participation.
- Safety nets raise wealth inequality.

Thank you!

Wharton

For more information: Wharton's Pension Research Council: <u>http://www.pensionresearchcouncil.org/</u>

Books and working papers: <u>http://www.pensionresearchcouncil.org/publica</u> <u>tions/books.php</u>

Related

Behrman, J, O.S Mitchell, C. Soo, & D. Bravo. 2011. "Financial Literacy, Schooling, and Wealth Accumulation." *AER*.

Hastings, J., O.S. Mitchell, & E. Chyn. 2011. "Fees, Framing, and Financial Literacy in the Choice of Pension Managers." In *Financial Literacy*. Eds. O.S. Mitchell & A. Lusardi. OUP.

Lusardi, A, P-C Michaud, & O.S. Mitchell. 2017. "Optimal Financial Literacy and Wealth Inequality." *JPE*.

Lusardi, A., P-C Michaud, and O.S. Mitchell. 2014. "Using a Life Cycle Model to Evaluate Financial Literacy Program Effectiveness." PRC Working Paper.

Lusardi, A. and O.S. Mitchell. 2011. "Financial Literacy around the World: An Overview." *JPEF*: 497-508.

Lusardi, A., O.S. Mitchell, and V. Curto. 2010. "Financial Literacy among the Young: Evidence and Implications for Consumer Policy." *JCA*. 44: 358-380.

Lusardi, A.and O. S. Mitchell. 2008. "Planning and Financial Literacy: How Do Women Fare?" AER P&P. 98: 413–417

Lusardi, A.and O.S. Mitchell. 2007. "Baby Boomer Retirement Security: The Roles of Planning, Financial Literacy, and Housing Wealth." *JME*. 54: 205-224.

Mitchell, O S. & A. Lusardi. 2014. The Economic Importance of Financial Literacy: Theory and Evidence." *JEL*. 52: 5-44.

34