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Forecasting Mortality Trends allowing for
Cause-of-Death Mortality Dependence

Séverine Gaillel Michael Sherris?

Abstract

Longevity risk is amongst the most important factors to consider for pric-
ing and risk management of longevity products. Past improvements in mor-
tality over many years, and the uncertainty of these improvements, have
attracted the attention of experts, both practitioners and academics. Since
aggregate mortality rates reflect underlying trends in causes of death, insurers
and demographers are increasingly considering cause-of-death data to better
understand risks in their mortality assumptions. The relative importance of
causes of death has changed over many years. As one cause reduces, others
increase or decrease. The dependence between mortality for different causes
of death is important when projecting future mortality. However, for sce-
nario analysis based on causes of death, the assumption usually made is that
causes of death are independent. Recent models, in the form of Vector Error
Correction Models (VECM), have been developed for multivariate dynamic
systems and capture time dependency with common stochastic trends. These
models include long-run stationary relations between the variables, and thus
allow a better understanding of the nature of this dependence. This paper
applies VECM to cause-of-death mortality rates in order to assess the de-
pendence between these competing risks. We analyze the five main causes of
death in Switzerland. Our analysis confirms the existence of a long-run sta-
tionary relationship between these five causes. This estimated relationship is
then used to forecast mortality rates, which are shown to be an improvement
over forecasts from more traditional ARIMA processes, that do not allow for
cause-of-death dependencies.
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1 Introduction

Cause-of-death trends have important implications for forecasting aggregate mor-
tality rates. The need for better methods of forecasting mortality trends including
the impact of cause-of-death trends has been recognised for some time (Stoto and
Durch, 1993). Official projections in some countries are based on cause-specific
mortality, with each cause forecasted in isolation and subsequently aggregated to
produce total mortality (Wong-Fupuy and Haberman|(2004)). An important limita-
tion is allowing for dependence between cause-of-death mortality rates. Dependence
between several causes is not observable. For any given death, it is not possible to
know what would have been the future cause of death if the person had remained
alive. Therefore, the common assumption is that of independence between causes
of death, following early work of |Chiang (1968).

A better understanding of trends in the underlying causes of death has the
potential to improve mortality projections. The use of cause-of-death data is seen
as being beneficial (Tuljapurkar (1998), Gutterman and Vanderhoof (1998) and
Tabeau et al.| (2001)) as well as having limitations (Booth and Tickle (2008) and
Richards| (2009)). Despite this potential, most mortality projections are based on
aggregate rates (Pitacco (2004), Booth and Tickle (2008))) or assume independence
between causes (Andreev and Vaupel| (2006)).

There are a number of studies that consider cause-of-death forecasts using the in-
dependence assumption including Rogers and Gard (1991, [Wilmoth (1996), (Tabeau
et al.| (1999)), Caselli et al|(2006). In these studies, total future mortality rate re-
sults from the summation of cause-specific mortality forecasts, each cause being
projected without taking into account trends in other causes of death. For exam-
ple, in [McNown and Rogers| (1992), univariate ARIMA models are used to forecast
parameters of a function fitted to the age pattern of mortality. They forecast the
four main causes of death (heart diseases, cancer, vascular diseases, accident and
violence) and other causes to 1985 using data from 1960 to 1975. A similar approach
is used in Knudsen and McNown| (1993). (Caselli| (1996) forecasts mortality by cause
for ages 60 and over for 25 European countries over the period 1988-2020, using data
from 1950 to 1990 and an Age-Period-Cohort model. She adds cause-specific rates
to estimate future aggregate mortality rates.

In this paper, we propose an approach for capturing the dependence between
causes of death using Vector Autoregression (VAR) and Vector Error Correction
Models (VECM). They have been developed in econometrics to model multivari-
ate dynamic systems including time dependency between economic variables and
allowing for common stochastic trends. VECM also include long-run equilibrium
relationships using cointegrating relations. We apply VECM to cause-of-death mor-
tality rates. The analysis supports the existence of long-run stationary relationships
between the five main causes of death and provides insights into the form of depen-
dence between these competing risks over recent years. These long-run stationary
relationships are then used to forecast mortality rates. The benefits gained from
modeling the underlying cause trends with these methods are quantified by com-
paring the resulting mortality forecasts with those from more traditional ARIMA
processes, that do not allow for cause-of-death dependencies.

This paper presents a new modeling approach for researchers interested in un-
derstanding the dependence between cause-of-death mortality rates. The model-



ing approach provides the potential to assist practitioners in setting dependence
assumptions for scenario analysis based on cause-of-death mortality. The bene-
fits of incorporating cause dependence in longevity and mortality risk models are
demonstrated and can be used in official projections for countries interested in
cause-specific mortality as well as by insurers issuing longevity and mortality risk
products.

The paper starts with introducing the data in Section [2 After a brief expla-
nation of the features of VAR and VECM modeling, these models are applied to
cause-specific mortality for females in Switzerland (Section [3). In Section [4] the
estimated relationships between the causes of death are used to forecast mortality
rates and the results are compared with forecasts from more traditional ARIMA
processes. Finally, Section [5| concludes.

2 Data

The World Health Organization (WHO) provides a comprehensive database for
causes of death (World Health Organization| (2012))). Mid-year population and
number of deaths according to the underlying cause of death are maintained for
various countries over the last 50 to 60 years. The data are typically divided into
five-year age groups. We use data for Switzerland from 1951 to 2007 to illustrate
the methods. Similar benefits would apply to other countries experiencing changes
in causes of death.

The WHO database classifies the causes of death according to the International
Classification of Diseases (ICD), thus ensuring consistencies between countries (Ta-
ble ) Under the ICD, the underlying cause of death is specified as the disease
or injury which initiated the train of morbid events leading directly to death, or
the circumstances of the accident or violence which produced the fatal injury. In
this study, only the five main ICD primary causes of death are considered, which
are the diseases of the circulatory system, cancer, diseases of the respiratory sys-
tem, external causes, and infectious and parasitic diseases. These major causes of
death account for about 80% of the deaths in recent years, while they made up
approximately 60% — 70% 50 years ago.

In order to work on data consistent over time and across countried'], a few ad-
justments are made to the dataset. First, as recommended by the Human Mortality
Database (Human Mortality Database| (2012)), the number of deaths of unknown
age is divided up across the age range.

Second, ages 85 and over are grouped together as well as ages one to four. Thus,
our database is composed of nineteen age groups, the first for infants less than one
year old, a second for children aged one to four, thereafter in groups of five years,
ending with the group aged 85 and above.

Third, an adaptation is due to the changes of the classification of the diseases
over time. Indeed, to improve the classification and to adapt it to changes in
science and technology, the ICD evolved from ICD 7 in the 1950’s to ICD 10 still
used today. Therefore, the data are not directly comparable for different periods
and comparability ratios are necessary to allow comparisons, as in |Gaille and Sherris
(2011). Since Switzerland did not adopt ICD 9, two sets of ratios are developed,

IFuture researches might be interested in comparisons across countries.



one for 1969 when ICD 8 was adopted and one for 1995 when ICD 10 was adopted.
By dividing the death number in a new classification with the comparability ratio
linking this classification with the previous one (and previous comparability ratios
where appropriate), we remove discontinuities in the death rates in 1969 and 1995.
Indeed, the comparability ratios are determined so that the average of the death
rates over the last two years of a classification coincides with the average of the
death rates over the first two years of the next classification (for details, see |Gaille
and Sherris (2011))).

Finally, trends by cause of death are examined using an age-standardized central
death rate, the standard population being equal to the population of the last year
under observation, here 2007. We denote by m; ,; , the death rate in year ¢ for cause
d and gender s, assuming that the age-structure of the population is constant over
the complete period under observation and fixed at the level of 2007.

3 Model Fit

Vector AutoRegressive (VAR) models are used to model vectors of variables that are
assumed stationary. A pth-order vector autoregression, denoted as VAR(p), is based
on p lags of the variables in the model. Thus, expected changes are modeled by
allowing for lagged relationships between the variables and also for the correlations
between the variables. For mortality modeling, a vector of age-standardized cause-
specific death rates transformed to stationary variables can be effectively modeled
with a VAR.

More efficient processes exist to model non-stationary or integrated variables.
These models are called Vector Error Correction Models (VECM). The intuition be-
hind these models is that the variables may move together with common stochastic
trends, even though they are non-stationary. Therefore, even if each variable is non-
stationary, a linear combination of these variables may exist such that the relation is
stationary. This linear combination represents a long-run equilibrium relationship
called cointegration| The system may have more than one cointegrating relation,
if each combination is linearly independent from the others. These relations may be
included in a VAR model, which is then called a VECM. Comprehensive references
on these models are e.g. Hamilton| (1994) and Liitkepohl| (2005).

Johansen’s approach is used to estimate the number of cointegrating relations in
the process as well as the parameters of the VECM. The steps to follow to estimate
a VECM are summarized in |Gaille and Sherris (2011)). First, the lag order of
the VAR is selected through Akaike’s Information Criteria (AIC), Hannan-Quinn
Criterion (HQ), Schwarz Criterion (SC), Final Prediction Error (FPE). Second,
the stationarity of the variables is considered through several unit root tests: the
Kwiatkowski-Phillips-Schmidt-Shin test (KPSS), the Augmented Dickey-Fuller test
(ADF), the Phillips-Perron test (PP) or the Elliot-Rothenberg-Stock test (ERS).
Third, the Johansen’s procedure is applied if some of the variables are integrated
in order to find the number of cointegrating relations. For that purpose, the trace
test and the maximum-eigenvalue test are used. Besides, the Johansen’s procedure
allows to include a vector of constants and/or a vector of trends in the model while

2In this paper, we consider variables that are integrated of order one. In that special case,
cointegrating relations are necessarily stationary. For a more general framework, see [Hamilton
(1994) and |Liitkepohll (2005)).



testing for cointegration. Therefore, depending on the specification of the model, the
cointegrating relations may be stationary around a constant level or a trend. Forth,
a VAR(p — 1) on the first difference is estimated when the variables are integrated
and not cointegrated. Otherwise, the appropriate VECM is developed. Finally,
model validation tests should be performed, such as tests for residual autocorrelation
and non-normality.

This procedure is applied to cause-specific death rates for females in Switzerland,
determined as the logarithm of mj ; ¢c,q.- The variables of the VECM analysis are
the age-standardized death rates for: 1) diseases of the circulatory system; 2) cancer;
3) diseases of the respiratory system; 4) external causes; 5) infectious & parasitic
diseases. Since at least 50 years of observation are usually necessary to reliably
estimate a VECM, the model is fitted over the period 1951 to 2000 and forecasts
are performed until 2007. Some details of tests performed are omitted for ease of
presentation and are available from the authors upon request.

Lag order: The four tests show some contradictory results. FPE indicates a lag
order of two as optimal (a trend and a constant being included in the VAR or not),
while SC indicates a lag order of one, AIC a lag order of five and HQ a lag varying
between one and two, the result depending on the deterministic part included in
the VAR (a trend, a constant or none). Since this study focuses on forecasting
performances and such performances may be improved with a smaller number of
parameters, a lag of one is adopted.

Unit root tests: The four tests clearly indicate at a 5% significance level that the
diseases of the circulatory system, the external causes of death and the infectious
and parasitic diseases are non-stationary. The results are not so evident for the
other two causes of death. Indeed, KPSS accepts the null hypothesis of stationarity
around a trend for cancer, while ADF, PP and ERS tests accept the null hypoth-
esis of non-stationarity at a 5% significance level. With respect to the diseases of
the respiratory system, KPSS, ADF and ERS indicate non-stationarity at a 5%
significance level, while PP test rejects the non-stationarity. Since three tests out
of four point out non-stationarity for these last two causes of death, the five causes
of death are assumed non-stationary for the following analysis.

Cointegrating relations: The trace test and the maximum-eigenvalue test of
the Johansen’s procedure are performed and presented in Table 2 According to
these tests, one cointegrating relation exists between the stochastic death rates of
the five main causes of death for females in Switzerland. Indeed, the trace statistic
tests the null hypothesis of r cointegrating relations against the alternative of n
cointegarting relations, n being the number of variables in the VECM, here the
five causes of death, and » < n. The test indicates that four, three, two and one
cointegrating relations are not rejected against the alternative of five cointegrating
relations at a 5% significance level.

The maximum-eigenvalue statistic tests the null hypothesis of r cointegrating
relations against the alternative of r 4+ 1. Therefore, the null hypothesis of one
cointegrating relation is accepted against the alternative of two cointegrating rela-
tions, while the null hypothesis of zero cointegrating relation is rejected. Thus, one



long-run equilibrium relationship ties the causes of death together and reveals how
the death rates were changing relative to each others over the past 50 years.

The Johansen’s approach also allows to test for a potential trend in cointegra-
tion. The null hypothesis of no linear trend in cointegration is rejected with a
p-value of 0.5%, which indicates that a deterministic trend should be also included
in the cointegrating relation and not only in the variables. In other words, the
deterministic trend is not eliminated by the cointegrating relation. The cointegrat-
ing relation represents a stationary process added to a deterministic linear trend.
Finally, the null hypothesis of no quadratic trend is accepted at a 2.5% significance
level, with a p-value close to 4%.

Fitted VECM: The Vector Error Correction Model fitted to the five cause-
specific death rates is presented in Equation [1}

Vlogm; ¢ ps [ 1.29 0.0089
V108 M} cancer.s —0.91 —0.0061
Vlogmy ive s = —3.96 | + | —0.0265
Vlogmy, o s —34.72 —0.2332
V1og My .ternats 0.48 0.0033

x [149 —19.56 —6.32 —4.52 1.86 —0.24 |

*

logm;_y 1¢ps
*

lOg my_ 1,cancer,s
*

lOg mt—l,ci’rc,s (1)
% .

log my_ 1,resp,s
*

IOg my_ l,external,s

-1

The cointegrating relation between the causes of death is given by the second
term on the right-hand side of this equation. It can be written as

2t = 1.49 - lOg m:‘ffl,I&P,s — 19.56 - lOg mrfl,cancer,s —6.32- 1Og m:fl,circ,s
— 4.52- lOg m:—l,resp,s +1.86 - IOg m;fk—l,eacternal,s —0.24- (t - 1)7 (2)

where z; is a stochastic and stationary variable representing the deviation from the
equilibrium. Thus, the model allows for stochastic trends in mortality rates, while
maintaining long-run relationship between the causes of death through Equation
Relative changes in mortality between causes are reflected in this relationship,
which represents historical evolutions. Mortality was evolving stochastically, but
death rates were also driven by this long-run equilibrium relationship between the
causes which was maintained stationary over the past 50 years. Thus, by using
such a long-run stationary relation in a VECM for forecasting, we assume that this
relation will continue in the future.

Model validation: Diagnostic tests are performed on the residuals of the fitted
model. As indicated in Table [3] the normality of the residuals is accepted by the
three tests. However, some autocorrelations between the residuals remain according
to the Portmanteau test. Such a result is not surprising since we fitted a model
with a small number of parameters with a lag value of one. A VECM of higher



order may provide better results with respect to this test. Since we are interested in
the forecasting performance of the model, this is expected to be better with fewer
parameters.

4 Forecasting

The fitted model is used to forecast cause-specific mortality rates. Since data are
available until 2007, the forecasts are compared to actual mortality, which gives
us some indications on the model forecasting performance. Figure (1| shows the
forecasted mortality rates from the fitted VECM compared with the actual data
(dots). The curve represents the fitted model until 2000 and the resulting forecasts
from 2001 to 2007. The future trend is well captured by the model for the five causes.
However, to better evaluate the model performance, it is necessary to compare
the results with the outcomes of a more traditional approach, the AutoRegressive
Integrated Moving Average (ARIMA) process.

ARIMA processes are very common to model univariate time series. The loga-
rithm of each cause-specific death rate is modeled through an ARIMA process and
therefore without taking into account the relations and the dependence that exist
between the causes. Each cause is modeled independently from the other causes,
as it has been previously done in the literature.

As with the VECM, ARIMA processes are fitted over the period 1951-2000
and used to forecast mortality until 2007. Since the approach developed in |Pandit
and Wu| (2001)) is followed, the non-stationarity in the variables is first removed by
differencing the variables. To assure stationarity, first differencing on each cause-
specific death rate is required and sufficient according to KPSS, ADF, PP and
ERS.

ARIMA(k, 1, k—1) models are then successively fitted to each age-standardized
cause-specific log-death rate, increasing k by one. |[Pandit and Wu (2001) suggest
the use of the F-criterion to decide which model is the most suitable between an
ARIMA(k, 1, (k—1)) and an ARIMA((k+1), 1, k), as this criterion tests the assump-
tion that some of the coefficients in a model are restricted to zero. This procedure
leads to an optimal ARIMA(m, 1, (m — 1)) process. If some of the coefficients of
that optimal process are not significantly different from zero, the F-criterion is
again applied to determine the adequacy of a model without the corresponding
coefficients.

Finally, non-correlation among the residuals of the fitted model is checked. The
best fitting ARIMA models resulting from this procedure are introduced in Table
The ARIMA process for the external causes of death is not introduced since the
best model is a random walk without any drift. The Portmanteau test indicates
no significant residual autocorrelation with lags of 5, 10, 15, 20 and 25. The only
exception is for the infectious and parasitic diseases for which the null hypothesis
of no-autocorrelation is rejected at a 1% significance level with a lag of 25.

Figure[l]clearly indicates that taking into account the dependencies and relations
existing between the causes of death improves the forecasting performance of the
model. Indeed, the VECM captures much better the trends that exist in the data
than the ARIMA processes, and this is particularly obvious for the diseases of the
respiratory system and the infectious and parasitic diseases.

The forecasting performance of the two models is further evaluated through



two summary statistics. The first one is the well-known mean absolute percentage
error statistic (MAPE), the average of the absolute percentage gap between the
forecasted and observed death rates. The average is made for a specific year over
the five causes.

The second statistic compares the forecasted death rates with the no-change
forecast. The no-change forecast assumes that the future mortality is constant over
time and fixed at the level of the last observation, here the death rates of 2000. The
mean square error (MSE) between the forecasted and the observed death rates is
divided by the MSE between the no-change forecast and the observed death rates.
The square root of the result represents our second statistic called the no-change
forecast statistic. The MSE are computed over the five causes of death. A model
performs better than the standard assumption of no change in mortality if the ratio
is smaller than unity. Table [5| compares the results for the VECM and ARIMA
models.

The forecasts of the VECM are much closer to the actual death rates than the
forecasts of the ARIMA processes. Indeed, both the MAPE and the no-change
forecast statistics are smaller for the VECM. Besides, since the value of the no-
change forecast statistic is below unity, the two models perform better than the
standard assumption of no change in mortality over the seven years.

Since the forecasted trend of the ARIMA process for the diseases of the respi-
ratory system and the infectious and parasitic diseases is far from what is actually
observed (see Figure , these two causes significantly affect the value of the MAPE
and the no-change forecast statistics. For these two causes of death, the best as-
sumption with an ARIMA process would be that there is no trend and thus, that
mortality is constant over time. Under such an assumption, while keeping the
ARIMA models described in Table 4] for the three other causes of death, the MAPE
and the no-change forecast statistics are reduced, as presented in Table [5 under
the adapted ARIMA, but still higher than the VECM results. Indeed, the VECM
performance comes from its ability to capture relationships between the causes of
death and to use them in the forecasting process, while the ARIMA models simply
ignore these.

5 Conclusion

This paper presents a new application of VECM to cause-of-death mortality and
introduces a new modeling approach for cause-specific mortality that takes into ac-
count dependencies between causes. The model is able to capture long-run trends
and the stationary relationships between the variables. A long-run equilibrium re-
lationship is shown to exist between the five main causes of death for Swiss females,
providing an approach to model the cause-of-death dependence. By including this
equilibrium relationship, that is the cointegrating relation, in the modeling frame-
work, forecasting is shown to be improved. If past trends are expected to continue in
the future, including them in the model instead of modeling each cause in isolation,
such as with traditional ARIMA processes, assists in forecasting future mortality
rates.
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Table 1: International Classification of Diseases - Coding system

Causes of death ICD7 ICD 8 ICD9 ICD 10
Circulatory system A079-A086 A080-A088 B25-B30 1064
Cancer A044-A060 A045-A061 B08-B17 1026
Respiratory system A087-AQ97 A089-A096 B31-B32 1072
External causes A138-A150 A138-A150 B47-B56 1095
Infectious and parasitic diseases AD01-AQ43 AD01-AD44 B01-B0O7 1001

Notes: The International Classification of Diseases changed three times between 1951 and 2007.
The aim of these changes was to account for progresses in science and technology and to achieve

more refined descriptions.
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Table 2: Tests for the number of cointegrating relations

(a) Trace test

. Trace stat Critical values

10% 5% 2.50% 1%
4 6.80 10.59 12.49 14.06 16.42
3 18.13 22.95 25.43 27.82 30.55
2 37.64 39.01 42.35 45.23 48.99
1 60.98 58.98 62.71 66.36 70.63
0 118.29 82.29 86.71 90.70 95.19

(b) Maximum-eigenvalue test

Critical values

r Eigen stat

10% 5% 2.50% 1%
4 6.80 10.59 12.49 14.06 16.42
3 11.33 16.93 19.16 20.87 23.66
2 19.52 23.11 25.44 27.67 30.38
1 23.34 29.04 31.53 34.24 37.15
0 57.31 34.82 37.75 40.05 42.78

Notes: A statistic lower than the corresponding critical value indicates that the null hypothesis
of r cointegrating relations is accepted against the alternative of n (trace test) or the alternative
of r+1 (maximum-eigenvalue test) at a a% significance level. Thus, these tables indicate that one
cointegrating relation is accepted at a 5% significance level. These two tests assess the number
of long-run equilibrium relationships among the age-standardized log-death rates of the five main

causes of death for females in Switzerland over the period 1951-2000.

Table 3: Tests on residuals of the fitted VECM, 1951-2000, females in Switzerland

Type of test Name of the test Statistic value p-value

Autocorrelation Portmanteau (15 lags) 439.73 0.01
Portmanteau (25 lags) 716.10 0.00

Normality Skewness 0.91 0.97
Kurtosis 5.56 0.35
Both 6.48 0.77

Notes: The null hypothesis of no-autocorrelation among the residuals is tested through the
Portmanteau statistic, with a lag of 15 and 25. The skewness statistic, the kurtosis statistic and

a combination of these are used to test the normality of the residuals.
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Figure 1: Observed, fitted and forecasted cause-specific log-death rates, females in

Switzerland

Notes: The observed age-standardized log-death rates are depicted by the dots. The curve

represents the fitted model until 2000 and the forecasted rates since then.
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Table 4: Fitted ARIMA(p, 1, g) processes to the logarithm of m} 4 0,41, SWitzerland

Circ: ARIMA(2,1,0) Cancer: ARIMA(1,1,0)

Values CI 95% Values CI 95%
constant | -0.017 | -0.023 | -0.012 | -0.006 | -0.010 | -0.002
trend - - - - - -
o1 -1.073 | -1.477 | -0.668 | -0.380 | -0.647 | -0.113
P9 -0.537 | -0.786 | -0.287 - - -
01 0.517 | 0.081 | 0.954 - - -
e | 0.057 0.023

Resp: ARIMA(2,1,0) | I&P: ARIMA(0,1,0)

Values CI 95% Values CI 95%

constant | -0.059 | -0.104 | -0.014 | -0.098 | -0.174 | -0.022

trend 0.002 | 0.000 | 0.003 | 0.003 | 0.000 | 0.005

o1 -0.942 | -1.166 | -0.719 - - _

b2 -0.609 | -0.833 | -0.385 - - _

th - - - - i, 3
Se? 1.804 0.871

Notes: All models are identified and estimated over the period 1951 - 2000. First differencing

transformation is performed on every variable.
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Table 5: Mean absolute percentage error and no-change forecast statistics

MAPE No-change forecast
Y| veem | Quonal | Atenied | veaw | Qe | Atee
2001 8.78% 19.21% 15.62% 0.30 1.08 0.84
2002 7.47% 17.87% 12.96% 0.43 0.91 0.75
2003 4.77% 16.10% 9.35% 0.28 0.81 0.54
2004 8.62% 29.38% 17.82% 0.41 0.86 0.64
2005 10.75% 31.03% 17.26% 0.44 0.74 0.55
2006 10.32% 39.13% 20.55% 0.43 0.82 0.59
2007 9.13% 44.55% 21.14% 0.38 0.85 0.56

Notes: The mean absolute percentage error is written as MAPE. The no-change forecast repre-
sents the square root of the ratio of the mean square error of one of the two considered models with
the mean square error of the no-change forecast. The no-change forecast assumes the mortality
does not change anymore and so is fixed at the level of 2000 for the following seven years. All
summary statistics are averages over the five causes of death for females in Switzerland.

Original ARIMA: the statistics result from the ARIMA processes described in Table
Adapted ARIMA: the statistics result from the ARIMA processes described in Table [4 except
for the diseases of the respiratory system and the infectious and parasitic diseases for which the

trend was removed.
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