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Abstract 
 

Mortality models used to assess longevity risk and retirement funding have 
been extended to stochastic models with trends and systematic risk. 
Systematic risk cannot be readily diversified in an insurance pool or pension 
fund. It is an important factor in assessing solvency and highlighting the tail 
risk in longevity insurance and pension products. Idiosyncratic risk can be 
diversified in typical pool sizes, although less effectively at the older ages. 
Mortality heterogeneity is not usually taken into account in stochastic 
mortality models. This is a mortality risk that reduces the effectiveness of 
idiosyncratic mortality risk pooling. Heterogeneity has been modelled with 
frailty models and more recently with Markov multiple state ageing models. 
This paper overviews recent developments in models for mortality 
heterogeneity and uses a model calibrated to both population mortality and 
health condition data to consider the impact of model risk and heterogeneity 
in assessing solvency and tail risk for longevity risk products. 
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Mortality improvements have been systematic, in that they have impacted individuals of 

all ages, although to varying extents by age and across time for many countries. Mortality 

improvement rates have also shown varying trends (Njenga and Sherris 2011). Pension funds and 

insurance companies issuing life annuities have been exposed to this systematic risk and this has 

the potential to impact solvency especially in the tail of the distribution of survivors. Although 

some of this risk has been transferred to reinsurers using reinsurance and longevity swaps, much 

of this risk is accumulating with insurers, pension funds and reinsurers and has not been 

diversified into the broader financial markets (Blake, Courbage, MacMinn, and Sherris 2011). 

Systematic risk is modelled using a doubly stochastic survival model where the mortality 

rate follows a stochastic process and all individuals of the same age and gender experience the 

same realised mortality rate. Given the mortality rate, individual survival is subject only to 

idiosyncratic risk, which can be diversified in large pools of lives. Even if there is only 

idiosyncratic risk, at the older ages the number of lives surviving becomes small and variability 

in benefit payments and liability values increases in the tails of the survival distribution. This is 

exacerbated by systematic risk in the form of uncertain but common rates of improvement across 

individuals. 

Many models of systematic mortality risk have been proposed. These vary from models 

such as the Lee-Carter model (Lee and Carter 1992), and variations, to models that model 

random changes in a parametric survival curve (Cairns, Blake, and Dowd 2006), to those that 

model the dynamics of mortality rates in a financial framework similar to that used for interest 

rate models (Biffis 2005). These models do not include allowance for heterogeneity. Individuals 

of the same age experience the same aggregate mortality rate. 
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Increasingly attention is being given to the impact of mortality heterogeneity and its 

impact on insurers and pension funds (Su and Sherris 2012; Lin and Liu 2007; Liu and Lin 2012). 

Along with systematic mortality risk, heterogeneity has implications for solvency and tail risk of 

annuity and pension providers. Even if there were no systematic, or aggregate, mortality risk, 

heterogeneity generates variability in future experience and volatility in financial results. 

Heterogeneity requires underwriting of risks to avoid adverse selection. Without full information 

about the risks that insurers underwrite, the financial impact of adverse selection has its greatest 

impact for annuities in the tail of the survival distributions long after the annuities have been 

issued. 

Solvency and tail risk for life annuities and pensions have two dimensions. There is an 

impact on insurer profitability from adverse experience as well as an impact on variability at the 

older ages. Trends in mortality that arise from uncertain mortality improvements and from the 

deaths of less healthy lives in a heterogeneous pool have their greatest impact at the older ages. 

The volatility of financial results arises from both systematic mortality changes, with higher 

volatility experienced at older ages, and from heterogeneity also producing in higher volatility at 

older ages (Su and Sherris 2012; Meyricke and Sherris 2013). 

There are many different approaches to modelling mortality heterogeneity. Recent 

advances have seen the calibration and application of more advanced models in the form of 

Markov ageing models (Su and Sherris 2012; Lin and Liu 2007; Liu and Lin 2012) that are 

extensions of the Le Bras model (Le Bras 1976). The other, more commonly used, approach is to 

apply frailty models to capture unobserved heterogeneity (Vaupel, Manton, and Stallard 1979).  

In this paper we develop and apply a stochastic Markov ageing model of heterogeneity 

that is calibrated to population aggregate mortality and health data that also includes systematic 
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mortality risk. We compare results with a well-known frailty model and the Le Bras Markov 

multiple state model to assess model risk, neither of which includes systematic mortality risk. 

The models are used to quantify solvency and tail risk for a portfolio of life annuities using risk 

measures standard deviation and value-at-risk for fund values at the older ages. Results 

demonstrate the impact of heterogeneity and model risk on the assessment of longevity risk for 

these portfolios, as well as the impact of selection and pool size. 

 

Mortality heterogeneity models 

The main approaches to modelling mortality heterogeneity we consider are frailty models 

and Markov multiple state models. Frailty models treat heterogeneity as unobservable. An often 

used frailty model is that of Vaupel, Manton, and Stallard (1979) where an individual is assumed 

to have frailty Z at age x with force of mortality: μሺx, Zሻ ൌ Zaeୠ୶  c. The frailty factor Z is 

gamma distributed Z~Gammaሺ1, σଶሻ so that the average frailty at age x is 

Zതሺxሻ ൌ ቆ1  σଶ
a
b
൫eୠ୶ െ 1൯ቇ

ିଵ

 

and the average force of mortality is given by μതሺxሻ ൌ Zതሺxሻaeୠ୶  c. 

The Markov multiple state mortality model was developed by Le Bras (1976). Le Bras 

(1976) used a continuous time Markov chain with an infinite number of states and a discrete state 

space to model senescence. The model starts at state 1, and progresses to state 2, 3, etc. In any 

state, the rate of jump to the next higher state and the rate of death are proportional to the state 

number. All individuals start in state 0 at time 0. In state i, the transition rate to state i+1 is 

λ  iλ, and the transition to death (an absorbing state) is μ  iμ. For the Le Bras model the 

probability of being in state i at time t is (Yashin, Iachine and Begun 2000: 13): 
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P୧ሺtሻ ൌ
eିሺబାஜబሻ୲
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ቆ
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λ  μ
ቇ
୧
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λ
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The probability of survival to time t, given the individual was in state n at time 0 is give 

by 

S୬ሺtሻ ൌ eିሺబାஜబା୬ሺାஜሻሻ୲ ൬
λ  μ

μ  λeିሺାஜሻ୲
൰

బା୬


 

Yashin, Vaupel and Iachine (1994) show the representation of the average force of 

mortality in the fixed frailty model to be equivalent to the Le Bras' model. The two are 

equivalent when: 

a ൌ
λ
λ
ൈ μ	

b ൌ λ  μ	

c ൌ μ െ
λ
λ
ൈ μ	

σଶ ൌ
λ
λ
	

Markov ageing models have the potential to account for observed heterogeneity. 

Although there have been several applications of the distribution of failure time of a Markov 

chain to mortality, also known as phase-type distributions, Lin and Liu (2007) developed a 

deterministic survival rate model based on a Markov ageing process. Each state in the model 

represents a “physiological age” as opposed to calendar age. The model assumes that there is a 

maximum physiological age n and they assumed that n = 200 is appropriate as an approximation 

to the potentially infinite ageing process, assumed in the Le Bras’s model theory. Su and Sherris 

(2012) developed the Lin and Liu (2007) to assess population heterogeneity for life annuity 

portfolios and relate states and mortality rates to aggregate population mortality.  
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These two Markov ageing models have parameters that naturally capture the changes in 

the observed period life tables. Liu and Lin (2012) make the model stochastic by adding a time 

change component. The small number of states and the transition matrix facilitate the 

incorporation of health information. The time change allows a probabilistic statement of 

mortality uncertainty. The initial distribution is estimated from health condition data and closed 

forms for the expected value and variance of the survival probability exist if the stochastic time 

change process has a closed form moment generating function.  

These Markov ageing models are the basis of the model used in this paper. We extend the 

Su and Sherris (2011) model to include health states calibrated to health conditions data as well 

as population aggregate mortality data. We also subordinate this underlying model to a Gamma 

time change so that survival distributions are stochastic. The underlying model allows an 

assessment of model risk by comparison of results for solvency and tail risk with the other 

models of heterogeneity. The subordinated model shows the significance of heterogeneity if 

mortality is stochastic. 

The Markov ageing model used has 3 sets of transition matrices, each with 5 transient 

states and 1 absorbing state, fitted separately to ages 40-70, 70-90 and 90-110. Transition occurs 

as a Markov process from one transient state to its next state, or to the absorbing state, and the 

model takes into account both health status and mortality data. Aggregate survival rates are 

determined by a deterministic underlying multiple states survival model ܵሺ∙ሻ and a time change 

process  ߛ௧. The underlying model assumes the individual mortality process moves through a 

series of deteriorating health statuses. Health and mortality is made stochastic by a random time 

change. The aggregate survival rate at time  ݐ  is ܵሺݐሻ ൌ ܵሺߛ௧ሻ. The time until absorption or 

death, in this system has a phase type representation  ሺߨ, ܶሻ , where  ߨ  is the initial distribution 
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on the transient states, and  ܶ  is the states' transition rates matrix. The probability of survival up 

to time ݔ  is ܵ ൌ ߨ expሺܶݔሻ ݁  where ݁  is a column of 1’s. Under the assumption that 

deterioration in health is more likely than improvement, transition is assumed to be acyclic. 

Since all acyclic phase type distributions have a Coxian representation,  T   can be written as:  

ۉ

ۈ
ۇ

െሺߣଵ  ଵሻݍ ଵߣ 0 0 0
0 െሺߣଶ  ଶሻݍ ଶߣ 0 0
0 0 െሺߣଷ  ଷሻݍ ଷߣ 0
0 0 0 െሺߣସ  ସሻݍ ସߣ
0 0 0 0 െݍହی

ۋ
ۊ

 

 where ߣ is the rate of transition from state ݅ to state ݅  1, and ݍ is the rate of transition 

from state ݅ to the absorbing (death) state. A restriction was placed on the values of ݍ such that 

the five transient states must have increasing ݍ. This ensures that individuals in better health 

states do not have higher death rates. 

The 5 states are 5 divisions of the full range of physiological ages. The model is made 

non-homogeneous using splines. ܵሺݔሻ with splines at ݏ 's can be represented as:  

ܵሺݔሻ ൌ ൞

ߨ expሺ ଵܶݔሻ 0	ݎ݂																																																																								݁  ݔ ൏ ଵݏ
ߨ expሺ ଵܶݏଵሻ expሺ ଶܶሺݔ െ ଵሻሻݏ ଵݏ	ݎ݂																																							݁  ݔ ൏ ଶݏ
ߨ expሺ ଵܶݏଵሻ expሺ ଶܶሺݏଶ െ ଵሻሻݏ expሺ ଷܶሺݔ െ ଶሻሻݏ ଶݏ	ݎ݂						݁  ݔ ൏ ଷݏ
																																																																																																																								ܿݐ݁

 

The position of the splines were determined through trial and error, taking into account of 

goodness of fit and the number of parameters, since each additional spline requires another 

transition matrix of 5  ݍ's and 4  ߣ's.  

The time change is modelled as a Gamma process which is non-decreasing, additive, and 

has a closed form moment generating function. It is defined as starting at ߛ ൌ 0  with 

independent increments ሺߛ௧ା௦ െ  .ݏߥ and variance ݏ ௧ሻ, which are Gamma distributed with meanߛ

The Markov ageing model is used in two ways. Its deterministic component (i.e. the 

underlying Markov process) is used for comparisons with the other deterministic heterogeneity 
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models. The subordinated model, which introduces the stochastic component, is used to assess 

the impact of systematic mortality risk since it introduces a risk factor that is common across the 

risk groups. 

  

Data 

Modelling mortality heterogeneity requires a basis to divide the population into groups of 

individuals expected to experience similar rates of mortality, distinct from the other groups. 

Calibration of these models requires information about the health status distribution and survival 

probability. This can be done using socioeconomic status, health conditions or health risk factors. 

Socioeconomic status and income level are related to mortality. However, the correlation is not 

definitive and mortality is driven by more specific factors than socioeconomic status. Health risk 

factors based on individual panel data can be used to relate failure time to health characteristics 

of individuals. Characteristics include various factors such as diastolic and systolic blood 

pressure, body mass index, cholesterol, blood sugar, vital capacity, cigarettes per day. This 

approach has significant data availability imitations at a population level.  

Health risk factors such as obesity or smoking habits are less effective in capturing 

heterogeneity than existing health conditions such as heart disease or lung cancer. In addition, 

health condition data is more readily available than health risk factor information, which requires 

both the risk factor and its duration. The ideal form of data is that which records a cohort's 

experience through time. However, health data is generally only available for the population 

alive in a particular year so that period mortality data has to be used to match period health data.  

For calibration of the models, the data used for estimating health status distribution, 

severity of the health conditions and population survival probabilities came from a variety of 
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sources. The National Health Survey (NHS) data used were for the prevalence of long term 

conditions, at 10 year intervals from age 15 to 75, across years 2007-2008. Self-assessed health 

for age intervals: 15-17, 18-24, 25-65, 65+, for years 2007-2008 and estimated average dementia 

prevalence at 5 year age intervals from 60 to 85 were also used. 

The Australian Cancer Incidence and Mortality Books (ACIMB) were used for cancers 

incidence and mortality, for 5 year age intervals up to 85, to year 2008 and the WHO mortality 

database for Australia gave the number of deaths from a health condition, for 5 year age intervals 

until 95, to year 2006. The Australian Bureau of Statistics Causes of Death (ABSCD) provided 

the number of deaths from each condition, the aggregate of all ages, to year 2010. Australian life 

tables (from Human Mortality Database) up to age 110, to year 2010 along with Australian 

cohort mortality rates (from Human Mortality Database) up to year 2008 were used for mortality 

rate data. 

Population health status distributions were estimated from prevalence of health conditions. 

Health conditions were ranked according to their severity and divided into 5 groups (or health 

states) and the distribution of the population for these 5 health states was determined from the 

data. The model does not take into account infectious diseases or accidents. All individuals are 

assumed to have the same exposure to these baseline risks. Health conditions were ranked by the 

probability of death from cause of death data given the prevalence of a condition. Since deaths 

by cause from WHO is only available up to 2006, and prevalence available for 2007-2008 data, 

the 2006 WHO data was scaled by the ratio of 2008 to 2006 numbers of deaths in the ABSCD. 

To estimate the proportion of the population in each health state, health data is available 

at 10 year intervals, but the model requires distributions across ages. It was assumed that the 

prevalence of a condition for individuals for a 10 year age range could be used to represent the 
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expected prevalence at the midpoint age. It was also assumed that long term conditions are 

independent and that for a person affected by more than one condition, the highest death rate 

among all of the conditions was assumed to be the death rate. The proportion of individuals with 

a specific condition as their most severe condition was assumed equal to the proportion of 

individuals not affected by any worse condition multiplied by the proportion of the total 

population affected by the specific condition. The remaining proportion of individuals was 

assumed to have the best health status. 

 

Calibration of Mortality Heterogeneity Models 

Figure 1 shows the survival curve for the fitted Le Bras model and the Australian 2008 

life table used for calibration. The model provides a better fit to the survival curve when fitted 

for ages above 20.  The parameter values estimated for the Le Bras model 20+ are given in Table 

1. The model is equivalent to the frailty model. 

 

Figure 1 here 

 

Table 1 here 

 

Least squares was used to fit the models based on estimated health distributions and 

expected survival rates. The data used to calibrate the model are actual observations, so the 

estimation uses observed health and survival distributions as expected values. Fitting by least 

squares involves two steps. Firstly, a life table is used for expected values of survival rates. The 

sum of squared difference with model's estimation of ܧሺܵሺݐሻሻ is minimized. A lower limit of 
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0.001 was imposed for   to prevent a near zero denominator in the numerical estimation 

procedure. Other parameters were assumed to have a lower limit of 0. The estimated transition 

matrix was applied to the survival data to calculate the time difference between data points. 

Finally a Gamma distribution with mean 1 was fitted to the time differences to estimate  . 

The model does not assume birth cohorts differ and was fitted to period data. 

The three matrices fitted to age intervals 40-70, 70-90 and 90-110 are shown below. This 

was found to be the optimal placement of splines.  

Matrix 1:   

ۉ

ۈ
ۇ

െ0.040674 0.040674 0 0 0
0 െ0.038392 0.038390 0 0
0 0 െ0.077902 0.077895 0
0 0 0 െ0.041452 0.036872
0 0 0 0 െ0.324648ی

ۋ
ۊ

 

 

Matrix 2:  

ۉ

ۈ
ۇ

െ0.538303 0.538173 0 0 0
0 െ0.286794 0.286664 0 0
0 0 െ0.197219 0.197089 0
0 0 0 െ0.142874 0.142744
0 0 0 0 െ0.163605ی

ۋ
ۊ

 

 

Matrix 3:   

ۉ

ۈ
ۇ

െ0.942212 0.942212 0 0 0
0 െ0.922036 0.922036 0 0
0 0 െ0.594132 0.594132 0
0 0 0 െ0.383907 0.383907
0 0 0 0 െ0.386949ی

ۋ
ۊ
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The best estimate of the time change variance     was 0.095. The estimation of variance 

from an expected value (i.e. ܧ൫ܵሺݐሻ൯) is possible because the Gamma distribution is skewed. 

However, the accuracy of the estimate is low. The goodness of fit is not significantly different 

for values of ߥ less than 0.1. 

Figure 2 shows the fitted survival curve and Figure 3 the fitted versus observed data for 

the health states. The model provides a good fit to the survival distribution used for calibration. 

 

Figure 2 here 

 

Figure 3 here 

 

Solvency and Tail Risk 

In order to assess solvency and tail risk arising from heterogeneity a portfolio of life 

annuities is projected using simulation. Annuity contracts are assumed written at age 65 under 

differing assumptions about the health status of the lives purchasing the annuity. All annuities 

are for $1 p.a. There are no expenses or other costs assumed. The distribution of health status is 

based on the distribution estimated by each model. For comparison purposes ranges of health 

status were aggregated into groups for the purpose of calculating premiums and simulating 

annual balances. 

Premiums are determined to equal the actuarial expected present value of all payments. 

Survival rates conditional on health states are used to allow for selection and population average 

survival rates are used for the case of no anti-selection. A fixed interest rate of 3% p.a. was 

assumed as well as an assumption of random investment returns.  
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Random returns were simulated using a model (including calibration) directly taken from 

Nirmalendran et al (2012). Assets were assumed allocated according to APRA’s 2010 statistics 

of 5.5% in cash, 86.8% in bonds, and 7.7% in stocks (rebalanced every year). Cash rates and 

stock prices were modeled with geometric Brownian motion. The short rates generated by the 

Vasicek model were used for single period bond returns. For the random returns case, premiums 

were calculated with discount factor based on bonds yields. However, unlike Nirmalendran et al 

(2012), the market price of investment risk was not considered. 

The distributions of healthy states for the Markov ageing model are given in Table 2. 

These percentages were calibrated to the health data and show the shift from the healthier states 

to the less healthy states and eventually to the death states with age. Figure 4 shows the 

distribution of heterogeneity at age 65 given by the three models based on the distribution of 

expected future lifetimes for the models. Both the Vaupel frailty model and the Le Bras Markov 

model have similar distributions, although not identical. The Markov ageing model has a 

markedly different distribution and this reflects a more accurate calibration to health status. 

 

Table 2 here 

 

Figure 4 here 

 

Impact of heterogeneity and adverse self-selection.  

The impact of heterogeneity is demonstrated in Figure 6 through the comparison of a ‘best health’ 

case and a ‘mixed’ case. The best health case assumes only individuals in the best health class of 

the Markov ageing model, and equivalent states in the Le Bras and Vaupel models (equivalent 
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top x% of the population in terms of mortality rate), purchase annuities. The mixed cases assume 

a portfolio of annuitants with similar health proportions to that of the population and no selection 

based on the annuity premium.  

The standard deviation of the pool amount increases with older ages for all models. Even 

though frailty models imply reduced relative heterogeneity at older ages, there is an increase in 

variability of pool fund amounts. The Le Bras and Vaupel models produce similar results 

although the Vaupel model gives higher standard deviations.  

The most interesting aspect shown here is the Markov ageing model, whose measure of 

heterogeneity is specifically calibrated to population health data. The cases where only the best 

health states lives purchase annuities differ significantly from the mixed population health states 

pool. These differences do not arise in the other two models, where heterogeneity in health is 

derived from aggregate survival rates only.  

 

Figure 5 here 

 

Figure 7 shows the Markov ageing model results for the best health state compared with 

the mixed health case. In the population case the distribution of fund sizes is much wider with 

higher probabilities of adverse fund sizes. (The other two models show a smaller magnitude, see 

later in Table 3.) The selection strategy of writing annuities for a select group of individuals 

reduces the volatility arising from heterogeneity and is a lower risk strategy. 

 

Figure 6 here 
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The self-selection case assumes that the premium is charged based on the mixed 

population distribution of health states but individuals select to purchase the annuities based on 

an assumption they know their health state. As shown in Figure 8, the effect of this anti-selection 

is that the average fund size drops significantly, as expected, and the chance of major losses 

increases. Although adverse selection results in lower standard deviations of pool fund balances, 

this is primarily because the mean level of the fund falls rapidly. 

Table 3 compares the premiums and risk measures for the cases of best health, mixed 

health and adverse selection. The three models agree on the impact of self-selection, although 

they differ on the amount of reduction in volatility when the best health group is priced 

separately. 

 

Figure 7 here 

 

Table 3 here 

 

Impact of random investment returns.  

Table 4 shows the annuity premiums and risk measures for pool sizes of 1000 assuming random 

investment returns. Risk is substantially increased with the addition of investment return risk. 

The Le Bras and Vaupel models show similar risk measures for the different cases of selection. 

For the Markov ageing model the better health states contribute significantly to overall portfolio 

risk due to high level of fund. 

 

Table 4 here 
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Impact of stochastic mortality.  

As discussed earlier, the subordinated Markov ageing model incorporates stochastic mortality 

through a Gamma time change. The degree of uncertainty is expressed through its variance ߥ. 

Survival data in 2008 supports values of ߥ being less than 0.1 with a best estimate of 0.095. 

Table 5 shows the diminishing difference between the standard deviation of funds with different 

health status composition (i.e. best health only and mixed health) as variance ߥ  increases. 

Heterogeneity’s relative effect on fund fluctuation diminishes as systematic uncertainty increases. 

 

Table 5 here 

 

Impact of pool size.  

Table 6 compares the standard deviation at age 110 for pool sizes 10ଶ to 10ହ given by a 

deterministic Markov model and its stochastic equivalent. With deterministic mortality rates, 

standard deviation increases disproportionately to pool size, showing a diversification of 

idiosyncratic risk. In contrast, with the inclusion of systematic risk, the effect of diversification 

from is almost cancelled out by increases in volatility from the increased exposure to systematic 

mortality risk due to the larger pool size. 

 

Table 6 here 

 

Figure 5 shows the standard deviation of the pool amount for ages above 90 for the 

deterministic and subordinated Markov ageing models, for pool sizes 500 and 1000. At the older 
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ages a larger pool size increases the standard deviation more significantly because of the effect 

of systematic risk. 

 

Figure 8 here 

 

Conclusions 

Model risk arises from a misspecification of the underlying process being modelled. 

Systematic mortality risk models have been developed and applied. Markov ageing models for 

heterogeneity have also been developed. Using a model that captures only one of these aspects of 

mortality risk has limitations because of model risk. 

This paper has used a recently developed model for mortality heterogeneity, along with 

more commonly used frailty models to show the impact of this risk on annuity fund values at the 

older ages, the tail of the mortality distribution. Standard models of heterogeneity do not capture 

observed health differentials or the effect of systematic mortality risk. They do allow the risk of 

adverse selection to be quantified. 

We show how increasing pool sizes increase tail risk when a mortality model includes 

systematic risk. This effect is not captured by standard models of heterogeneity. We show how 

selection of lives in better health states by insurers when writing life annuities is a more 

profitable and less risky strategy than writing annuities on all health states in the population, 

even if there is no adverse selection. 

Adverse selection has a significant negative impact on mean profitability that outweighs 

the lower risk in the fund shown in the lower standard deviations of fund values. 
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Table 1: Parameter estimates for Le Bras model fitted to ages above 20. 
 

λ0 0.489972 

µ0 0.000608 

λ 0.117869 
µ 0.00001 

Notes: The table shows the parameters estimates for the Le Bras model based on the Yashin et al (1994) 
parameterization. Source: authors calculations. 

 
 

Table 2:  Markov ageing model: percentage distribution of health states for ages 40 to 70 
 
Age\State 1 2 3 4 5 deceased

40 47.60% 42.50% 7.50% 0.20% 0.20% 2.20%
50 4.09% 37.90% 12.60% 4.70% 0.30% 3.70%
60 21.10% 41.00% 18.20% 11.80% 0.90% 7.10%

70 13.00% 31.10% 16.90% 21.80% 2.20% 14.90%
Notes: The table shows the distribution of health states for varying ages based on the Markov ageing model. Health 
state 1 is the best health state with then lowest mortality rate and 5 is the worst health state with the highest mortality 
rate. Source: authors calculations. 
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Table 3: Annuity premiums and tail risk measures assuming a fixed investment return for 
different models of heterogeneity. 
 

Mortality 
model 

Heterogeneity 
Annuity 
premium

Risk measures at age 110 

Mean Stdev 95% VaR 

Markov 

best health only 16.32 ‐0.07 386.09 631.73 

mixed 14.29 ‐15.86 710.31 1176.89 
mixed w self 
selection 14.29 ‐5872.49 428.07 6566.69 

Le Bras 

best health only 15.84 4.24 607.33 986.31 

mixed 14.16 11.56 635.70 1022.46 
mixed w self 
selection 14.16 ‐3105.13 613.12 4109.81 

Vaupel 

best health only 16.29 ‐0.88 658.73 1072.07 

mixed 14.72 ‐1.61 673.32 1109.78 
mixed w self 
selection 14.72 ‐2610.51 666.36 3694.48 

Notes: The table shows the premium for a life annuity of 1 p.a. and tail risk measures for a pool of 1000 individuals 
aged 65 assuming different pool compositions for health statuses for a fixed investment return of 3% p.a..  Results 
are show for the different deterministic models of heterogeneity. Source: authors calculations. 
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Table 4: Annuity premiums and tail risk measures assuming random investment returns 
for different models of heterogeneity. 
 

Mortality 
model 
  

Heterogeneity 
  

Annuity 
premium 
  

Risk measures at age 110 

Mean Stdev 95% VaR 

Markov 

best health only 13.48 ‐199.80 4912.11 7843.93 

state 2 12.54 ‐198.90 4387.30 7117.17 

state 3 10.04 ‐111.25 3192.87 5144.76 

state 4 6.74 ‐54.63 1917.96 3131.44 

state 5 5.00 ‐35.88 1478.46 2441.54 

mixed 11.99 ‐132.34 4420.42 7051.55 

mixed w self selection 11.99 ‐14675.61 4112.85 21204.18 

Le Bras 

best health only 12.95 ‐109.05 4901.30 7811.46 

mixed 11.84 ‐59.61 4283.44 6883.19 

mixed w self selection 11.84 ‐7006.90 4244.59 13922.83 

Vaupel 

best health only 13.14 ‐141.61 5040.23 8067.82 

mixed 12.13 ‐112.90 4476.47 7234.56 

mixed w self selection 12.13 ‐5777.86 4397.70 12874.70 
Notes: The table shows the premium for a life annuity of 1 p.a. and tail risk measures for a pool of 1000 individuals 
aged 65 assuming different pool compositions of health statuses for a random investment return.  Results are shown 
for the different deterministic models of heterogeneity. Source: authors calculations. 
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Table 5: Standard deviation of annuity fund for different assumptions of stochastic 
mortality risk. 
 

ν 

Stdev at age 110 

best 
health  mixed 

0.001  470.09  756.53 

0.005  702.46  908.32 

0.01  910.17  1052.44 

0.05  1862.03  1877.39 

0.095  2588.74  2509.45 

0.1  2626.27  2563.43 
Notes: The table shows the standard deviation for a life annuity fund of a pool of 1000 individuals aged 65 assuming 
different pool compositions for health statuses for annual payments of $1 and a fixed investment return of 3% p.a.. 
Source: authors calculations. 

 

Table 6: Standard deviation at age 110 for different pool sizes using Markov model without 
and with stochastic mortality risk. 
 
Pool 
size 

deterministic 
Markov 

subordinated 
Markov 

100  122.66 286.21

1000  388.23 2588.74

10000  1216.31 25649.07

100000  3914.59 254307.38
Notes: The table shows the standard deviation of the fund at age 110 for life annuity of 1 p.a. for best health 
individuals aged 65, assuming a fixed investment return of 3% p.a.. The stochastic model assumes variance of 
Gamma time change ߥ ൌ 0.095. Source: authors calculations. 
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Figure 1: Survival curve fit of the Le Bras model 

 
 

Note: Figures show the fit of the Le Bras model to the 2008 Australian life table survival curve (male and female 
combined). The model provides a better fit to survival data starting from age 20 than starting from birth. Source: 
authors calculations. 
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Figure 2: Survival curve fit of the Markov ageing model of heterogeneity based on both 
health and survival data 

 
Note: Figure shows the fit of the Markov ageing model used in the paper compared to the 2008 Australian life table 
survival curve. The model fit is shown for ages 40 and above. Source: authors calculations. 
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Figure 3: Fitted versus observed data for Markov ageing model 
 

 
 

 
 

Note: Figure shows distribution of health states for the Markov ageing model used in the paper compared to the 
actual data used to fit the model. The model fit is shown for ages 40 and 60. Source: authors calculations. 
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Figure 4: Heterogeneity based on expected future life times at age 65. 

 
Note: The figure shows the distribution of future expected lifetime according to the three modes used in the paper to 
quantify heterogeneity of mortality. The Markov model has a noticeably different distribution to the other models 
reflecting its calibration to both health and survival data.  Source: authors calculations. 
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Figure 5: Balance of annuity fund for the best health state and the population mix showing 
uncertainty and downside risk. 

 

 
Note: The figures show the annuity fund for annuities commencing at age 65 at the older ages for a pool size of 50 
individuals. The top figure is for annuity portfolio  with only the best health state and the bottom figure annuities 
assuming a mixture of health states representative of the population purchase annuities (mixed).  Source: authors 
calculations. 
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Figure 6: Mean and standard deviation of balance of annuity fund showing the impact of 
adverse selection. 

 
 

 
 
Note: The figures show the annuity fund for annuities commencing at age 65 for a pool size of 50 individuals 
assuming that a population annuity rate is charged. The top figure shows the mean balance and the bottom figure the 
standard deviation.  Two cases are shown. One where there is no self (adverse) selection and the other where only 
the healthy lives purchase annuities. Source: authors calculations. 
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Figure 7: Average and standard deviation of annuity pool amount at older ages for the 
Markov ageing model 
 

 
 

 
 
Note: The figures show the standard deviation of the annuity fund for annuities of $1 p.a. for best health individuals 
aged 65, assuming a fixed investment return of 3% p.a.. Source: authors calculations. 
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Figure 8: Standard deviation (SD) risk measure for the annuity pool amount at older ages 
for the different models of heterogeneity for a pool size of 1000. 

 

 

 
Note: The figures show standard deviation of the annuity fund for annuities commencing at age 65 at the older ages 
for a pool size of 1000 individuals. The standard deviations are shown for the three different models and for the 
assumption that only the best health individuals purchase annuities (best only) and also assuming a mixture of health 
states representative of the population purchase annuities (mixed).  Source: authors calculations. 
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