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Abstract

This paper estimates the income elasticity of house prices over a long-term

time period of 1991 to 2012 for 144 LGAs in New South Wales of Australia. The

income elasticity of house prices is estimated to be 0.69 by multi-factor panel data

models accounting for cross-section dependence and serial correlation. The estimate

confirms a co-integrated long-run relationship between real house prices and real

income. Alternatively, the income elasticity is estimated to be 0.46 using traditional

spatial autoregressive models, where the spatial matrix is specified as a distance

weighted matrix. The spatial effect of house price in one location is estimated

significantly to be 0.84.

JEL classification: R12,R31,C33
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1 Introduction

Housing prices in Australia have been increasing over more than two decades and this

is obviously seen in New South Wales. Since housing wealth dominates household wealth

for a typical household, volatility in housing prices influences household wealth and also

the macroeconomic stability. In consequence, the dramatic increases in house prices pose

some concern if housing prices have been overvalued. This paper investigates if prices

are moving away from their market fundamental drivers, which are normally monitored

by the affordability indicator of real disposable income per capital, the mortgage condi-

tion indicator of real interest rates and population growth (Case and Shiller 2003 and

McCarthy and Peach 2004; Andr, C., & Girouard, N. 2010).

A panel dataset for house prices and income for 144 Local Government Areas (LGAs)

in New South Wales (NSW) for the period 1991 to 2012 is used in the study. The

statistical analysis has a particular focus on testing if there has been a long run equilibrium

in price to income ratios by examining the existence of a co-integration relationship of

real housing price to real income. The models estimated in this Chapter allow for the fact

that the behaviour of real house prices is likely to be correlated across LGAs. The spatial

patterns in house price distributions are considered to arise when cross section units are

subject to observed or unobserved common effects (Holly, Pesaran and Yamagata, 2010)

and (or) if there are diffusion effects due to spatial or other forms of local dependencies

(Alexander and Barrow 1994; Ashworth and Parker 1997 and Cook 2003). Therefore, a

key element of the econometric analysis is an attempt to account for possible cross-section

(spatial) dependence in the error terms of the panel data models, which is modelled by a

multifactor error structure, and also, by a spatial autoregressive process.

Abelson,Joyeux, Milunovich and Chung (2005) found a co-integrated relationship be-

tween real income per capita and real house prices and a number of other variables in

Australia from 1970 to 2003. Bodman and Crosby (2003) found no significant relation-

ships between house prices and income per capita to model changes in real quarterly

house prices in five capital cities in Australia from 1980 to 2003. Instead, they find evi-

dence that housing prices in Sydney and Brisbane were overvalued. These studies suggest

that local housing markets have variations in the desirability of location and culture and

the value of obtainable land (which naturally lead to the heterogeneity in house prices

in regions). However, it is very difficult to control these effects when the focuses are on

aggregate time series analyses and the use of fixed effects and time dummies may not

be sufficient to capture these idiosyncratic factors. Housing markets are also likely to

be correlated due to the existence of some spatial or non-spatial diffusion effects in the

development of a housing market. The impacts of these factors will also lead to bias in

estimates if not dealt with appropriately.
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In the existing literature, there are two forms of spatial patterns in housing price

distributions. One is caused by common factors, mainly described as macroeconomic

conditions, including changes in interest rates and oil prices, or unobserved, such as

technological change. Meen (1999) suggests that the impacts of common factors result

from the heterogeneity in the responses of sub-markets in a given geographical area

to the overall state of the macro-economy. The second is the diffusion effect due to

spatial or other forms of local dependencies (Alexander and Barrow 1994; Ashworth

and Parker 1997) in house prices that cannot be captured by spatial effects alone. For

example, interactions between sub-housing markets and migration patterns may result

in some pattern of diffusion effects to the development of housing markets (Cook 2003

and Alexander and Barrow 1994). Market participants would be crowded out from one

particular preferred location to the next when prices in one geographic location change.

I take account of the spatial influences due to common factors by making use of the

common correlated effects (CCE) estimator (Pesaran 2006; Pesaran and Tosetti 2011;

Chudik, Pesaran, and Tosetti 2011) which is consistent under heterogeneity and cross-

sectional dependence. The CCE estimator treats spatial temporal dynamics as general

dynamics, which are captured by common factors as well as exogenous individual-specific

time series dynamics. This approach may have some disadvantage that it does not explic-

itly model spatial patterns in house prices. Yet, as shown by Pesaran and Tosetti, this

approach continues to provide consistent estimates of the slope coefficient, even in the

presence of a spatial error process. Holly, Hashem Pesaran, and Yamagata (2011) apply

the approach to study the co-integrated relationship between real house prices and real

income per capita for U.S. states using annual data from 1975 to 2003. They find that

the observed common factors (such as real interest rate) or unobserved common factors

(proxied by the average of observed individual-specific factors) significantly impact the

long-run equilibrium of house prices. With controls for common shocks, house prices

and income are found to be cointegrated with a unity coefficient. As an alternative, we

also apply the spatial SAR panel data models to account for the spatial effects in house

prices and a model’s error term. This traditional spatial econometric approach explicitly

models cross section dependence by using an N x N spatial matrix that specifies a rela-

tionship between a cross-section unit and its ‘nearest’ neighbors (Anselin 1988; Baltagi,

Song, and Koh 2003; Kapoor, Kelejian, and Prucha 2007; Baltagi, Egger, and Pfaffer-

mayr 2007; Anselin, Le Gallo, and Jayet 2008; LeSage and Pace 2010 and Lee and Yu

2010). However, a potential problem with the approach is that the spatial weight matrix

may be mis-specified because the spatial effects are multidimensional or because there are

unobserved common factors that are not adequately captured by the spatial contiguity

matrix and end-up in the model’s error term.

The majority component of this paper focus on providing consistent estimates for
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the income elasticity to house prices with consideration to the cross-section dependence

and serial autocorrelation in the panel data models. Multi-factor panel data models and

spatial SAR models are estimated respectively. The income elasticity of house prices is

estimated to be 0.69 by multi-factor panel data models which are proved to be successfully

filtered from cross-section dependence and serial correlation. This estimate confirms a

co-integrated long-run relationship between the real house prices and real income however

only when there is a control for the linear time trend. In addition, house price in one

location is proved to be connected with prices in other spatial units through a contiguous

distance weighted matrix with a coefficient of 0.84. After controlling for such an impact,

somewhat lower estimate of the long-run income elasticity is obtained to be 0.46. The

marked upturn in home prices is largely attributable to strong market fundamentals.

Home prices have essentially moved in line with increases in family income and declines

in nominal mortgage interest rates.

The reminder of this paper has the following structure. In Section 2, the main econo-

metric methods used in this paper are described. A description of the panel dataset and

a preliminary data analysis is presented in Section 3. The empirical results, including

income elasticities and factor loadings are reported in Section 4. Section 6 concludes.

2 Econometric Framework

2.1 Model and Estimators

In estimating the co-integrating relationship of house prices in NSW the following

model due to Holly, Pesaran, and Yamagata (2010) is employed:

yit “ ai ` β
1
iXit ` γ

111
ift ` eit (1)

where i “ 1, 2, .., 144; t=1, 2, .., 22. The dependent variable yit denotes the log of real

house prices in the ith LGA during time t. The vector Xit is a k ˆ 1 vector of observed

individual-specific regressors, namely the exogenous economic fundamentals, including

log real income and log population growth on the ith cross-section unit at time t. An-

other exogenous variable included is the nation-wide observation of the real interest rate

which represent the mortgage market condition. Structural changes in housing and mort-

gage markets in some economy are likely to be shifting equilibrium levels. For example,

a reduction of mortgage rates resulting from lower inflation expectations or increased

efficiency and competition in financial markets may lower borrowing costs in a durable

way and thereby increase equilibrium house prices. But a fall in mortgage rates driven by

the underestimation of risks is likely to be reversed sooner or later as risk premiums are

reassessed, leading to a correction in house prices (Andr, C., & Girouard, N. 2010). The
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vector ft is assumed to be an m-dimensional vector of unobservable common factors1,

which might influence house prices across all regions of NSW in a similar manner, such

as policy effects, expectations, or common technologies influencing all groups in a similar

way. γ 111i is a 1ˆm vector of heterogeneous factor loadings. The idiosyncratic error term,

eit is assumed to be independent of Xit and ft, but can be weakly dependent (spatially

and temporally correlated)2

The model given by (1) nests a number of simpler panel data specifications. If there

are no unobserved common factors, γi “ 0 and the slope coefficients are homogeneous,

β1i “ β1, then the (1) collapses to a standard fixed-effects model (possibly with spa-

tially correlated errors). In the empirical analysis a fixed-effects model is estimated as a

benchmark for comparison with the more general specifications.

Maintaining the assumption of no unobserved common factors, but allowing for het-

erogeneity in the slope coefficients yields the dynamic heterogeneous panel model due

to Pesaran and Smith (1995). Pesaran and Smith show that consistent estimates of β1i

coefficients can be obtained by estimating separate regressions for each cross-section unit

and then averaging the coefficients over the units. They call this a mean group (MG)

estimator. Such an estimator is likely to work best for large N and large T. Finally the

most general version of model (1) can allow for cross-section dependence in house prices

by use of the common correlated effects (CCE) estimator (Pesaran 2006). A pooled or

mean group version of the CCE estimator can be employed, depending upon what is

assumed about heterogeneity in the slope coefficients.

More details for the various estimators used in this paper are described in Appendix

C.

2.2 Cross-section Dependence

Various tests for cross-section dependence in panel data have been proposed for the

case of (small) T and (large) N (Frees 1995; Pesaran 2004; Sarafidis, Yamagata, and

Robertson 2009). In this study, the cross-section dependence (CD) test due to Pesaran

(2004) is used. One advantage of the CD test is that it can be applied to a wide variety of

models, including heterogeneous dynamic models with multiple breaks and non-stationary

dynamic models with small/large N and T.

1In this study, m is assumed to be no greater than the number of included exogenous regressors.
2In Pesaran (2006) and Pesaran and Tosetti (2011), eit has this form: e.t “ Rte.t`ε.t, where Rt is a

given N ˆN weighted spatial matrix for catching up the remaining weak spatial dependence in e.t, and
ε.t allows for serial autocorrelation to capture the individual specific short-run dynamics. In this study,
the cross-section dependences are successfully filtered out by ft in panel regressions as proved by the CD
test in Table 7-8, The weak spatial effects in e.t are not estimated. Instead, I use robust non-parametric
estimators shown in (28-29) to estimate the standard error of e.t. The spatial autocorrelation in real
house prices and panel regression residuals are estimated by Model (18).
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Suppose yit is the panel data variable to be tested, denoting ρ̂ij as the sample estimate

of the pair-wise correlation of the ith and jth cross-section units of yit,

ρ̂ij “ ρ̂ji “

řT
t“1 yityjt

p
řT
t“1 y

2
itq

1{2p
řT
t“1 y

2
jtq

1{2
(2)

The value of cross-section dependence is then computed as,

ρ̄ij “
2

NpN ´ 1q

N´1
ÿ

i“1

N
ÿ

j“i`1

ρ̂ij. (3)

The null hypothesis is that yit is independently and identically distributed across cross-

section units, written as,

H0 : ρij “ ρji “ 0 for all i ‰ j,

H1 : ρij “ ρji ‰ 0 for some i ‰ j,

The CD statistic proposed by Pesaran (2004) has the following form,

CD “

d

2T

NpN ´ 1q

N´1
ÿ

i“1

N
ÿ

j“i`1

ρ̂ij Ñ Np0, 1q, (4)

for N Ñ 8 and T sufficiently large.

2.3 Panel Unit Root Tests

Most of the variables in (1) enter in levels or log-levels. This implies that some vari-

ables may be non-stationary due to the presence of a unit root. Furthermore if some

variables contain unit roots, a valid model specification and hence consistent estimates,

will require the existence of one (or more) co-integrating relationships. A standard frame-

work used in testing for unit roots in panel data is the following:

∆yit “ µit ` φiyit ` uit (5)

where additional deterministic trends and lags of the dependent variable can be added

as necessary.

Many standard tests for panel unit root tests are based on the assumption of cross-

section independence (Im and Pesaran 1997; Harris and Tzavalis 1999; Maddala and

Wu 1999; Hadri 2000; Choi 2001 and Levin, Lin, and James Chu 2002). Under this

assumption, Choi (2001) finds in a Monte Carlo analysis that a test based on the inverse

normal distribution has the best trade-off in terms of size and power. This Z statistic is
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calculated as

Z “
1
?
N

N
ÿ

i“1

Φ´1ppviq (6)

where pvi is the p-value on the ith panel associated with an Augmented Dickey Fuller

(ADF) test for a unit root test applied to each of the N cross-section units and Φ´1p.q

is the inverse of the standard normal cumulative distribution function. Under the null

hypothesis that all N times series have a unit root, Z „ Np0, 1q. The null hypothesis is

rejected for values of Z ă Cza where Cza is from the lower tail of the normal distribution.

A number of recently developed tests have relaxed this assumption of cross-section

independence (Cerrato and Sarantis 2007; Pesaran 2007, Breitung and Das 2008 and

Pesaran, Vanessa Smith, and Yamagata 2013). In this analysis, the CIPS test by Pe-

saran (2007) and the CIPSM test by Pesaran, Vanessa Smith, and Yamagata (2013) are

employed. These approaches control for cross-section dependence by using factor error

specification models and also allow for serial correlations in the idiosyncratic compo-

nents. One advantage of CIPS (CIPSM) is that unlike the principle component methods

by Bai and Ng (2004) and Moon and Perron (2004), CIPS does not require estimating

the number of unobserved common factors for obtaining valid individual CADF statis-

tics. In addition, CIPS statistics are based on the simple averages of the individual CADF

statistics and are asymptotically consistent as long as the number of individual specific

variables of xit, k, is greater than the true number of common factors.

The CIPS test procedure is outlined below. The data generating process for yit for

CIPS is assumed to be:

yit “ p1´ Φiqµi ` Φiyi,t´1 ` uit, i “ 1, 2, 3, ..., N ; t “ 1, 2, ..., T (7)

with the residual, uit, accounting for serial correlation,

uit “ ρiui,t´1 ` ηit, |ρi| ă 1 for i “ 1, 2, ..., N, (8)

and ηit accounting for the unobserved factors by a one-factor error specification model,

ηit “ γift ` εit, εit „ i.i.dp0, σ2
i q (9)

Combing the equations (7)-(9), yit could be defined by

∆yit “ p1´ Φiqµip1´ ρiq ´ p1´ Φiqyit´1 ` ρip1´ Φiq∆yi,t´1 ` γift ` εit (10)

The null hypothesis is that all series in the panel have a unit root and is given by

H0 : 1 ´ Φi “ 0, i “ 1, 2, ..., N1. The alternative allows for some series to be stationary

and some to have unit roots and is given by H1 : 1´Φi ă 0, i “ 1, 2, ...N1, and 1´Φi “ 0,
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i “ N1` 1, N1` 2, ...., N , where N1{N represents the fraction of the individual processes

that are stationary and tends to the fixed value Θ such that 0 ă Θ ď 8 as N Ñ 8.

The test is performed by running a cross-section augmented Dickey Fuller test (CADF)

on each of the N time series in the panel. For the ith cross-section unit the CADF test

regression takes the following form;

∆yit “ ri0 ` r
i
1y
i
t´1 ` r

i
2ȳt´1 ` r

i
3∆y

i
t´1 ` r

i
4∆ȳt´1 ` ω

i
t, ωit „ i.i.dp0, σ2

q (11)

where ȳt´1 and ∆ȳt´1 are cross-section averages for the N units at time t. In line with

reasoning of Pesaran (2006), the above regression filters out any cross-section dependence

caused by the unobserved common factor ft, by augmenting the standard ADF regression

with the cross-section averages ȳt´1 and ∆ȳt´1. The associated CADF statistic is the t-

statistic for ri1, denoted as rti. The CIPS test statistic is obtained as the cross-section

average of the N values of rti, denoted as

CADF “ N´1
N
ÿ

i“1

rti (12)

Critical values for the CIPS test are given in Pesaran (2006). The CADF test regression

can be generalized to include trends and additional lags of the dependent variable.

In the CIPSM test, due to Pesaran, Vanessa Smith, and Yamagata (2013), the CIPS

procedure is extended to allow for a vector of unobserved factors ft. The additional

unobserved factors are proxied by including additional stationary regressors ∆X i
t and

their cross-section average ∆X̄ i
t in the CADF test regressions. Critical values for the

CIPS test is given in Pesaran (2006).

3 Data and Preliminary Data Analysis

A panel dataset is constructed for 144 LGAs in NSW over the period 1991 to 2012.

Median sales prices for non-strata dwellings are used to measure house prices 3. For each

3There might be arguments that median sales prices such as those used in this thesis are likely to
overstate income elasticities because they embody improvements to dwellings, and ”house prices” might
better be described as ”house values” in recognition of the fact that ”house values” embody both quantity
and quality components as well as a price component. However, there are several reasons that I am not
able to use ”house values” to proxy ”house prices”. Firstly, the measurement of house values is at the
individual household level and has the micro nature. If I need to carry out the empirical analysis using
the household level data, the current analyses might have to be changed substantially due to a set of new
data, which is switched from the current aggregated LGA level data to the household individual data.
Secondly, the study of a microl level analysis was not the starting point of this thesis. This thesis has
the feature of doing empirical analysis in relevance to macro housing economy, it can be reasonable to
use the median housing sales prices to reflect the development trend of a local housing market and use
the aggregated real income per tax payer as the proxy for real income per capita for each location.
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LGA, the median price is converted to real (or constant) prices using the consumer price

index (CPI) for Sydney. Real income for each LGA is measured using real income per

taxpayer. The other variables used in the empirical analysis are the resident population

for an LGA and a non-LGA specific measure of the real government bond interest rate.

The symbols used for each variable are given in Table 1. LGAs in NSW are frequently

grouped or clustered into twelve geographical regions. These regions and their abbrevia-

tions are listed in Table 2. The LGAs that comprise each region are listed Tables 11-13

of the Appendix. More details for data including data sources are included in Appendix

??.

Table 1: Variables Names

Pit Logarithm of real house prices
Yit Logarithm of real income per taxpayer
Popit Logarithm of population
Rt Real interest rate

Table 2: Regions in the State of New South Wales

CW: Central West FW: Far West HT: Hunter
IW: Ilawarra MN: Mid North Coast MB: Murrumbidgee
MR: Murry NW: North Western NT: Northern
ST: Richmond Tweed SE: South Eastern SY: Sydney

As a preliminary analysis of the panel data, time series plots of house prices and real

income at the regional-level are presented. The CD statistics is used to test for cross-

section dependence in the level and changes in house prices, real income and population

across regions. Finally, the pair-wise contemporaneous cross-correlations between the

regions for house prices and income, respectively, are computed and reported.

3.1 Regional Profiles for Real House Prices and Real Income

Figure 1 plots the regional profiles which are derived by averaging over the regional

LGAs to illustrate the course of real house prices during 1991-2012 for the 12 regions.

I can see that even though there is heterogeneity in the initial values across LGAs, the

growth patterns across regions are fairly similar. Prices for almost all of regions have

shown persistent increases through 1991 to 2004 and then mild fluctuations from 2004

on. The period of 2002-2004 seems to display specific time effects when real house prices

experienced the most dramatical increase, on average by around 36.8 per cent4.

4LGAs where real house prices have grown over 100 per cent over the years 2002 to 2004 are Ballina,
Bega Valley, Boorowa, Byron, Carrathool, Cessnock, Clarence Valley, Coffs Harbour, Eurobodalla, Great
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The mean profiles for the covariate of real income are plotted in Figure 2. Similarly,

for the level of real income, there is a consistent growth over time and growth patterns

across the regions are quite similar.

I also plot the LGA-level time profile in Figure 8 and Figure 9 to illustrate the course

of real housing prices and real income during 19912012 for the 144 individual LGAs.

Figure 1: Mean Time Profiles for Regional Real House Prices
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Figure 2: Mean Time Profiles for Regional Real Income
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3.2 Testing for Cross-section Dependence

The variable cross-section dependence within all the cross-section units and the cor-

responding CD statistics for Pit, Yit, Popit, ∆Pit, ∆Yit and ∆Popit are computed using

(2) and (4) respectively . Results are tabulated at Table 3.

It is evident that the magnitudes of cross-section dependence for all the relevant

variables are estimated to be very significant for Pit and Yit, and ∆Pit and ∆Yit. However,

this significance is not found in the change of population, ∆POPit, despite the cross-

section dependence is estimated to be significant for the level of population, POPit. The

presence of cross-section dependence in both Pit and Yit, and ∆Pit and ∆Yit demonstrate

the importance of accounting for the cross-section dependence in all the panel data model

specifications. Since only ∆POPit may be used as a covariate in the remaining panel data

models, consideration of cross-section dependence for this variable is excluded. In the

remaining panel data model estimations, the possible cross-section (spatial) dependence

in panel data models is modeled by a multifactor error structure, for which CCEMG

(common correlated effects mean group) and CCEP (common correlated effects pooled)

estimators are used.

Table 3: Variable Cross-section Dependence Testing Results

Variable CD-Statistics ¯̂ρij Variable CD-Statistics ¯̂ρij

Pit 370.81 0.779 ∆Pit 139.6 0.300

Yit 453.33 0.953 ∆Yit 213.19 0.458

Popit 69.75 0.147 ∆Popit 27.78 0.060

Notes. The cross-section dependence ¯̂ρij is defined as the average
of the pair-wise correlation, ρ̂ij , of yit and yjt. Test statistics for

cross-section dependence is CD “

c

2T

NpN ´ 1q

řN´1
i“1

řN
j“i`1 ρ̂ij

d
Ñ

Np0, 1q.

3.3 Correlations across Regions

In Table 45, the diagonal presents the first lag serial correlations of the first difference

of log real house prices, ∆Pit, in each region, and the off-diagonal numbers are the pairwise

between-region correlations. Table 5 shows the estimates for the first difference of log

real income, ∆Yit.

5The aggregation into regions as listed in this table is for presentation purposes only, which demon-
strate the presence of spatial correlation in changes of log real house prices between regions. This
presentation is only to show the importance of accounting for the cross-section dependence in model
estimations. The estimates are not intended to provide implications for the spatial correlation pattern
between regions in the variables estimated.
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In Table 4, we could see that there are apparent cross-section connections among

different regions and regions close to each other seem to be more likely to have similar

response rates. For example, the changes of the log real house prices in metropolitan

Sydney demonstrate negative relationship with regions further from Sydney, such as Far

West, Murrumbidgee, and North-Western, but is positively connected with the regions

Illawarra, Hunter and Mid North Coast. Besides, the significant positive diagonal esti-

mates show that there are significant positive serial correlations for changes in log real

house prices within a region. In contrast, despite the regional correlations of changes in

the log real income are strong, there seem to be a spatial homogeneity in the pairwise

correlations, since the estimates for the pairwise correlations are similar. But changes

in the log real income do not show to be serially auto correlated, which either present

insignificant or negative estimates (with an exception of 0.153 for Far West).

Table 4: Pairwise Cross-section Dependence between Regions for the Growth of Log Real
House Prices, ∆Pit

Region CW FW HT IW MN MB MR NW NT ST SE SY
CW 0.386
FW 0.308 0.556
HT 0.783 0.347 0.448
IW 0.588 0.097 0.851 0.459
MN 0.830 0.408 0.939 0.830 0.489
MB 0.646 0.370 0.568 0.260 0.607 0.341
MR 0.741 0.312 0.640 0.512 0.645 0.496 0.302
NW 0.593 0.373 0.430 0.192 0.447 0.525 0.636 0.129
NT 0.738 0.450 0.531 0.273 0.533 0.658 0.808 0.603 0.348
ST 0.731 0.501 0.889 0.800 0.870 0.461 0.675 0.407 0.647 0.342
SE 0.864 0.351 0.865 0.688 0.846 0.568 0.739 0.463 0.696 0.834 0.359
SY 0.364 -0.040 0.561 0.802 0.494 -0.014 0.288 0.039 0.174 0.628 0.473 0.092

Notes. Data series for calculating the estimates are the first order difference of log real house prices at the
region-level. Data for each region is calculated by the average across regional LGAs. Labels in the first row
and the first column are explained in Table 2. The diagonal numbers are the estimates of the first-lag serial
correlations for each region. The non-diagonal numbers are the between-area pairwise correlations.

Table 5: Pairwise Cross-section Dependence between Regions for the Growth of Log Real
Income, ∆Yit

Region CW FW HT IW MN MB MR NW NT ST SE SY
CW -0.271
FW 0.289 0.153
HT 0.558 0.487 -0.024
IW 0.647 0.524 0.852 -0.061
MN 0.647 0.584 0.814 0.868 -0.194
MB 0.792 0.340 0.349 0.433 0.531 -0.033
MR 0.718 0.561 0.469 0.671 0.743 0.815 -0.181
NW 0.841 0.331 0.400 0.483 0.518 0.770 0.630 -0.126
NT 0.686 0.664 0.650 0.652 0.781 0.647 0.702 0.760 -0.353
ST 0.422 0.659 0.797 0.818 0.941 0.396 0.676 0.318 0.709 0.020
SE 0.627 0.586 0.638 0.717 0.885 0.624 0.757 0.543 0.838 0.818 0.097
SY 0.476 0.599 0.748 0.795 0.695 0.428 0.549 0.435 0.762 0.707 0.745 0.045

Notes. Data series for calculating the estimates are the first order difference of log real income at the region-level.
Also see notes in Table 4
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4 Empirical Results

4.1 Unit Root Tests

Panel unit root tests are performed to examine the stationarity/non-stationarity of

real house prices, real income and population. The Z-statistic recommended by Choi

(2001) is calculated and is valid under the assumption of no cross-section dependence.

To account for possible cross-section dependence results for the CIPS and CIPSM tests

are also reported. The tests are applied to the (log) levels of the series and also to the

series in first-differences. Results are reported in Table 6.

Table 6 reports results for a number of different specifications for ADF test regressions.

In the upper half of the table the ADF regression includes a constant and allows for either

one or two lags of the dependent variables. In the bottom half the ADF regression includes

both a constant and a time trend.

The Z-statistics for the variables in levels imply that the null hypothesis of a unit root

in all series cannot be rejected, except in one case for real income. In contrast when the

variables are first-differenced, the presence of unit root in all series is strongly rejected.

Use the CIPS and CIPSM tests produce somewhat mixed results. At the 5 % level

of significance, the model that includes a time trend generally provides little evidence

against the null of a unit root in the series. In the case where the time trend is omitted,

the CIPSM test with one lag leads to the rejection of the null for all three variables. In

general, the other tests do not reject the null. When the variables are first-differenced,

there is strong evidence against a unit root.

On balance the results from the panel unit root tests in Table 6 suggest that real house

prices, real income and population for NSW LGAs could reasonably be treated as being

non-stationary due to a unit root, and the series of these variables in first-differences as

being stationary.

Finally, since the economy-wide real interest rate is a potential explanatory variable

for house prices, the series is also tested for a unit root 6. In this case the results are

sensitive to whether or not a time trend is included in the model. In the absence of a

time trend the ADF test (with one or two lags) does not reject the null hypothesis of

a unit root. When a time trend is included in the ADF regressions, the t-statistics are

-4.49 for one lag and -3.27 for two lags, so these results point to a real interest rate that

is stationary around a deterministic trend.

6In response to policy induced disinflation, real interest rates appear to have trended down from the
early 1990s to sometime in the 2000s but to have been more or less stable since then. The current
unit root test for real interest rates did not take into account the possible structural break in the trend
approximately half way through the time period considered. However, macro influences to real house
price dynamics, including the impacts of real interest rates, are controlled by common factors, the possible
impact from the structural break of real interest will also be captured by the common factors.

12



Table 6: Panel Unit Root Testing Results

Z-test (1) Z-test (2) CIPS(1) CIPS(2) CIPSM(1) CIPSM(2)

With an intercept

Pit 4.82 6.91 -1.82 -1.51 -2.32 -1.56

Yit 14.64 17.49 -2.06 -1.48 -2.32 -1.85

Popit 4.95 5.62 -1.69 -1.07 -2.24 -1.91

∆Pit -22.15 -12.74 -3.35 -2.31 -3.45 -2.20

∆Yit -30.22 -20.65 -3.14 -2.25 -3.10 -2.06

∆Popit -15.07 -10.37 -2.39 -1.83 -3.11 -2.61

With an intercept and a linear trend

Pit 3.76 6.39 -2.28 -1.63 -2.39 -1.77

Yit -3.79 1.37 -2.04 -1.53 -1.93 -1.54

Popit 4.62 4.30 -1.69 -1.64 -2.82 -2.17

∆Pit -14.50 -5.33 -3.63 -2.62 -3.88 -2.80

∆Yit -23.87 -15.88 -3.57 -2.74 -3.61 -2.80

∆Popit -11.90 -8.94 -3.00 -2.31 -3.54 -2.57

Notes. We test for panel unit root for the first lag and the second lag of the panel-specific
ADF regressions using Z-test, CIPS and CIPSM tests. The reported values of Z-test are the
inverse normal Z-statistics computed by (6). Values for CIPS are computed as the simple
average of the individual-specific CADF statistics (CADF ) using (11). Extra factors for
computing the CIPSM statistics are ∆Pit for Popit, ∆Pit for Yit, ∆Pit for Yit. Critical values
for CIPS tests or CPISM tests are -2.14, -2.04 and -1.99 for 1 %, 5% and 10% significance
respectively in the case of an intercept only, and -2.65, -2.55 and -2.49 for 1%, 5% and 10%
significance respectively in the case of an intercept and a linear trend.

4.2 Income Elasticity

Using the econometric framework given in equation (1), the elasticity of real house

prices to real income is estimated using a number of different model specifications. In

terms of explanatory variables, the most general model estimated is given by:

Pit “ ai ` βinc,iYit ` βpop,i∆Popi,t´1 ` βinter,iRt ` βiDD0204 ` eit (13)

where real house prices are related to real income, the real interest rate, population

growth and a dummy variable that takes the value of 1 in years 2002, 2003, and 2004,

but zero elsewhere.

As an initial benchmark, the potential effects of cross-section dependence are ignored

and estimates are reported using both fixed-effects(FE) and mean group (MG) estimators.

The FE estimator assumes there is no heterogeneity in the slope coefficients and is based

on pooled data. The MG estimator allows for coefficient heterogeneity and is derived

from averaging the coefficient estimates from separate time-series regressions for each

LGA.
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To account for the possible effects of cross-section dependence, common correlated

effects (CCE) estimators are used. With CCE estimators the above model is augmented

with the time t cross-section averages of the dependent variable and the (relevant regres-

sors) as follows:

Pit “ ai ` βinc,iYit ` βpop,i∆Popi,t´1 ` βinter,iRt ` βiDD0204 ``γpP̄t ` γ
1
iX̄t ` eit, (14)

where X̄t includes only those regressors with a cross-section dimension. Two versions of

the CCE estimator are used; a mean group estimator (CCEMG) and a pooled estimator

(CCEP).

Formulas for standard errors are given in Appendix C. The FE variance-covariance es-

timator is given in (24), while the estimator for the CCEP is in (29). Variance-covariance

formulas for the MG and CCEMG estimators are given in (23) and (28 respectively.

Estimates of different versions of the above models are reported in Tables 7-8. In

addition to the coefficient estimates, a CIPS test is applied to the residuals from each

regression (see the CADF statistic) as a check on whether the specified model is a valid

co-integrating relationship. Results for the CD test applied to the residuals are reported

as is the estimate of the average pair-wise cross-section dependence in the residuals ρ̄.

Columns (1) and (2) of Table 7 report FE and MG estimates for the most restricted

model that includes real income as the only regressor. The estimated income elasticity is

broadly similar for both estimators; around 2 for the MG estimator and slightly lower at

1.9 for the FE estimator. However in both cases the CD tests strongly reject the hypoth-

esis that the cross-section units are independent. The average correlation coefficient for

the residuals is estimated to be approximately 0.4. Cross-section dependence is clearly

evident in the data and is likely to affect the FE and MG estimators.

The third and fourth columns of Table 7 report the estimates obtained using the

CCEMG (common correlated effects mean group) and CCEP (common correlated effects

pooled) estimators. For both of these estimators the average correlation coefficient for

the residuals is effectively zero and the CD test statistics are much smaller. The CD

statistics for both the CCE estimators do not reject the hypothesis of no cross-section

dependence. Both CCE estimators yield the same estimate for the income elasticity of

0.69, which is considerably lower than what is produced by the estimators that do not

account for cross-section dependence. The significant difference (between the estimates

of 2.0 from FE estimators and 0.69 from CCE estimators) explains the impacts of spatial

effects to the estimates and the importance of accounting for the cross section dependence

in the panel data models in order to obtain consistent estimates.

In the last four columns of Table 7 results for a model that includes the real interest

rate as a regressor are reported. Since the real interest rate has only time variation, it

14



Table 7: Estimation Results: Income Elasticity of Real House Price: 1991-2012

Pit MG FE CCEMG CCEP MG FE CCEMG CCEP

β̂inc,i 2.02 1.86 0.69 0.69 1.36 1.17 0.69 0.69

(0.060) (0.180) (0.220) (0.170) (0.070) (0.223) (0.215) (0.179)

β̂inter,i -0.08 -0.09 -0.00 0.00

(0.008) (0.023) (0.005) (0.010)

CADF -2.64 -1.79 -2.15 -2.01 -3.01 -2.08 -2.34 -2.10

CD 201.09 171.39 2.28 -0.15 199.49 178.72 2.34 -0.98
ˆ̄ρ 0.42 0.36 0.00 0.00 0.42 0.38 0.00 0.00

R2 0.67 0.62 0.84 0.83 0.70 0.65 0.84 0.83

Notes. Numbers in the parenthesis are robust standard errors. Robust standard errors
for β̂i is given by (23) and (28) for MG and CCEMG respectively, and given by (24) and
(29) for FE and CCEP respectively. Critical values for CIPS tests are -2.14, -2.04 and
-1.99 for 1%, 5% and 10% significance respectively in the case of an intercept only.
CD is the statistics testing for the significance of cross-section dependence computed by
(4). ˆ̄ρ is the estimate for the average of the pair-wise correlations of the cross-section units
computed by (3).

Table 8: Estimation Results with the Addition of Population Growth and the Specific
Time Dummy: Income Elasticity of Real House Price: 1991-2012

Pit MG FE CCEMG CCEP MG FE CCEMG CCEP

β̂inc,i 1.35 1.12 0.44 0.49 1.41 1.17 0.76 0.69

(0.078) (0.460) (0.120) (0.210) (0.070) (0.215) (0.150) (0.179)

β̂inter,i -0.09 -0.12 0.00 -0.00 -0.07 -0.09 0.00 0.00

(0.010) (0.054) (0.005) (0.030) (0.007) (0.020) (0.010) (0.010)

D0204 0.02 0.01 0.00 0.00

(0.010) (0.020) (0.010) (0.010)

β̂pop,i -2.16 0.21 -1.98 -0.01

(0.580) (0.846) (0.500) (0.164)

CADF -3.09 -2.52 -2.68 -1.93 -2.70 -2.09 -3.02 -2.01

CD 171.52 183.69 118.36 113.30 246.82 175.56 4.18 -0.15
ˆ̄ρ 0.38 0.405 0.26 0.24 0.52 0.39 0.01 0.00

R2 0.86 0.86 0.92 0.92 0.74 0.65 0.89 0.83

Notes. See notes to Table 7. D0204 denotes the time dummy for years 2002 to 2004.

could act as a common factor in driving cross-section dependence. Comparing the results

obtained from the FE and MG estimators when the real interest rate is included in

the model it is evident that there is little reduction in cross-section dependence in the

residuals. However the estimated coefficient on the real rate is negatively signed and

statistically significant.

When the model including the real interest rate is estimated using the CCEMG and

CCEP estimators - while there is no cross-section variation in the real interest rate, real
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interest rate no longer displays a significant effect. The impacts of real interest rate are

absorbed by the augmented terms of common factors.

Table 8 presents estimates for models that include a dummy variable D0204 for the

period 2002-04, and population growth rates in LGAs. While population growth is found

to be statistically significant when the MG and CCEMG estimators are used, it is es-

timated to have a negative effect on real price levels. This finding is counter-intuitive.

In addition use of the FE and CCEP estimators do not produce statistically significant

coefficient estimates. Interestingly when population growth is included in the model,

there is evidence of residual cross-section dependence, even when the model is estimated

using the CCE procedures. There seems to be no robust result for population growth

in affecting house prices. This finding is broadly consistent with results in Bodman and

Crosby (2003), Otto (2007) and Liu and Otto (2014).

Including the dummy variable to account for the widespread rapid growth in real

house prices in the period 2002 to 2004 has little effect on the results. The dummy

variable is not statistically significant and the income elasticity for real house prices is

estimated to be around 0.7 to 0.8.

4.3 Co-integration of Real House Prices and Real Income

For each of the models reported in Tables 7-8, the CADF statistic is computed using

the model-residuals. This test statistic can be used to conduct a CIPS test for the present

of a unit root in the residuals. Critical values for CIPS test (based on a test regression

with intercept, but no time trend) are -2.14, -2.04 and -1.99 for the 1 percent, 5 percent

and 10 percent significance levels (respectively). For most of the models estimated the

CADF statistics are sufficiently negative to reject the null hypothesis of a unit root (no

co-integration) in favour of a co-integrating relationship.

As a further test for evidence of co-integration the following set of residuals are con-

structed,

uit “ Pit ´ β̂incYit ` âit (15)

where β̂inc “ 0.69 and is the CCEMG estimate for income elasticity and âi is the LGA-

specific intercept term from the individual time series regressions. A CIPS panel unit root

test is applied to ûit (using a test regression with both an intercept and a time trend), and

this produces a CADF statistic of -2.49. This figure indicates that the null hypothesis

of a unit root in pPit ´ β̂incYitq can be rejected at the 5 percent level of significance 7.

Overall there seems to be support for co-integration between real house prices and real

income across NSW.

7The inclusion of a time trend is required because a common elasticity is being imposed across all
LGAs.

16



4.4 Panel Error Correction Models

Based on the results in the previous section, it is assumed that there is a long-run

or co-integrating relationship between the log of real house prices,Pit and the log of real

income, Yit with the co-integrating vector (1, -0.69). Since co-integration implies an error-

correction model, this model can be used to examine the short-run dynamics of real house

prices and provide an estimate of the speed at which real house prices return to long-run

equilibrium following a change in real income. The baseline panel error correction model

is assumed to be:

∆Pit “ ai ` φpPi,t´1 ´ β̂Yi,t´1q ` ϕ∆Pi,t´1 ` ω∆Yi,t´1 ` µit (16)

where φ̂i provides a measure of the speed of adjustment of log real house prices to a shock.

ϕ̂ describes the long-run impact of a change in Yit on ∆Pit. µit reflects random shocks to

the housing markets (e.g. shocks of consumer confidence that affect consumption). ∆Pit

and ∆Yit are first differenced terms of Pit and Yit and both of them are proved to be I(0).

In a variety of experiments for (16), we also include the population growth rate, and the

combination of real interest rate and a linear time trend in the specifications of ECMs8.

Estimates of the error correction models are reported in Table 9. As an initial bench-

mark, results for FE and MG estimators are presented. For both estimators the CD

statistic provides strong evidence of cross-section dependence. Use of the CCEMG and

CCEP estimators lead to a substantial reduction in evidence of residual cross-section

dependence and it seems likely that more reliable estimates are obtained from these two

procedures. For the CCEP estimator φ̂i is -0.14 and this figure does not varying when ad-

ditional regressors (real interest rate, population growth and time trend) are included in

the model. The estimate of φ̂i obtained from the CCEMG estimator is somewhat sensitive

to the inclusion of additional regressors. It is -0.35 in the most restricted model, but is

-0.66 (-0.67) in the more general specifications. In all cases the estimated error-correction

coefficient is negative and statistically significant. The only other robust finding is that

the estimated coefficient on the current growth rate of real income is positive and sig-

nificant. Overall these estimates tend to confirm an important role for real income as a

fundamental driver of house prices across NSW.

4.5 Factor Loadings

Use of the multi-factor model given by (1) appears to have been quite successful

in controlling for cross-section dependence in the panel regressions. It is interesting to

estimate the individual factor loadings for each LGA in response to the unobservable

8the ADF test in Section 4.1 provides evidence that a linear combination of real interest rate and a
time trend forms a stationary co-integrated relationship.
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common factors that are captured by State-wide average prices and income. The factor

loading γi for a particular LGA can be estimated using the following model:

pPi,t´i ´ 0.69 ˚ Yi,t´1q “ ai ` γipP̄i,t´1 ´ 0.69 ˚ Ȳi,t´1q ` τit (17)

where the dependent variable is the cointegrating relation for real price and real income for

the ith LGA and this is regressed on the average of the cointegrating relationships across

all LGAs at time t. Based on the previous results these variables should be stationary

and by construction the cross-section average of γi is unity and of ai is zero.

Equation (17) has a similar form to the Capital Asset Pricing Model (CAPM) in

finance, which relates the equilibrium expected return on a single asset to an aggregate

market risk factor (Fama and French 2004). The CAPM implies the expected return on

an asset depends on its correlation with the overall market portfolio; its market Beta.

The larger is Beta the more risky the asset and the higher expected equilibrium return

required to compensate for the risk. In a recent paper Hanewald and Sherris (2013) apply

the CAPM to suburb-level house prices in Sydney, however in their analysis Hanewald

and Sherris do not initially control for the effect of real income on house prices. They find

some evidence that suburbs with higher Betas experience higher ex-post capital gains.

Analogous to the CAPM, the estimate of γi indicates how closely house prices in an

LGA after adjusting for real income are related to average State-wide house prices again

after adjusting for average real income. Thus γi is a measure of the market risk of houses

in an LGA. A relatively high γi implies a higher market risk for the LGA and the CAPM

predicts that higher market or systematic risk should be compensated by higher expected

returns. This prediction can be tested by considering the relationship between average

real house price growth in an LGA and its estimated value of γi.

Figure 3 presents a scatter-plot of average real growth rates of house prices (1991-2012)

against the estimates of γi obtained from (17). The data point to a reasonably strong

positive relationship between growth rates of real house prices and the use of γ̂i to measure

systematic risk. There are some particularly large outliers in the LGAs of Coonamble

(γ̂i “ ´0.31), Boorrowa, Gundagai and Mosman, possbily due to the prexisting relative

high land values in these areas. However, overall the results are generally consistent with

the CAPM and with Hanewald and Sherriss results for Sydney. One limitation of this

analysis and that by Hanewald and Sherris is that real returns to housing only considers

capital gains and not rental returns.

4.6 The Ratio of Log Real House Prices to Log Real Income

Primary data analyses in the previous section have shown that despite the heteroge-

neous initial values in 1991, real house prices for almost all of LGAs have experienced
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Figure 3: Factor Loadings vs. Real Capital Gain
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persistent increases with quite parallel growing patterns across the individuals or regions

through 1991 to 2004. After 2004, the growth rates across the LGAs are relatively more

volatile with some negative reverts but in general, real house prices have maintained their

growing trends. There is a very similar case with the development of log real income, but

the response rates over time appear to be relatively more stable and with mild volatility.

We have confirmed the long run cointegrating relationship between log real house

prices and log real income. It is interesting to look at the LGA specific time profile

for the short run dynamics of this relationship, computed as pPi,t´1 ´ 0.69 ˚ yi,t´1q or

∆pPi,t´1 ´ 0.69 ˚ yi,t´1q. The profiles are plotted in Figures 4-7.

Figures 4-5 shows that there is a linear upward time trend in the development of price

to income ratio for the most of LGAs and the patterns are parallel across 80% of LGAs.

The excess rise in real house prices appears to be associated with the increasing ratio

of price to income. However, the first difference of the time profiles in Figures 6-7 show

that the positive changes are followed by the negative reverts to maintain the general

equilibrium within LGAs.
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5 Estimating Spatial Autocorrelation

Estimates for Model (14) from the previous section have shown that by augmenting

the regressors with the cross-section average terms of Pit and yit, CCE estimators have

successfully reduced the extent of general cross-section dependence in the cross-section

units of residuals. But CCE estimators so far do not provide solutions for measuring

the extent of such cross-section dependence. In this section, we estimate SAR panel

data models with fixed effects and SAR disturbances, which will provide estimates of the

response rate of house prices at one location to changes of house prices at its surrounding

sites. The model is written as,

Pit “ ai ` ρ̃
N
ÿ

j“1

wijPij `Xitβ̃ ` ẽij,where ẽij “ λ̃
N
ÿ

j“1

wij ẽij ` ε̃it (18)

where spatial variation is captured by an additional explanatory variable,
řN
j“1wijPij,

measured as a distance-weighted function of neighboring response values of Pit and is

usually known as the first order spatial lag of Pit in literature. ˆ̃ρ is then viewed as

the spatial covariate and is intended to capture spatial autocorrelation originating from

endogenous processes such as locational attraction, transport congestion, contagious pop-

ulation growth, and movement of censused individuals between the different locales. ẽij is

the SAR disturbance term and ε̃it is the idiosyncratic term assumed as ε̃it „ i.i.dNp0, σ̃2q.

wij is the weight given to ith influence over the jth LGA. Spatial matrix of wij is designed

as follows: 1) compute a pairwise Euclidean distance matrix among the geographic cen-

troid of the LGAs, 2) choose a threshold value D and 3) define wij “ 0 if i “ j or dij ą D,

and wij “
1
dij

if i ‰ j. The spatial matrix using this approach works for the common

cases of either binary or distance matrices and may coincident with the spatial dispersion

characteristics for the localized house prices. Estimation of this spatial model will provide

an alternative set of estimates for the impacts of log real income, population growth, and

the real interest rate.

Define Sipλq, and Ripρq “ Ii´ ρWi, the log likelihood function of this model is shown

as,

LnL “ ´
NT

2
lnp2πσ̃2

q ` T rln|Sipλq| ` ln|Ripρq|s ´
1

2σ̃2

T
ÿ

t“1

Ṽitp<qṼitp<q1 (19)

where Ṽitp<q “ RipρqrSipλqPit´Xitβ̃s. Derivatives for this equation is shown in Lee and

Yu (2010).

The estimation results are presented in Table 10. Estimates for spatial autocorrela-

tions of either ˆ̃ρ or ˆ̃λ across the cross-section units of log real house prices is estimated

to be very strong, 0.84 and 0.87 respectively, and consistent to the addition of different

explanatory variables. The income elasticity is robust to model specifications at 0.42
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Table 10: Estimation Results: SAR Models with Spatial Disturbances for Pit

Spatial Panel Data Models for Pit
ˆ̃ρ 0.833 0.857 0.834 0.857

(0.032) (0.024) (0.032) (0.024)
ˆ̃
λ 0.876 0.866 0.874 0.864

(0.025) (0.021) (0.025) (0.021)

Yit 0.409 0.433 0.403 0.426

(0.089) (0.088) (0.090) (0.088)

∆Popi,t´1 0.511 0.498

(0.193) (0.194)

Rinter 0.048 0.044

(0.044) (0.043)

Notes. The spatial panel data model for Pit is (18).

and statistically significant, which is broadly in line with the CCE estimate of 0.69. The

population growth has a positive significant effect of 0.50, while the effect of the real

interest rate is not significant.

6 Conclusions

This paper estimates the income elasticity of house prices over a relatively long-term

time period of 1991 to 2012 for 144 LGAs in New South Wales of Australia. I find that

real house prices across all the LGAs in the State of New South Wales have experienced

persistent upward increases over 1991 to 2012. The period of 2002-2004 is unique as the

real house prices increased 36.76 % on average, and in 17 regional LGAs the value of

houses doubled. The confirmation of a positive co-integrating relationship between real

income and real house prices implies that real income across most of the LGAs have also

witnessed persistent increases (possibly) to certain extent to maintain the equilibrium

level of the housing price affordability.

The income elasticity of house prices is estimated to be 0.69 using panel data methods

that can account for non-stationarity and cross-section dependence. After controlling for

a linear time trend, the estimate confirms a co-integrated relationship exists between

real house prices and real income. Real house prices and real income moves together

co-integratedly in the long run. Positive changes in the relationship are followed by the

negative changes around a linear time trend to maintain the equilibrium relationship.

House prices in one location are proved to be connected with prices in other spatial units

through a distance weighted matrix, where the constant coefficient is 0.84. The impacts

for prices in a location from the closer locations are much stronger than the further

locations. After controlling for such an impact, an alternative estimate of the income
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elasticity(0.46) is obtained.

Appendices

Appendix A Data for Economic Factors

A.1 How are LGA boundary changes over time taken into ac-

count?

The Australian Standard Geographic Classification (ASGC) provided a common frame-

work of statistical geography which enabled the production of statistics that were compa-

rable and could be spatial. For our focus research period, there are ASGC 1991, ASGC

1996, ASGC 2001, ASGC 2006 and ASGC 2011 9. Data during years of 1991 to 1996 are

recorded under the code of ASGC 1991; data from 1997 to 2001 are recorded under the

code of 1996, and hence so forth. In the meantime, ABS provides concordances in ASGC

if there are changes in statistical geography boundary, such as LGA amalgamations. In

thesis, I use ASGC 2006 as the standard for geographical boundary to concord all of

variables involved. In consequence, for population, income, and regulatory variables, all

data have been concorded to ASGC 2006 at the LGA level using concordances for ASGC

1991, ASGC 2001, ASGC 2006, and ASGC 2011. In addition, when I process the satellite

based data to obtain the geographical variables, I also use 2006 ASGC LGA level digital

boundary. Therefore, all the data used for analysis in thesis are consistently observed at

LGA level with geographical boundary based on ASGC 2006.

A.2 Property Prices

Median prices for LGAs are sourced from the quarterly Rent and Sales Reports pub-

lished by Housing NSW.

http://www.housing.nsw.gov.au/About+Us/Reports+Plans+and+Papers/Rent+and+Sales+Reports/

A.3 Population

The following sources provide data for Estimated Resident Population for LGAs on

end of financial year basis (end-June) for the period 1995-96 to 2011-12. Source: Regional

9In 2011 census of Population and Housing, the Australian Bureau of Statistics (ABS) introduced the
Australian Statistical Geography Standard (ASGS), which replaces the Australian Standard Geograph-
ical Classification (ASGC). However, the historical ASGC standard is also available to classify the 2011
Census data at the level of Statistical Local Areas (SLAs).
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Population Growth, Australia, 1996-2006, 2008-09, 2011 (cat. no. 3218.0).

For data for the period 1990-91 to 1994-95 we use data from tables produced by

the UNSW Local Grants Commission. This reports (preliminary) population estimates

over the period 1990-91 to 2010-11. No data are reported for 1991-92, so we simply

use the average of 1990-91 and 1992-93 for this year. Source: ABS Estimated Resident

Population of Statistical Local Areas New South Wales at 30 June 1990 Preliminary (Cat.

No. 3210.1)

A.4 Income

Estimates of income for LGAs are based on data from the Australian Taxation Offices

Taxation Statistics. The Bureau of Infrastructure, Transport and Regional Economics

(BITRE) has a database derived from the ATO data that report by LGA real income

per taxpayer (in 2007-08 prices) for the period 1990-91 to 2005-06. The original figures

for nominal taxable income are deflated using the CPI for Australia.

For the period 2006-07 to 2009-10 the ABS reports data by LGA for nominal income

per taxpayer in their National Regional Profile 2007-2011. We convert these figures to

constant 2007-08 prices using the CPI for Australia.

As we have no income data by LGA for the financial years 2010-11 and 2011-12, we

simply assume that the growth rate of real income per taxpayer in both 2010-11 and

2011-12 is equal to the growth rate for 2009-10.

A.5 Real Interest Rate

Data on the real interest rate is obtained from the RBA spreadsheet Capital Market

Yields (F2). It is the yield on the Australian Government inflation-indexed bond with

the longest maturity.

A.6 Consumer Price Index

The consumer price index for Sydney is obtained from ABS release 6401.0 - Consumer

Price Index, Australia.

Appendix B Names of Regions and Regional LGAs

28



Table 11: Regions and Regional Local Government Areas Names

Region LGAs Region LGAs

Central West Bathurst Regional Illawarra Shellharbour
Central West Bland Illawarra Shoalhaven
Central West Blayney Illawarra Wingecarribee
Central West Cabonne Illawarra Wollongong
Central West Cowra Mid North Coast Bellingen
Central West Forbes Mid North Coast Clarence Valley
Central West Lachlan Mid North Coast Coffs Harbour
Central West Lithgow Mid North Coast Greater Taree
Central West Mid-Western Regional Mid North Coast Hasting
Central West Oberon Mid North Coast Kempsey
Central West Orange Mid North Coast Nambucca
Central West Parkes Murrumbidgee Carrathool
Central West Weddin Murrumbidgee Coolamon

Far West Broken Hill Murrumbidgee Cootamundra
Hunter Cessnock Murrumbidgee Griffith
Hunter Dungog Murrumbidgee Gundagai
Hunter Gloucester Murrumbidgee Hay
Hunter Great Lakes Murrumbidgee Junee
Hunter Lake Macquarie Murrumbidgee Leeton
Hunter Maitland Murrumbidgee Lockhart
Hunter Muswellbrook Murrumbidgee Narrandera
Hunter Newcastle Murrumbidgee Temora
Hunter Port Stephens Murrumbidgee Wagga Wagga
Hunter Singleton Murry Albury
Hunter Upper Hunter Shire Murry Berrigan

Illawarra Kiama Murry Corowa Shire

continued on next page
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Table 12: Regions and Regional Local Government Areas Names- continued

Region LGAs Region LGAs

Murry Deniliquin Northern Tamworth Regional

Murry Greater Hume Shire Northern Tenterfield

Murry Murray Northern Uralla

Murry Tumbarumba Northern Walcha

Murry Wakool Richmond-Tweed Ballina

Murry Wentworth Richmond-Tweed Byron

North Western Bogan Richmond-Tweed Kyogle

North Western Bourke Richmond-Tweed Lismore

North Western Cobar Richmond-Tweed Richmond Valley

North Western Coonamble Richmond-Tweed Tweed

North Western Dubbo South-Eastern Bega Valley

North Western Gilgandra South-Eastern Bombala

North Western Narromine South-Eastern Boorowa

North Western Walgett South-Eastern Cooma-Monaro

North Western Warren South-Eastern Eurobodalla

North Western Warrumbungle Shire South-Eastern Goulburn Mulwaree

North Western Wellington South-Eastern Harden

Northern Armidale Dumaresq South-Eastern Palerang

Northern Glen Innes Severn South-Eastern Queanbeyan

Northern Gunnedah South-Eastern Snowy River

Northern Guyra South-Eastern Tumut Shire

Northern Inverell South-Eastern Upper Lachlan Shire

Northern Liverpool Plains South-Eastern Yass Valley

Northern Moree Plains South-Eastern Young

Northern Narrabri

Notes: Local government areas in Sydney are listed in Table 13.
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Table 13: Sydney’s Local Government Areas

Sydney

Ashfield Holroyd Penrith
Auburn Hornsby Pittwater

Bankstown Hunter’s Hill Randwick
Baulkham Hills Hurstville Rockdale

Blacktown Kogarah Ryde
Blue Mountains Ku-ring-gai Strathfield

Botany Bay Lane Cove Sutherland Shire
Burwood Leichhardt Sydney
Camden Liverpool Warringah

Campbelltown Manly Waverley
Canada Bay Marrickville Willoughby
Canterbury Mosman Wollondilly

Fairfield North Sydney Woollahra
Gosford Parramatta Wyong

Hawkesbury

Appendix C Estimators for (1)

Case 1 FE estimator - no Common Factors but with Spatial error. For the panel

data model (1)-(2), with the assumptions (1-3,4a and 5a) in Appendix hold, MG and FE

estimators are summarized as followed. Derivation details for MG estimators could be

found in (Pesaran and Smith 1995).

let MD “ IT ´́́ 1ppp11111qqq1111, assuming, γ 1i “ 0, for i “ 1, 2, 3..., N ,

β̂i “ pX
1
iMDXiq

´1X 1
iMDyi (20)

β̂MG “ N´1
N
ÿ

i“1

pX 1
iMDXiq

´1X 1
iMDyi (21)

β̂P “ p
N
ÿ

i“1

pX 1
iMDXiq

´1
N
ÿ

i“1

X 1
iMDyi (22)

Consistent non-parametric estimators of the asymptotic variance of pβMG and pβP provided

by Pesaran (2006) are,

{Asy.varβ̂MG “
1

NpN ´ 1q

N
ÿ

i“1

pβ̂i ´ β̂MGqpβ̂i ´ β̂MGq
1 (23)

{Asy.varβ̂P “
1

N
Q´1NTΛNTQ

´1
NT (24)
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where

Q´1NT “
1

N ´ 1
Q´1NT

N
ÿ

i“1

T´1X 1
iMDXi

ΛNT “
1

N ´ 1
Q´1NT

N
ÿ

i“1

T´1X 1
iMDXipβ̂i ´ β̂MGqpβ̂i ´ β̂MGq

1T´1X 1
iMDXi

Case 2 CCE Estimator individual fixed effects, unobserved Common Factors, with

Spatial error. For the panel data model (1)-(2), with the assumptions (1-3,5,6 and 7) in

Appendix hold, CCEMG and CCEP estimators are summarized as followed. Derivation

details for MG estimators can be viewed in Appendix.

let M̄ “ IT ´ H̄pH̄
1H̄q´1qH̄ 1, where H̄ “ p1, Z̄q, andZ̄.t “ pȲ.t, X̄

1
.tq
1,

β̂CCE,i “ pX
1
iM̄Xiq

´1X 1
iM̄yi (25)

β̂CCEMG “ N´1
N
ÿ

i“1

β̂CCE,i (26)

β̂P “ p
N
ÿ

i“1

pX 1
iM̄Xiq

´1
N
ÿ

i“1

X 1
iM̄yi (27)

A consistent non-parametric estimator of the asymptotic variance of β̂CCEMG and β̂CCEP

provided by Pesaran (2006) are,

{Asy.varβ̂CCEMG “
1

NpN ´ 1q

N
ÿ

i“1

pβ̂CCE,i ´ β̂CCEMGqpβ̂CCE,i ´ β̂CCEMGq
1 (28)

{Asy.varβ̂CCEP “
1

N
Q˚´1NT Λ˚NTQ

˚´1
NT (29)

where

Q˚´1NT “
1

N ´ 1

N
ÿ

i“1

T´1X 1
iM̄Xi

Λ˚NT “
1

N ´ 1

N
ÿ

i“1

T´1X 1
iM̄Xipβ̂CCE,i ´ β̂CCEMGqpβ̂CCE,i ´ β̂CCEMGq

1T´1X 1
iMDXi

Remark: The non-parametric variance-covariance estimators given by (23) or (24)

are no longer consistent when the idiosyncratic term is spatially correlated (Pesaran and

Tosetti 2011). However, (28)(29) continue to yield consistent estimates and are robust

to both spatial and serial error correlations (Pesaran 2006, and Pesaran and Tosetti

2011). Besides, in the case of homogeneous slopes, an alternative variance matrix estima-

tor allowing for the spatial temporal effects could be a non-parametric variance matrix

estimator that adapts the Newey and West (1987)s heteroskedasticity autocorrelation
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consistent (HAC) procedure called spatial, heteroskedasticity, autocorrelation (SHAC)

estimator (Pesaran and Tosetti 2011).

Appendix D Individual Time Profiles

Figure 8: Individual Time Profiles for Real House Prices NSW
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Figure 9: Individual Time Profiles for Real Income

20

50

80

110

140

170

Th
o

u
sa

n
d

s 
R

ea
l T

ax
ab

le
 In

co
m

e 
P

er
 C

ap
it

al
 

33



Appendix E CCE Estimator Procedure

CCE estimator starts from assuming that the observed individual-specific regressors

Xit could be approximated by the common factors, dt and ft, shown as,

Xit “ A
111dt ` Γ1ft ` vit (30)

where Ai and Γi are 1 ˆ k and m ˆ k factor loading matrices, where m is the number

of unobserved common effects factors, and k is the number of observed variables. vit is

the random components of Xit, which is assumed to be distributed independently of the

common effects, ft, across i.

The primary characteristic of CCE estimator is the application of using the cross-

section averages of Zit as proxies for the unobserved common factor with Z̄.t “ pȲ.t, X̄
1
.tq,

where Ȳ.t “ N´1
řN
i“1 yit, X̄ “ N´1

řN
i“1 xit. Assuming rank (Γ1i)= m ă k ` 1, the

asymptotic property of ft using h̄t “ pd̄t, z̄
1
tq
1 as observable proxies is shown as,

ft “ pC̄C̄
1q´1C̄pz̄t ´ B̄

1d̄´ µ̄tq

ft ´ pC̄C̄
1q´1C̄pz̄t ´ B̄

1d̄tq
p
Ñ 0, if C

p
Ñ C̄ and µ̄t

p
Ñ 0, as N

p
Ñ 0, as N

p
Ñ 8

This suggests using ˆ̄
th “ pd̄, z̄tq as observable proxies for ft . This procedure shows

that βi and their means β can be consistently estimated by augmenting the OLS or pooled

regressions of Yit on Xit with the cross-section averages h̄t (Pesaran 2006, Pesaran and

Tosetti 2011).

Assumption 1. R has bounded row and finite fourth-order cumulants

Assumption 2. Individual-Specific Errors

Assumption 2a. εit is assumed to be independently distributed of the independent vari-

ables, Xit, cross-sectionally uncorrelated but follow a linear stationary process with ab-

solute summable autocovariances, that is,

εit “
řp
j“0 aijξi,t´j, where ξi,t´j „ i.i.dp0, ε2q and varpεitq ă 8 Assumption 2b. vit is

the random components of Xit, which is assumed to be distributed independently of the

common effects, ft, and across i, and follow a linear stationary process with absolute

summable autocovariances, that is,

vit “
řp
j“0 bijϑi,t´j, where ϑi,t´j „ i.i.dp0, v2i q and varpvitq ă 8

Assumption 3. Random slope coefficients

Individual slope coefficients βi are allowed to be heterogeneous across LGAs and follow

a random coefficient model denoted as,

β ` i “ β ` δ, δi. „ i.i.dp0,Ωβq where }β} ă k, }Ωv ă k, Ωv is a ktimesk symmetric

nonnegative definite matrix, and the random deviations δi are distributed independently

of the factor loadings of γi, Γi, and the individual specific effects, εit, and vit.

Assumption 4. Model Identification Condition

Defining,
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Ψ̂iT “ T´1pX 1
iM̄DXiq

Ψ̂NT “
1

N

řN
i“1 T

´1pX 1
iM̄DXiq

4a) To identify βi, the ktimesk individual observation matrix Ψ̂iT is bounded and non-

singular.

4b) To identify β, the kˆk pooled observation matrix Ψ̂NT is bounded and non-singular.

Ψ̂´1
iT and Ψ̂´1

NT have finite second order moments for all i.

Assumption 5. Common effects

5a)pd1t, X
1
it, q

1 and εjs are independently distributed for all I, t, j and s.

5a) The pn`mq ˆ 1 vector gt “ pd
1
t, f

1
tq is a covariance stationary process, with absolute

summable auto-covariance, distributed independently of the individual specific errors of

εit, and vit, but allowed to be presented with unit roots and deterministic trends, which

in turn would introduce units roots in the individual-specific regressors Xit(Kapetanios,

Pesaran, and Yamagata,2006).

Remark: It is worth noting that the common feature dynamics across i are captured

through the serial correlation structure of the common effects, and individual specific

dynamics are allowed through serial correlation in εit.

Assumption 6. Ranking condition Let Γ̃ “ EpΓi, γiq “ pΓ, γq and Rank(Γ̃)“ m

Remark: The rank condition Rank(Γ̃)“ m ensures that under Assumptions 1-7, T´1pH̄ 1H̄ 1q

converges to a positive definite matrix for a fixed T as N Ñ 8. T´1pX 1
iM̄Xiq and its

limit exist even if the rank condition is not satisfied.

Assumption 7. Model Identification Condition for Common factors. Defining

M̄ “ IT´GpG
1Gq´1G

1, with G “ pD, Z̄q, D is a Tˆ1 vector of unit, and Z̄ is a Tˆpk`1q

matrix of observations on z̄.t “ pȳ.t, x̄.tq,

Ψ̂˚
iT “ T´1pX 1

iM̄Xiq

Ψ̂˚
NT “

1

N

řN
i“1 T

´1pX 1
iM̄Xiq

7a) To identify βi, the k ˆ k individual observation matrix Ψ̂iT is bounded and non-

singular.

7b) To identify β, the kˆk pooled observation matrix Ψ̂NT is bounded and non-singular.

Ψ̂˚´1
iT and Ψ̂˚´1

NT have finite second order moments for all i.

E.1 Asymptotic Property of Individual Slope Coefficients Esti-

mation by CCE Estimators

Defining the individual slope coefficient as,

β̂i “ pX
1
iM̄Xiq´1X

1
iM̄yi (31)
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Using (1) and (??),we have,

β̂i ´ β “ p
X 1
iM̄Xi

T
q´1p

X 1
iM̄F

T
q´1γi ` p

X 1
iM̄Xi

T
q´1p

X 1
iM̄εi
T

q´1 (32)

This equation shows the direct dependence of β̂i on the unobserved factors through
X 1
iM̄F

T
. With Assumption 7,

X 1
iM̄Xi

T
is bounded irrespective of the rank condition.

In addition, where F Ă G, then M̄F “ 0 and,

X 1
iM̄F

T
γi “ OP p

1
?
N
q `OP p

1
?
T
q (33)

Therefore, with conditions being satisfied in Assumption 4 , pβ̂i ´ βiq could be written

as,

pβ̂i ´ βiq “ p
X 1
iM̄Xi

T
q´1p

X 1
iM̄ε

T
q´1 `OP p

1
?
N
q `OP p

1
?
T
q (34)

This equation tells that the finite T-distribution of pβ̂i ´ βiq will not depend on the

factor loadings as N Ñ 8, but depend on the probability density of εi. Recalling εi is

a stationary process independently distributed of Xi and G, the consistency of β̂i could

be obtained with p
X 1
iM̄Xi

T
q´1

p
Ñ

ř

i. Therefore, in the case when T is fixed or N is

relatively larger than T , namely, T {N Ñ c , as N Ñ 8, the asymptotical distribution of
?
T pβ̂i ´ βiq will be shown as,

?
T pβ̂i ´ βiq

d
Ñ Np0,

ÿ

βiq (35)

where
ř

βi could be consistently estimated as,

ÿ

βi “
´1
ÿ

i

Siε

´1
ÿ

i

´1
ÿ

i

“ p
TÑ8

lim T´1pX 1
iM̄ΩεiM̄Xiq

Ωεi “ Epεiε
1
iq

E.2 Asymptotic Property of CCEMG Estimator

CCEMG estimator is designed in consideration to the case that there might be a

substantial amount of unobserved heterogeneity among the cross-section units which lead
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to slope coefficients of the model cross-section specific. It is shown as,

β̂MG “ N´1
N
ÿ

i“1

β̂iwithβ̂idefinedby43 (36)

Using (32) and Assumption 3,

?
Npβ̂CCEMG ´ βq “

1
?
N

N
ÿ

i“1

δi `
1

N

N
ÿ

i“1

p
X 1
iM̄Xi

T
qp

?
NX 1

iM̄F

T
qγi` (37)

1

N

N
ÿ

i“1

p
X 1
iM̄Xi

T
qp

?
NX 1

iM̄εi
T

q

Using Assumption 5,

1

N

N
ÿ

i“1

p
X 1
iM̄Xi

T
qp

?
NX 1

iM̄εi
T

q “ OP p
1
?
N
`OP p

1
?
T
q (38)

Using (33) and Assumption 2,

1

N

N
ÿ

i“1

p
X 1
iM̄Xi

T
qp

?
NX 1

iM̄F

T
qγi “ ∆NT `OP p

1
?
N
`OP p

1
?
T
q (39)

where ∆NT “
1

N

řN
i“1p

X 1
iM̄Xi

T
qp

?
NX 1

iM̄εi
T

q, with Ep∆NT q “ 0, and V arp∆NT q “

OP p
1

T
q Combing (37-39),

?
Npβ̂CCEMG ´ βq “

1
?
N

N
ÿ

i“1

δi `OP p
1
?
N
`OP p

1
?
T
q (40)

The distribution of
?
T pβ̂CCEMG ´ βq will be asymptotically normal shown as,

?
Npβ̂CCEMG ´ βq

d
Ñ Np0,

ÿ̊

MG

q (41)

Since the time-invariant variability of βi dominates the other sources of randomness in the

model (Pesaran, Tosetti, 2011). Robust estimators for MG can be obtained following the

non-parametric approach employed in Pesaran (2006), which makes use of estimates of β

computed for different cross-sectional units. Using non-parametric approach by Pesaran

(2006), the estimator of
ř˚

CCEMG is consistently estimated by,

1

pN ´ 1q

N
ÿ

i“1

pβ̂CCEMG ´ βqpβ̂CCEMG ´ βq
1 (42)
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E.3 Asymptotic property of CCEP Estimators

When the individual slope coefficients βi are homogeneous, CCEMG estimators lose

efficiency in its estimates whereas pooled estimators provide consistent and efficient es-

timates (Pesaran, Shin and Smith, 1999). A pooled estimator of β that accounts for

common effects is given as,

β̂i “ p
N
ÿ

i“1

X 1
iM̄Xiq´1

N
ÿ

i“1

X 1
iM̄yi (43)
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