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Abstract

We generalize model calibration for a multivariate Tweedie dis-
tribution to allow for censored observations; estimation is based on
the method of moments. The multivariate Tweedie distribution we
consider incorporates dependence in a pool of lives via a common
stochastic component. Pools may be interpreted in various ways, from
nation-wide cohorts to employer-based pension annuity portfolios. In
general, the common stochastic component is representative of system-
atic longevity risk, which is not accounted for in standard life tables
and actuarial models used for annuity pricing and reserving.
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1 Introduction

A multivariate Tweedie distribution was used to model pools of lifetimes in
Alai et al. (2015). Dependence was induced via a common stochastic com-
ponent and model calibration results were obtained for truncated observa-
tions. We generalize these results to allow for both truncation and censoring.
Without censoring, only pools with no surviving members could be analysed.
Insight gained from the analysis could be applied to active pools, but not
without introducing some form of basis-risk. The allowance for censored ob-
servations eliminates this limitation and makes the model more applicable
to the study of pools of lives, for example, to price and reserve annuity port-
folios. Lifetimes have previously been modelled using the gamma distribu-
tion, a subclass of the Tweedie distribution; see e.g. Klein and Moeschberger
(1997) and Alai et al. (2013). Dependence between lifetimes has previously
been investigated in the context of joint-life insurance products in Dhaene
et al. (2000) and Denuit et al. (2001).

A multivariate distribution is formulated using the so-called multivariate
reduction method; see Chereiyan (1941) and Ramabhadran (1951) and ap-
plications by Mathai and Moschopoulus (1991) and Chatelain et al. (2006).
This method results in a natural dependency structure for modelling life-
times of individuals within a pool. It makes use of the fact that the sum
of Tweedie random variables with the same canonical parameter follows a
Tweedie distribution. The multivariate reduction method applied to the ex-
ponential dispersion family (EDF) only yields a multivariate distribution for
the Tweedie subclass; see Furman and Landsman (2010).

The Tweedie class, introduced in Tweedie (1984), is widely used in actuar-
ial science; see e.g. Aalen (1992), Jørgensen and De Souza (1994), Smyth and
Jørgensen (2002), Wüthrich (2003), Kaas (2005), and Furman and Lands-
man (2010). Random variable X is said to belong to the EDF of distributions
in the additive form if its probability measure Pθ,λ is absolutely continuous
with respect to some measure Qλ and can be represented as follows for some
function κ (θ) called the cumulant:

dPθ,λ(x) = e[θx−λκ(θ)]dQλ(x);

see Jørgensen (1997), Section 3.1; for a recent reference see Landsman and
Valdez (2005). The parameters θ and λ are called the canonical and disper-
sion parameters, respectively. The canonical parameter belongs to the set
Θ = {θ ∈ R|κ(θ) < ∞} and the dispersion parameter to the set of posi-
tive real numbers Λ = (0,∞) = R+. Let X ∼ ED (θ, λ) denote a random
variable belonging to the additive EDF.
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The cumulant κ (θ) is a twice differentiable function, one-to-one map, and
there exists an inverse function

θ = θ(µ) = (κ′)−1(µ),

where
µ = λκ′(θ);

see e.g. Landsman and Valdez (2005). V (µ) = κ′′(θ(µ)) is called the unit
variance function and determines subclasses of the EDF. In particular, the
Tweedie subclass is defined by a power variance structure

V (µ) = µp,

with power parameter p. Even further classification is obtained by specific
values of p. For example, p = 0, 1, 2, 3 yield the normal, overdispersed Pois-
son, gamma, and inverse Gaussian distributions, respectively. The cumulant
κp(θ) = κ(θ) for the Tweedie subclass has the general form

κ(θ) =


eθ, p = 1,
− log(−θ), p = 2,
α−1
α

( θ
α−1)α, p 6= 1, 2,

where α = (p− 2)/(p− 1). Furthermore, the canonical parameter belongs to
the set Θp, given by

Θp =


[0,∞), for p < 0,

R, for p = 0, 1,

(−∞, 0), for 1 < p ≤ 2,

(−∞, 0], for 2 < p <∞;

see e.g. McCullagh and Nelder (1989). Let X ∼ Twp (θ, λ) denote a random
variable belonging to the additive Tweedie family.

Remark 1. Throughout the paper, we derive results for the additive form
of the EDF. However, a simple transformation yields the reproductive form.
That is, for X, a member of the additive EDF, Y = X/λ is a member of the
reproductive EDF with probability measure P ∗θ,λ, absolutely continuous with
respect to some measure Q∗λ,

dP ∗θ,λ(y) = eλ[θy−κ(θ)]dQ∗λ(y).
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Organization of the paper: Section 2 reviews the multivariate Tweedie
lifetime model. In Section 3 we derive the moments of truncated and cen-
sored multivariate Tweedie random variables. We make use of the method
of moments to formulate parameter estimation algorithms in 4. In Section
5 we apply the estimation procedure to the two most widely used distribu-
tions in the Tweedie family, the normal and gamma distributions. Section 6
concludes the paper.

2 Multivariate Tweedie Survival Model

Following Alai et al. (2015), we assume M pools of lives. The pools can,
in general, be comprised of any collection of lives where the independence
assumption is likely to be violated. Applications range from nation-wide
cohorts to employer-based pension annuity portfolios. Let Ti,j be the survival
time of individual i ∈ {1, . . . , Nj} in pool j ∈ {1, . . . ,M}. For simplicity, we
assume the number of lives in each pool to be identical; Nj = N for all j.
Individual lifetimes are given as follows:

Ti,j = Y0,j + Yi,j,

where

• Y0,j follows an additive Tweedie distribution with power parameter
p, canonical and dispersion parameters θj and λ0, Twp(θj, λ0), j ∈
{1, . . . ,M},

• Yi,j follows an additive Tweedie distribution with power parameter
p, canonical and dispersion parameters θj and λj, Twp(θj, λj), i ∈
{1, . . . , N}, j ∈ {1, . . . ,M},

• The Yi,j are independent, i ∈ {0, . . . , N} and j ∈ {1, . . . ,M}.

The pool-specific common component Y0,j impacts the survival of all the
individuals of that pool (i.e. Y0,j captures the impact of systematic mortality
dependence between the lives in pool j). The pool-specific parameters λj and
θj jointly represent the risk profile of the pool. A consequence of the model
is that survival times Ti,j are Tweedie distributed with power parameter p,
canonical parameter θj, and dispersion parameter λ̃j = λ0 + λj.
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3 Moments for the Exponential Dispersion

Family

In this section we consider the moments of variables for distributions belong-
ing to the EDF that are truncated and censored.

Notation

We briefly provide some necessary notation. Denote with αk(X) and µk(X)
the kth, k ∈ Z+, raw and central (theoretical) moments of random variable
X, respectively.

αk(X) = E[Xk],

µk(X) = E[(X − α1(X))k].

The raw sample moments for random sample X = (X1, . . . , Xn)′ are given
by

ak(X) =
1

n

n∑
i=1

Xk
i , k ∈ Z+.

The raw sample moments of an identically distributed sample are unbiased
estimators of the corresponding raw moments of X1.

E[ak(X)] = αk(X1).

Finally, adjusted second and third central sample moments are given by

m̃2(X) =
1

n− 1

n∑
i=1

(Xi − a1(X))2,

m̃3(X) =
n

(n− 1)(n− 2)

n∑
i=1

(Xi − a1(X))3.

The adjusted central sample moments of an independent and identically dis-
tributed sample are unbiased and consistent estimators of the corresponding
central moments of X1.

E[m̃2(X)] = µ2(X1) and E[m̃3(X)] = µ3(X1).

3.1 Moments for Truncated Variables

Consider truncated variables τjTi,j = Ti,j|Ti,j > τj with known truncation
point τj. We make the simplifying assumption that all pools are subject to
the same truncation point; τj = τ for all j.
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We recall a useful result regarding the theoretical moments of truncated
variables; please refer to Theorem 1 in Alai et al. (2015).

Theorem 1. Consider Y ∼ ED(θ, λ) with probability density and survival
function denoted f(y, θ, λ) and F (y, θ, λ), respectively. Define the associated
truncated random variable τY = Y |Y > τ . The first raw moment and the
second and third central moments of τY are given by

α1(τY ) = α1(Y ) + g1(τ),

µ2(τY ) = µ2(Y ) + g2(τ)− g1(τ)2,

µ3(τY ) = µ3(Y ) + g3(τ)− 3g2(τ)g1(τ) + 2g1(τ)3,

where

gk(τ) = gk(τ ; θ, λ) =
1

F (τ, θ, λ)

∂kF (τ, θ, λ)

∂θk
, k = 1, 2, 3.

In Theorem 1, the gk take the interpretation of additive truncation ad-
justments requisite for transforming non truncated into truncated moments.

3.2 Moments for Truncated and Censored Variables

We presently consider truncated and censored variables
υj
τj Ti,j = min(Ti,j, υj)|Ti,j >

τj with known truncation and censoring points τj and υj. For ease of presen-
tation and simplicity, we assume all pools are subject to the same truncation
and censoring points; τj = τ and υj = υ for all j.

The following theorem gives the theoretical moments of truncated and
censored variables as a function of the theoretical moments of truncated
(only) variables.

Theorem 2. Consider Y with distribution and survival function denoted
F (y) and F (y), respectively. Define the associated truncated random variable

τY = Y |Y > τ,

and the truncated and censored random variable

υ
τY = min(Y, υ)|Y > τ,

where υ ≥ τ . The first raw moment and the second and third central moments
of υ

τY are given by

α1(
υ
τY ) = α1(τY ) + h1(τ, υ),

µ2(
υ
τY ) = µ2(τY ) + h2(τ, υ)− h1(τ, υ)2,

µ3(
υ
τY ) = µ3(τY ) + h3(τ, υ)− 3h2(τ, υ)h1(τ, υ) + 2h1(τ, υ)3,
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where, for k = 1, 2, 3,

hk(τ, υ) =

{
Hk(Υ, τY )−Hk(υY, τY )

}
F (υ)

F (τ)
,

where Υ is degenerate with value υ, and for any two random variables X, Z,
and j ∈ Z+, Hj(X,Z) is given by

Hj(X,Z) =
(
α1(X)− α1(Z)

)j
+

j∑
i=1

(
j

i

)(
α1(X)− α1(Z)

)j−i(
µi(X)− µi(Z)

)
.

The latter may be considered as a measure of distance between random vari-
ables X and Z, based on the central and raw moments. We note that
µ1(·) = 0.

Proof. Consider the first raw moment.

α1(
υ
τY ) =

∫ υ
τ
ydF (y) + υF (υ)

F (τ)
=

∫∞
τ
ydF (y) + υF (υ)−

∫∞
υ
ydF (y)

F (τ)

=

∫∞
τ
ydF (y)

F (τ)
+
υF (υ)

F (τ)
−
∫∞
υ
ydF (y)

F (υ)

F (υ)

F (τ)

= α1(τY ) +
{
υ − α1(υY )

}F (υ)

F (τ)
.

Notice that

h1(τ, υ) =
{
υ − α1(υY )

}F (υ)

F (τ)
,

which agrees with hk(τ, υ) given above with k = 1. The second central
moment is given by:

µ2(
υ
τY ) =

∫ υ
τ (y − α1(

υ
τY ))2dF (y) + (υ − α1(

υ
τY ))2F (υ)

F (τ)

=

∫∞
τ (y − α1(

υ
τY ))2dF (y) + (υ − α1(

υ
τY ))2F (υ)−

∫∞
υ (y − α1(

υ
τY ))2dF (y)

F (τ)
.

We have∫∞
τ

(y − α1(
υ
τY ))2dF (y)

F (τ)
= (α1(τY )− α1(

υ
τY ))2 + µ2(τY ),∫∞

υ
(y − α1(

υ
τY ))2dF (y)

F (υ)
= (α1(υY )− α1(

υ
τY ))2 + µ2(υY ).
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Notice that (α1(τY )− α1(
υ
τY ))2 = h1(τ, υ)2, this implies

µ2(
υ
τY ) = µ2(τY ) + h1(τ, υ)2

+
{

(υ − α1(
υ
τY ))2 −

(
(α1(υY )− α1(

υ
τY ))2 + µ2(υY )

)}F (υ)

F (τ)
.

We have

(υ − α1(
υ
τY ))2 − (α1(υY )− α1(

υ
τY ))2

= (υ − α1(τY ))2 − (α1(υY )− α1(τY ))2 − 2h1(τ, υ)(υ − α1(υY )),

which finally implies that

µ2(
υ
τY ) = µ2(τY ) + h1(τ, υ)2 − 2h1(τ, υ)

{
υ − α1(υY )

}F (υ)

F (τ)

+
{

(υ − α1(τY ))2 −
(
(α1(υY )− α1(τY ))2 + µ2(υY )

)}F (υ)

F (τ)

= µ2(τY )− h1(τ, υ)2

+
{

(υ − α1(τY ))2 −
(
(α1(υY )− α1(τY ))2 + µ2(υY )

)}F (υ)

F (τ)
.

Notice that

h2(τ, υ) =
{

(υ − α1(τY ))2 −
(
(α1(υY )− α1(τY ))2 + µ2(υY )

)}F (υ)

F (τ)
,

which agrees with hk(τ, υ) given above with k = 2. The third central moment
is given by:

µ3(
υ
τY ) =

∫ υ
τ (y − α1(

υ
τY ))3dF (y) + (υ − α1(

υ
τY ))3F (υ)

F (τ)

=

∫∞
τ (y − α1(

υ
τY ))3dF (y) + (υ − α1(

υ
τY ))3F (υ)−

∫∞
υ (y − α1(

υ
τY ))3dF (y)

F (τ)
.

We have∫∞
τ

(y − α1(
υ
τY ))3dF (y)

F (τ)
= (α1(τY )− α1(

υ
τY ))3

+ 3(α1(τY )− α1(
υ
τY ))µ2(τY ) + µ3(τY ),∫∞

υ
(y − α1(

υ
τY ))3dF (y)

F (υ)
= (α1(υY )− α1(

υ
τY ))3

+ 3µ2(υY )(α1(υY )− α1(
υ
τY )) + µ3(υY ).
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Substituting h1(τ, υ) where possible, we obtain

µ3(
υ
τY ) = µ3(τY )− 3µ2(τY )h1(τ, υ)− h1(τ, υ)3

+
{

(υ − α1(
υ
τY ))3 − (α1(υY )− α1(

υ
τY ))3

− 3(α1(υY )− α1(
υ
τY ))µ2(υY )− µ3(υY )

}F (υ)

F (τ)
.

We have

(υ − α1(
υ
τY ))3 − (α1(υY )− α1(

υ
τY ))3

= (υ − α1(τY ))3 − (α1(υY )− α1(τY ))3 + 3h1(τ, υ)2(υ − α1(υY ))

− 3h1(τ, υ)
(
(υ − α1(τY ))2 − (α1(υY )− α1(τY ))2

)
,

which implies

µ3(
υ
τY ) = µ3(τY )− 3µ2(τY )h1(τ, υ)− h1(τ, υ)3 + 3h1(τ, υ)3

+
{

(υ − α1(τY ))3 − (α1(υY )− α1(τY ))3 − µ3(υY )

− 3h1(τ, υ)
(
(υ − α1(τY ))2 − (α1(υY )− α1(τY ))2

)
− 3(α1(υY )− α1(

υ
τY ))µ2(υY )

}F (υ)

F (τ)
.

Rewriting the last two terms in the equation directly above gives:{
−3(α1(υY )− α1(

υ
τY ))µ2(υY )

−3h1(τ, υ)
(
(υ − α1(τY ))2 − (α1(υY )− α1(τY ))2

)}F (υ)

F (τ)

=
{
−3
(
α1(υY )− α1(τY ) + α1(τY )− α1(

υ
τY )

)
µ2(υY )

− 3h1(τ, υ)
(
(υ − α1(τY ))2 − (α1(υY )− α1(τY ))2

)}F (υ)

F (τ)

=
{
−3(α1(υY )− α1(τY ))µ2(υY )

}F (υ)

F (τ)
− 3h2(τ, υ)h1(τ, υ).
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This implies that

µ3(
υ
τY ) = µ3(τY )− 3h2(τ, υ)h1(τ, υ) + 2h1(τ, υ)3

+
{

(υ − α1(τY ))3 − 3(υ − α1(υY ))µ2(τY )− 3(α1(υY )− α1(τY ))µ2(υY )

−
(

(α1(υY )− α1(τY ))3 + µ3(υY )
)}F (υ)

F (τ)

= µ3(τY )− 3h2(τ, υ)h1(τ, υ) + 2h1(τ, υ)3

+
{

(υ − α1(τY ))3 − 3(υ − α1(τY ))µ2(τY )−
(

(α1(υY )− α1(τY ))3

+ 3(α1(υY )− α1(τY ))(µ2(υY )− µ2(τY )) + µ3(υY )
)}F (υ)

F (τ)
.

Notice that

h3(τ, υ) =
{

(υ − α1(τY ))3 − 3(υ − α1(τY ))µ2(τY )−
(

(α1(υY )− α1(τY ))3

+ 3(α1(υY )− α1(τY ))(µ2(υY )− µ2(τY )) + µ3(υY )
)}F (υ)

F (τ)
,

which agrees with hk(τ, υ) given above with k = 3.
In Theorem 2, the hk take the interpretation of additive censoring adjust-

ments requisite for transforming uncensored to censored moments. Theorem
2 holds for any general distribution. We formulate this theorem for the ex-
ponential dispersion family below. However, we first provide a useful lemma.

Lemma 1. For j = 1, 2, 3, and random variables A,B,C,D,

Hj(A,C)−Hj(B,C) =

j∑
i=0

(
j

i

)(
Hi(A,D)−Hi(B,D)

)
Hj−i(D,C),

where H0 ≡ 1.

Please see the appendix for a proof.

Theorem 3. Consider Y ∼ ED(θ, λ) with probability density and survival
function denoted f(y, θ, λ) and F (y, θ, λ), respectively. Define the associated
truncated random variable

τY = Y |Y > τ,

and the truncated and censored random variable

υ
τY = min(Y, υ)|Y > τ,

10



where υ ≥ τ . The first raw moment and the second and third central moments
of υ

τY are given by

α1(
υ
τY ) = α1(τY ) + h1(τ, υ),

µ2(
υ
τY ) = µ2(τY ) + h2(τ, υ)− h1(τ, υ)2,

µ3(
υ
τY ) = µ3(τY ) + h3(τ, υ)− 3h2(τ, υ)h1(τ, υ) + 2h1(τ, υ)3,

where, for k = 1, 2, 3,

hk(τ, υ) =

{
k∑
i=0

(
k

i

)(
f (i)(υ)

f(υ)
− F

(i)
(υ)

F (υ)

)(
Lk−i(τ)

)}
F (υ)

F (τ)
,

where all differentiation is with respect to θ, and for j ∈ Z∗,

Lj(x) =

j∑
i=0, i 6=1

(
j

i

)(
L(i)(x)

)(
L(1)(x)

)j−i
,

with

L(0)(x) = 1,

L(k)(x) =
−∂k lnF (x)

∂θk
, k ∈ Z+.

Proof. In order to prove this theorem, we must show that for j = 1, 2, 3,

f (j)(x)

f(x)
= Hj(Ξ, Y ),

F
(j)

(x)

F (x)
= Hj(xY, Y ),

Lj(x) = Hj(Y, xY ),

where Ξ is degenerate with value x. The rest follows directly from Theorem
2 and Lemma 1. To show the above is a simple matter of taking derivatives
with respect to the density function, the survival function, and the function
L, which is a composition of derivatives of the logarithm of the survival
function. The density is given by

f(x; θ, λ) = e[θx−λκ(θ)]qλ(x).

We take the first derivative with respect to θ and normalize:

f (1)(x)

f(x)
=

1

f(x)

∂e[θx−λκ(θ)]qλ(x)

∂θ
=

(x− λκ′(θ))e[θx−λκ(θ)]qλ(x)

f(x)
= x− α1(Y ).
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Recall that λκ′(θ) = α1(Y ). Similarly, we obtain

f (2)(x)

f(x)
=

(
x− α1(Y )

)2
− µ2(Y ),

f (3)(x)

f(x)
=

(
x− α1(Y )

)3
− 3
(
x− α1(Y )

)
µ2(Y )− µ3(Y ).

Recall that λκ′′(θ) = µ2(Y ) and λκ′′′(θ) = µ3(Y ). Furthermore, notice that
α1(Ξ) = x, µ2(Ξ) = 0, and µ3(Ξ) = 0. Therefore, the above agrees with
Hj(Ξ, Y ) for j = 1, 2, 3. Differentiation with respect to the survival function
follows similarly; we may refer the reader to the proof of Theorem 1 in Alai
et al. (2015). We present the results,

F
(1)

(x)

F (x)
= α1(xY )− α1(Y ),

F
(2)

(x)

F (x)
=

(
α1(xY )− α1(Y )

)2
+
(
µ2(xY )− µ2(Y )

)
,

F
(3)

(x)

F (x)
=

(
α1(xY )− α1(Y )

)3
+ 3
(
α1(xY )− α1(Y )

)(
µ2(xY )− µ2(Y )

)
+

(
µ3(xY )− µ3(Y )

)
.

Therefore, the above agrees with Hj(xY, Y ) for j = 1, 2, 3. Finally, we present
the differentiation of lnF (x) with respect to θ. We have

L(1)(x) =
−∂ lnF (x)

∂θ
= −F

(1)
(x)

F (x)
= α1(Y )− α1(xY ),

L(2)(x) = −F
(2)

(x)

F (x)
+

(
F

(1)
(x)

F (x)

)2

= µ2(Y )− µ2(xY ),

L(3)(x) = −F
(3)

(x)

F (x)
+ 3

F
(2)

(x)

F (x)

F
(1)

(x)

F (x)
− 2

(
F

(1)
(x)

F (x)

)3

= µ3(Y )− µ3(xY ).
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Notice that the functions of L(j)(x) given by Lk(x) yield Hk(xY, Y ).

L1(x) = L(1)(x) = α1(Y )− α1(xY ),

L2(x) = L(1)(x)2 + L(2)(x) =
(
α1(Y )− α1(xY )

)2
+
(
µ2(Y )− µ2(xY )

)
,

L3(x) = L(1)(x)3 + 3L(2)(x)L(1)(x) + L(3)(x)

=
(
α1(Y )− α1(xY )

)3
+ 3
(
α1(Y )− α1(xY )

)(
µ2(Y )− µ2(xY )

)
+

(
µ3(Y )− µ3(xY )

)
.

We explore the truncated and censored lifetime υ
τTi,j by separating it into

its component parts: the systematic Y0,j and the idiosyncratic, truncated and
censored Yi,j. We provide the details below using a conditional argument and
the property that for a, b, c ∈ R, min(a+ b, a+ c) = a+ min(b, c).

υ
τTi,j|Y0,j =

{
min(Y0,j + Yi,j, υ)|(Y0,j + Yi,j > τ)

}∣∣∣Y0,j
=

{
Y0,j + min(Yi,j, υ − Y0,j)|(Yi,j > τ − Y0,j)

}∣∣∣Y0,j
=

{
Y0,j + υ′

τ ′Yi,j

}∣∣∣Y0,j
= Y0,j + υ′

τ ′Yi,j|Y0,j, (1)

where τ ′ = τ − Y0,j and υ′ = υ − Y0,j. We consider the general case and a
simplified case and obtain systems of equations for both. For the simplified
case, we provide algorithms that facilitate parameter estimation.

4 Parameter Estimation

Consider given truncated and censored samples υ
τT1, . . . ,

υ
τTM , where υ

τTj =
(υτT1,j, . . . ,

υ
τTN,j)

′. From each pool j, we estimate θj and λj, and predict the
value of Y0,j. Define υ′

τ ′Yj = (υ
′

τ ′Y1,j, . . . ,
υ′

τ ′YN,j)
′. We have

a1(
υ
τTj)|Y0,j = Y0,j +

1

N

N∑
i=1

υ′

τ ′Yi,j|Y0,j = Y0,j + a1(
υ′

τ ′Yj)|Y0,j,

and

m̃2(
υ
τTj)|Y0,j = m̃2(

υ′

τ ′Yj)|Y0,j,
m̃3(

υ
τTj)|Y0,j = m̃3(

υ′

τ ′Yj)|Y0,j.
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Note that Y0,j is present in the truncation and censoring points τ ′, υ′.
The υ′

τ ′Y1,j, . . . ,
υ′

τ ′YN,j are independent and identically distributed given
Y0,j. Consequently, the first raw sample moment is an unbiased estimator of
α1(

υ′

τ ′Y1,j|Y0,j). Moreover,

a1(
υ
τTj|Y0,j)

P→ Y0,j + α1(
υ′

τ ′Y1,j|Y0,j),

and the (adjusted) second and third central sample moments are unbiased
and consistent estimators of µ2(

υ′

τ ′Y1,j|Y0,j) and µ3(
υ′

τ ′Y1,j|Y0,j), respectively.
Theorems 1 and 2 yield the following system:

E[a1(
υ
τTj)|Y0,j] = Y0,j + E[a1(

υ′

τ ′Yj)|Y0,j]
= Y0,j + α1(

υ′

τ ′Y1,j|Y0,j)
= Y0,j + λjκ

′(θj) + g1(τ
′) + h1(τ

′, υ′), (2)

E[m̃2(
υ
τTj)|Y0,j] = E[m̃2(

υ′

τ ′Yj)|Y0,j] = µ2(
υ′

τ ′Y1,j|Y0,j)
= λjκ

′′(θj) + g2(τ
′)− g1(τ ′)2

+h2(τ
′, υ′)− h1(τ ′, υ′)2, (3)

E[m̃3(
υ
τTj)|Y0,j] = E[m̃3(

υ′

τ ′Yj)|Y0,j] = µ3(
υ′

τ ′Y1,j|Y0,j)
= λjκ

′′′(θj) + g3(τ
′)− 3g2(τ

′)g1(τ
′) + 2g1(τ

′)3

+h3(τ
′, υ′)− 3h2(τ

′, υ′)h1(τ
′, υ′) + 2h1(τ

′, υ′)3, (4)

where gk(τ
′) = gk(τ

′; θj, λj), k = 1, 2, 3, as defined in Theorem 1; and hk(τ
′, υ′) =

hk(τ
′, υ′; θj, λj), k = 1, 2, 3, as defined in Theorem 2.

4.1 The Simplified Case

We assume that θj = θ and λj = λ for all j. This assumption implies the
pools of lives have the same risk profile. In the case of heterogeneous pools,
the groups should be reduced to homogeneous sub-groups.

Define υ
τT = (υτT1,1, . . . ,

υ
τTN,M)′, the vector of all lifetimes. The com-

ponents of υ
τT are identically distributed, although not independent. This

implies that the raw sample moments of υ
τT are unbiased estimators of the

raw moments of υτT1,1. Recall that Ti,j ∼ Twp(θ, λ̃ = λ0 + λ). Then υ
τTi,j has

a truncated and censored Twp(θ, λ̃) distribution. Utilizing the first raw and
second central moments, we obtain the following from Theorems 1 and 2:

E[a1(
υ
τT)] = α1(

υ
τT1,1) = λ̃κ′(θ) + g1(τ ; θ, λ̃) + h1(τ, υ; θ, λ̃), (5)

E[m̃2(
υ
τT)] ≈ µ2(

υ
τT1,1) = λ̃κ′′(θ) + g2(τ ; θ, λ̃)− g1(τ ; θ, λ̃)2

+h2(τ, υ; θ, λ̃)− h1(τ, υ; θ, λ̃)2. (6)
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Equation (5) arises from the fact that, for the simplified case, the raw sample
moments of υ

τT are unbiased estimators of the raw moments of υ
τT1,1. This

does not hold for central moments, yielding the approximation given by (6).
Furthermore, notice that we no longer condition on a single Y0,j. This is
due to the fact that υ

τT contains M different realizations from the Twp(θ, λ0)
distribution, rather than one. It is, therefore, a viable option to take expec-
tations with respect to the Y0,j. To facilitate presentation, we introduce the
cumulative adjustment functions ck, defined as follows:

ck(τ, υ; θ, λ) = gk(τ ; θ, λ) + hk(τ, υ; θ, λ),

c
(2)
k (τ, υ; θ, λ) = gk(τ ; θ, λ)2 + hk(τ, υ; θ, λ)2,

for k = 1, 2.
In order to solve the non-linear system given by equations (5) and (6),

we apply an iterative algorithm. This algorithm is a modified version of
Algorithm 1 in Alai et al. (2015). To apply it we first notice that

κ′(θ)

κ′′(θ)
=

{
1, p = 1,
θ

α−1 , p 6= 1.

Then system of equations (5) and (6) for p 6= 1 can be reduced to the follow-
ing:

θ =
(α− 1)(α1(

υ
τT1,1)− c1(τ, υ; θ, λ̃))

µ2(υτT1,1)− c2(τ, υ; θ, λ̃) + c
(2)
1 (τ, υ; θ, λ̃)

, (7)

λ̃ =
α1(

υ
τT1,1)− c1(τ, υ; θ, λ̃)

κ′(θ)
. (8)

Algorithm 1.

1. Assume starting values for θ and λ̃, denote them θ(1) and λ̃(1).

2. Substitute θ(r) and λ̃(r) into equations (7) and (8) to obtain parameter
estimators θ(r + 1) and λ̃(r + 1) as follows:

θ(r + 1) =
(α− 1)(a1(

υ
τT)− c1(τ, υ; θ(r), λ̃(r)))

m̃2(υτT)− c2(τ, υ; θ(r), λ̃(r)) + c
(2)
1 (τ, υ; θ(r), λ̃(r))

,

λ̃(r + 1) =
a1(

υ
τT)− c1(τ, υ; θ(r), λ̃(r))

κ′(θ(r + 1))
,

where the sample moments of υ
τT are used to estimate the theoretical

moments.
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3. Return to Step 2 with r = r + 1 until parameter estimates are stable.

From Algorithm 1, we obtain parameter estimate θ̂. We return to indi-
vidual pool j. We reconsider equations (2) and (3), this time, utilizing both

θ̂ and the cumulative adjustment functions ck.

E[a1(
υ
τTj)|Y0,j] ≈ Y0,j + λκ′(θ̂) + c1(τ

′, υ′; θ̂, λ), (9)

E[m̃2(
υ
τTj)|Y0,j] ≈ λκ′′(θ̂) + c2(τ

′, υ′; θ̂, λ)− c(2)1 (τ ′, υ′; θ̂, λ), (10)

where τ ′ = τ − Y0,j and υ′ = υ − Y0,j; see equation (1). Again, we are
presented with a non-linear system of equations. We apply the following
iterative algorithm, which is a modification of Algorithm 2 developed in Alai
et al. (2015).

Algorithm 2.

1. Assume starting values for Y0,j and λ, denote them Y0,j(1) and λ(1).

2. Substitute Y0,j(r) and λ(r) into equation (10) to obtain λ(r + 1),

λ(r+1) =
m̃2(

υ
τTj)− c2(τ ′(r), υ′(r); θ̂, λ(r)) + c

(2)
1 (τ ′(r), υ′(r); θ̂, λ(r))

κ′′(θ̂)
,

where τ ′(r) = τ − Y0,j(r) and υ′(r) = υ − Y0,j(r).

3. Substitute λ(r + 1) into equation (9) to obtain Y0,j(r + 1),

Y0,j(r + 1) = a1(
υ
τTj)− λ(r + 1)κ′(θ̂)− c1(τ ′(r), υ′(r); θ̂, λ(r + 1)).

4. Return to Step 2 with r = r + 1 until parameter estimates are stable.

Finally, we set

λ̂ =
1

M

M∑
j=1

λ̂(j), and λ̂0 =
1

M

M∑
j=1

Ŷ0,j

κ′(θ̂)
,

where λ̂(j) and Ŷ0,j are the estimate of λ and predicted value of Y0,j, respec-
tively, obtained using Algorithm 2 on pool j.

5 The Normal and Gamma Distributions

We apply the theory of the preceding sections to the normal and gamma
distributions. We find simplified versions of the adjustment functions g and h
for these distributions. We subsequently test the performance of Algorithms
1 and 2.
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5.1 Normally Distributed Lifetimes

Suppose Y ∼ Twp(θ, λ) with p = 0. Equivalently, Y may be represented
using the standard parametrization of the normal distribution, Y ∼ N(µ =
θλ, σ2 = λ).

This equivalence yields

fY (x, θ, λ) = ϕ((x− θλ)/
√
λ)/
√
λ,

F Y (x, θ, λ) = Φ̄((x− θλ)/
√
λ),

where ϕ(x) and Φ̄(x) are the standard normal density and survival functions,
respectively.

Functions g1 and g2 are given in Alai et al. (2015).

g1(τ ; θ, λ) =
√
λ
ϕ((τ − λθ)/

√
λ)

Φ̄((τ − λθ)/
√
λ)
,

g2(τ ; θ, λ) = −λ ϕ
′((τ − λθ)/

√
λ)

Φ̄((τ − λθ)/
√
λ)
.

Functions h1 and h2 are given by

h1(τ, υ; θ, λ) =

{
−
√
λϕ′((υ − λθ)/

√
λ)

ϕ((υ − λθ)/
√
λ)

− g1(υ; θ, λ)

}
Φ̄((υ − θλ)/

√
λ)

Φ̄((τ − θλ)/
√
λ)

=

{
(υ − λθ)− g1(υ; θ, λ)

}
Φ̄((υ − θλ)/

√
λ)

Φ̄((τ − θλ)/
√
λ)
,

h2(τ, υ; θ, λ) =

{
2

(
(υ − λθ)− g1(υ; θ, λ)

)(
−g1(τ ; θ, λ)

)
+

(
λϕ′′((υ − λθ)/

√
λ)

ϕ((υ − λθ)/
√
λ)
− g2(υ; θ, λ)

)}
Φ̄((υ − θλ)/

√
λ)

Φ̄((τ − θλ)/
√
λ)

=

{
2
(

(υ − λθ)− g1(υ; θ, λ)
)(
−g1(τ ; θ, λ)

)
+

((
(υ − λθ)2 − λ

)
− g2(υ; θ, λ)

)}
Φ̄((υ − θλ)/

√
λ)

Φ̄((τ − θλ)/
√
λ)
.

Suppose Yi,j ∼ Twp(θ, λ) and Y0,j ∼ Twp(θ, λ0), with p = 0. Equivalently,
Yi,j ∼ N(θλ, λ) and Y0,j ∼ N(θλ0, λ0). This implies Ti,j ∼ Twp=0(θ, λ̃ =
λ + λ0) ≡ N(θλ̃, λ̃). Note that κp=0(θ) = θ2/2, κ′p=0(θ) = θ, κ′′p=0(θ) = 1,
and α = 2. Together with functions g and h, Algorithms 1 and 2 are easily
implemented for truncated and censored multivariate normal lifetimes.
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Numerical Results

To roughly mirror human mortality, we simulate truncated and censored
multivariate normal lifetimes where

Yi,j ∼ Twp=0(θ = 0.2, λ = 375) ≡ N(θλ = 75, λ = 375),

Y0,j ∼ Twp=0(θ = 0.2, λ0 = 25) ≡ N(θλ0 = 5, λ0 = 25).

Consequently, each individual lifetime is normally distributed with mean 80
and standard deviation 20,

Ti,j ∼ Twp=0(θ = 0.2, λ̃ = λ+ λ0 = 400) ≡ N(θλ̃ = 80, λ̃ = 400).

The truncation point was chosen to reflect a retirement-age sample and the
censoring point with deferred-annuity type products in mind. The perfor-
mance of Algorithm 1 applied to the normal distribution is shown in Table
1. The performance is judged by the accuracy of the the estimate of θ. Each
column of Table 1 represents a scenario with various numbers of pools and
individuals, we find that with the exception of the first scenario, θ is well
estimated.

N 1,000 100,000 10,000 1,000
M 1 1 50 1,000
τ 60 60 60 60
υ 85 85 85 85

λ̃ 400 400 400 400̂̃λ 474 382 401 400
θ 0.200 0.200 0.200 0.200

θ̂ 0.163 0.209 0.198 0.199

Table 1: Simulation results to test Algorithm 1 using the normal distribution.

The performance of Algorithm 2 applied to the normal distribution is
shown in Table 2. Algorithm 2 requires θ known (estimated, practically

speaking), and produces λ̂ and Ŷ0 for one pool. In our simulation, we focus
on one pool of various sizes, stipulate Y0 = 5, which is its expected value,
and use the true θ. It is evident from the results that accurate prediction of
the systematic component requires a large sample.

5.2 Gamma Distributed Lifetimes

Suppose Y ∼ Twp(θ, λ) with p = 2. Equivalently, Y may be represented
using the standard parametrization of the gamma distribution, Y ∼ Γ(λ, β =
−θ), where λ, β, are the shape and rate parameters, respectively.
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N 100 1,000 10,000 100,000 1,000,000
τ 60 60 60 60 60
υ 85 85 85 85 85
θ 0.2 0.2 0.2 0.2 0.2

Y0 5.000 5.000 5.000 5.000 5.000

Ŷ0 11.193 14.012 8.960 2.964 5.453
λ 375.000 375.000 375.000 375.000 375.000

λ̂ 346.352 333.347 356.411 384.955 372.916

Table 2: Simulation results to test Algorithm 2 using the normal distribution.

This equivalence yields

fY (x, θ, λ) =
(−θ)λ

Γ(λ)
xλ−1eθx ≡ γ(x;λ,−θ),

F Y (x, θ, λ) =

∫ ∞
x

fY (t, θ, λ)dt ≡ Γ(x;λ,−θ).

where γ(x) and Γ(x) are the gamma density and survival functions, respec-
tively.

Functions g1 and g2 are given in Alai et al. (2015).

g1(τ ; θ, λ) =
λ

θ

(
1−K1(τ ; θ, λ)

)
,

g2(τ ; θ, λ) =
λ

θ2

(
(λ− 1)− 2λK1(τ ; θ, λ) + (λ+ 1)K2(τ ; θ, λ)

)
,

where

Kk(x; θ, λ) =
Γ(x;λ+ k,−θ)

Γ(x;λ,−θ)
, k = 1, 2.

Additionally, we have that

f (1)(x)

f(x)
= x+

λ

θ
=
λ

θ

(
1− k1(x; θ, λ)

)
,

f (2)(x)

f(x)
=

(
x+

λ

θ

)2
− λ

θ2
=

λ

θ2

(
(λ− 1)− 2λk1(x; θ, λ) + (λ+ 1)k2(x; θ, λ)

)
,

L̄1(x) = L(1)(x) = −F
(1)

(x)

F (x)
= −g1(x; θ, λ),

where

kk(x; θ, λ) =
γ(x;λ+ k,−θ)
γ(x;λ,−θ)

, k = 1, 2.
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We obtain

h1(τ, υ; θ, λ) =

{
λ

θ

(
1− k1(υ; θ, λ)

)
− λ

θ

(
1−K1(υ; θ, λ)

)}Γ(υ;λ,−θ)
Γ(τ ;λ,−θ)

=

{
λ

θ

(
K1(υ; θ, λ)− k1(υ; θ, λ)

)}Γ(υ;λ,−θ)
Γ(τ ;λ,−θ)

,

h2(τ, υ; θ, λ) =

{
2λ

θ

(
K1(υ; θ, λ)− k1(υ; θ, λ)

)(
−g1(τ ; θ, λ)

)
+

(
λ

θ2

(
(λ− 1)− 2λk1(υ; θ, λ) + (λ+ 1)k2(υ; θ, λ)

)
− λ

θ2

(
(λ− 1)− 2λK1(υ; θ, λ) + (λ+ 1)K2(υ; θ, λ)

))}Γ(υ;λ,−θ)
Γ(τ ;λ,−θ)

=

{
2λ

θ

(
K1(υ; θ, λ)− k1(υ; θ, λ)

)(
−g1(τ ; θ, λ)

)
+

λ

θ2

(
2λ
(
K1(υ; θ, λ)− k1(υ; θ, λ)

)
− (λ+ 1)

(
K2(υ; θ, λ)− k2(υ; θ, λ)

))}Γ(υ;λ,−θ)
Γ(τ ;λ,−θ)

.

Suppose Yi,j ∼ Twp(θ, λ) and Y0,j ∼ Twp(θ, λ0), with p = 2. Equivalently,
Yi,j ∼ Γ(λ,−θ) and Y0,j ∼ Γ(λ0,−θ). This implies that Ti,j ∼ Twp=2(θ, λ̃ =
λ + λ0) ≡ Γ(λ̃,−θ). Note that κp=2(θ) = − ln(−θ), κ′p=2(θ) = −1/θ,
κ′′p=2(θ) = 1/θ2, and α = 0. Together with functions g and h, Algorithms
1 and 2 easily implemented for truncated and censored multivariate gamma
lifetimes.

Numerical Results

We simulate truncated and censored multivariate gamma lifetimes where

Yi,j ∼ Twp=2(θ = −0.2, λ = 15) ≡ Γ(λ = 15, β = 0.2),

Y0,j ∼ Twp=2(θ = −0.2, λ0 = 1) ≡ Γ(λ0 = 1, β = 0.2).

Each individual lifetime is gamma distributed with mean 80 and standard
deviation 20,

Ti,j ∼ Twp=2(θ = −0.2, λ̃ = λ+ λ0 = 16) ≡ Γ(λ̃ = 16, β = 0.2).
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The performance of Algorithm 1 applied to the gamma distribution is shown
in Table 3. Again, save the first scenario, we find that θ is well estimated.

N 1,000 100,000 10,000 1,000
M 1 1 50 1,000
τ 60 60 60 60
υ 85 85 85 85

λ̃ 16.00 16.00 16.00 16.00̂̃λ 24.15 17.04 15.84 15.97
θ -0.200 -0.200 -0.200 -0.200

θ̂ -0.306 -0.213 -0.199 -0.201

Table 3: Simulation results to test Algorithm 1 using the gamma distribution.

The performance of Algorithm 2 applied to the gamma distribution is
shown in Table 4. As before, we focus on one pool of various sizes, stipulate
Y0 = 5, and use the true θ. Again, accurate prediction of the systematic
component requires a relatively large sample.

N 100 1,000 10,000 100,000 1,000,000
τ 60 60 60 60 60
υ 85 85 85 85 85
θ -0.2 -0.2 -0.2 -0.2 -0.2

Y0 5.000 5.000 5.000 5.000 5.000

Ŷ0 9.449 15.879 1.134 7.417 4.946
λ 15.000 15.000 15.000 15.000 15.000

λ̂ 14.605 13.213 15.796 14.542 15.016

Table 4: Simulation results to test Algorithm 2 using the gamma distribution.

6 Conclusion

We model dependence within a portfolio of lives using a common stochastic
component. In this structure, the common component represents system-
atic mortality improvements; pools may represent a variety of situations,
from nation-wide cohorts to employer-based pension annuity portfolios. We
develop parameter estimation in the presence of truncated and censored ob-
servations. Previous work considered truncation only. The allowance for
censoring makes the model much more applicable to the study of pools of
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lives, since it eliminates basis-risk. From an annuity provider perspective, the
model provides the means to actively manage systematic longevity risk. The
introduction of censoring leads to some interesting theoretical results; censor-
ing adjustments are derived and added to previously formulated truncation
adjustments. Parameter estimation is developed using modifications of es-
tablished algorithms. Finally, explicit solutions are derived for the normal
and gamma distributions, the two most widely-used members of the Tweedie
family of distributions.
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A Proof of Lemma 1

We restate the lemma:

Lemma. For j = 1, 2, 3, and random variables A,B,C,D,

Hj(A,C)−Hj(B,C) =

j∑
i=0

(
j

i

)(
Hi(A,D)−Hi(B,D)

)
Hj−i(D,C),

where H0 ≡ 1.

Proof. The idea of the proof is simple. First, using the definition of H, we
expand the left hand side. Second, for all differences of moments, we add and
subtract the appropriate moment for random variable D. Lastly, we expand
all powers, collect terms, and rewrite as functions of H.

For j = 1, we have:

H1(A,C) − H1(B,C)

=
(
α1(A)− α1(C)

)
−
(
α1(B)− α1(C)

)
=

(
α1(A)− α1(D) + α1(D)− α1(C)

)
−

(
α1(B)− α1(D) + α1(D)− α1(C)

)
= H1(A,D)−H1(C,D)−

(
H1(B,D)−H1(C,D)

)
= H1(A,D)−H1(B,D).

For j = 2, we have:

H2(A,C) − H2(B,C)

=
(
α1(A)− α1(C)

)2
+
(
µ2(A)− µ2(C)

)
−

(
α1(B)− α1(C)

)2
−
(
µ2(B)− µ2(C)

)
=

(
α1(A)− α1(D) + α1(D)− α1(C)

)2
+
(
µ2(A)− µ2(D)

)
−

(
α1(B)− α1(D) + α1(D)− α1(C)

)2
−
(
µ2(B)− µ2(D)

)
= 2

((
α1(A)− α1(D)

)
−
(
α1(B)− α1(D)

))(
α1(D)− α1(C)

)
+

(
α1(A)− α1(D)

)2
+
(
µ2(A)− µ2(D)

)
−

(
α1(B)− α1(D)

)2
−
(
µ2(B)− µ2(D)

)
= 2

(
H1(A,D)−H1(B,D)

)
H1(D,C) +

(
H2(A,D)−H2(B,D)

)
.
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For j = 3, we have:

H3(A,C) − H3(B,C)

=
(
α1(A)− α1(C)

)3
+ 3
(
α1(A)− α1(C)

)(
µ2(A)− µ2(C)

)
+
(
µ3(A)− µ3(C)

)
−

(
α1(B)− α1(C)

)3
− 3
(
α1(B)− α1(C)

)(
µ2(B)− µ2(C)

)
−
(
µ3(B)− µ3(C)

)
=

(
α1(A)− α1(D) + α1(D)− α1(C)

)3
+
(
µ3(A)− µ3(D)

)
+ 3

(
α1(A)− α1(D) + α1(D)− α1(C)

)(
µ2(A)− µ2(D) + µ2(D)− µ2(C)

)
−

(
α1(B)− α1(D) + α1(D)− α1(C)

)3
−
(
µ3(A)− µ3(D)

)
− 3

(
α1(B)− α1(D) + α1(D)− α1(C)

)(
µ2(B)− µ2(D) + µ2(D)− µ2(C)

)
= 3

((
α1(A)− α1(D)

)2 − (α1(B)− α1(D)
)2)(

α1(D)− α1(C)
)

+ 3
((
α1(A)− α1(D)

)
−
(
α1(B)− α1(D)

))(
α1(D)− α1(C)

)2
+ 3

(
α1(A)− α1(D) + α1(D)− α1(C)

)(
µ2(A)− µ2(D) + µ2(D)− µ2(C)

)
− 3

(
α1(B)− α1(D) + α1(D)− α1(C)

)(
µ2(B)− µ2(D) + µ2(D)− µ2(C)

)
+

(
α1(A)− α1(D)

)3
+
(
µ3(A)− µ3(D)

)
−

(
α1(B)− α1(D)

)3
−
(
µ3(B)− µ3(D)

)
= 3

((
α1(A)− α1(D)

))((
α1(D)− α1(C)

)2
+
(
µ2(D)− µ2(C)

))
− 3

((
α1(B)− α1(D)

))((
α1(D)− α1(C)

)2
+
(
µ2(D)− µ2(C)

))
+ 3

((
α1(A)− α1(D)

)2
+
(
µ2(A)− µ2(D)

))(
α1(D)− α1(C)

)
− 3

((
α1(B)− α1(D)

)2
+
(
µ2(B)− µ2(D)

))(
α1(D)− α1(C)

)
+ 3

(
α1(A)− α1(D)

)(
µ2(A)− µ2(D)

)
− 3
(
α1(B)− α1(D)

)(
µ2(B)− µ2(D)

)
+

(
α1(A)− α1(D)

)3
+
(
µ3(A)− µ3(D)

)
−

(
α1(B)− α1(D)

)3
−
(
µ3(B)− µ3(D)

)
= 3

(
H1(A,D)−H1(B,D)

)
H2(D,C) + 3

(
H2(A,D)−H2(B,D)

)
H1(D,C)

+
(
H3(A,D)−H3(B,D)

)
.
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