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Abstract

The insurance linked securities (ILS) market is an increasingly important alter-
native asset class for which risk and return analysis differs from other asset classes.
Measures of portfolio risk and return for an ILS portfolio are based on the expected
losses and expected excess returns over the risk free rate. Multiple criteria decision
making (MCDM) has found successful applications to many real world decision
problems. This paper examines the application of two popular MCDM methods,
Analytical Hierarchy Process (AHP) and ELECTRE III, to ILS portfolios. These
methods are used to screen the securities before constructing portfolios using linear
optimisation with constraints. The objective function is to minimise the portfolio
expected loss for a given level of expected excess return. Upper and lower bounds
are also placed on the investment in each individual ILS. The results demonstrate
the benefits from applying MCDM to ILS portfolio selection.
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1 Introduction

Modern portfolio theory was developed on the assumption that investors trade-off the
criteria of risk and return in investment decisions (Spronk et al., 2005; Bodie et al.,
2008; Maginn et al., 2007). Markowitz (1952) provided the foundation for subsequent
developments such that the mean variance model for portfolio selection has become a
standard approach (Maginn et al., 2007). Risk and return, captured using the expected
return and variance, along with a risk aversion for an individual, are used for portfolio
optimisation. This approach has limitations including being overly simplistic and not
reflecting investment decision problems in reality (Zopounidis, 1999; Zopounidis &
Doumpos, 2002; Hallerbach & Spronk, 2002).

Multiple criteria decision making (MCDM) is a growing field which has found nu-
merous successful applications in a wide range of areas including engineering, man-
agement, business, finance and environment (Zopounidis & Doumpos, 2002; Haller-
bach & Spronk, 2002; Steuer & Na, 2003; Spronk et al., 2005; Wallenius et al., 2008).
MCDM has shown promise in integrating investors’ preferences and value systems
into portfolio selection decisions (Steuer & Na, 2003; Steuer et al., 2008; Xidonas et al.,
2009a). MCDM has found application to financial portfolios (Zopounidis & Doumpos,
2002; Hallerbach & Spronk, 2002; Steuer & Na, 2003). Increasingly, additional criteria
are incorporated into the portfolio selection process (Zopounidis & Doumpos, 2002;
Hallerbach & Spronk, 2002; Steuer & Na, 2003).

Insurance linked securities (ILS) are an alternative investment asset class that pro-
vides risk premiums from capital exposure to insurance risk mainly from catastrophe
risk and longevity risk (Banks, 2004; Mocklow et al., 2002). ILS are structured prod-
ucts, a hybrid of finance and insurance instruments, that transfer risk to investors in
capital markets. ILS risk and return characteristics are modeled in detail by specialised
risk assessment companies. A broader range of risk criteria is used for insurance risks
since the variance risk measure used in portfolio selection models does not effectively
capture the risk of these ILS securities.

There are a number of recognised MCDM methods. Applications of the different
MCDM methods can lead to different results for the same problem. In the literature,
there exist only a small number of papers on comparison and analysis of results ob-
tained from different techniques. Little is known about how these methods compare in
financial and insurance applications. AHP and ELECTRE III are the two most promi-
nent techniques amongst these numerous methods and these are used in our study.

Selection of ILS portfolios using a multiple criteria decision making framework has
not been considered previously. Kreuser & Lane (2006) is one of the only papers con-
sidering insurance portfolio optimisation from an underwriters’ perspective. Portfolio
selection uses linear optimisation with the objective function of maximising expected
return of the portfolio among available deals (assets) subject to expected shortfall risk
preference constraints, practical deal size constraints, special constraints on retroces-
sion, and a capital limit. Scenarios of risk events are used to determine the loss/gain
for different portfolios. A similar linear optimisation is used in our portfolio selection
approach for ILS.

This paper aims to:

• explore the application of MCDM techniques to the portfolio selection problem
for ILS securities using two popular MCDM techniques: Analytic Hierarchy Pro-
cess (AHP) and ELECTRE III.
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• assess the methods by comparing the results obtained from the two techniques
applied to ILS portfolio selection including an assessment of the robustness of
the results to the assumptions used.

The paper shows that AHP and ELECTRE are effective in screening ILS securities in
the portfolio selection process before portfolio optimisation. The optimised portfolios
from the screened ILS have improved risk and return characteristics based on expected
excess return and expected loss. Portfolios constructed using AHP screening dominate
those from ELECTRE screening. This result reflects differences in the methods as well
as in the preferences and other subjective decision criteria. The importance of these
criteria are also assessed by considering alternative assumptions.

The paper is structured as follows. Section 2 provides a background on MCDM.
Section 3 gives a brief background to the ILS market development and the ILS securi-
ties used in the analysis. Section 4 outlines the standard portfolio management process
for actively traded securities. Section 5 describes the MCDM methodology. Section
6 gives the details of the assumptions and methods used for the ILS portfolio selec-
tion application. Section 7 presents the results together with a an assessment of the
robustness of the results to the model assumptions. Section 8 concludes.

2 MCDM Overview

MCDM is a group of methods or techniques that help decision makers aggregate sev-
eral criteria in order to evaluate a set of predefined alternatives (Zopounidis, 1999). The
final objective is to select or rank a preferred subset of the alternatives in a structured
and meaningful way, taking all evaluation criteria into consideration.

Two main categories of multiple criteria decision making problems have been iden-
tified (Kahraman, 2008; Triantaphyllou, 2000):

1. Multiple attribute decision making (MADM) problems: involve a predefined,
limited number of known alternatives. For example, choosing a car amongst available
models in the market or selecting stocks to be considered in an investment portfolio.
MADM are also known as discrete multicriteria decision problems. MADM use sorting
or ranking techniques. Examples of MADM methods include multiple attribute utility
theory, AHP and ELECTRE.

2. Multiple objective decision making (MODM) problems: involve an infinite num-
ber of alternatives such as in portfolio optimisation, or in engineering design problems.
A mathematical framework expressed in terms of continuous functions is used to de-
fine a set of alternatives. Tradeoffs between multiple criteria are specified through the
use of objective and constraint functions. This class of problems is also called contin-
uous multicriteria decision problem. Examples of MODM methods are goal program-
ming and multiple objective programming techniques.

The ultimate goal of MCDM is to aid decision makers in the decision making pro-
cess to make "better" decisions (Roy, 2005). In the presence of multiple and often con-
flicting criteria, the "optimal" decision is determined that is most satisfactory in terms
of the decision maker’s value system and not dominated by any other possible deci-
sions. Wallenius et al. (2008) emphasised that an important contribution of MCDM is
to support decision makers in investigating and understanding the problem in a struc-
tured and systematic way.
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Some fundamental concepts of MCDM problems that play critical roles for structur-
ing and analyzing a decision problem are (Figueira et al., 2005; Triantaphyllou, 2000):

• Alternatives or options: these represent potential actions or choices available to
a decision problem, they are the objects of MCDM process.

• Criteria or attributes: these are attributes, characteristics or values that are used
to compare and evaluate alternatives. They are the different dimensions from
which alternatives are evaluated Triantaphyllou (2000).

• Decision or importance/priority weights: in MCDM, criteria and alternatives are
usually assigned numerical values to represent importance or priority with re-
gards to the decision maker’s system of values. Weights are usually normalised
to add up to one.

2.1 Financial Decisions Applications

A literature review of MCDM applications in finance by Steuer & Na (2003) found a
total of 265 published papers up until 2002. Goal programming and multiple objective
programming were the most widely used methodology, accounting for 36% and 31%
of the papers respectively, followed by outranking techniques (17%) and AHP (7%).

There were a wide range of applications in a variety of areas including portfolio
selection and management, financial planning, capital budgeting, interest rate risk
analysis and management, working capital and commercial banking management, au-
diting, accounting and insurance management, strategic planning including merger
and acquisitions. Steuer & Na (2003) observed that despite the popularity of the over-
simplified single-criterion "bottom line" or the bi-criteria "risk-return", many complex
decision problems in finance are better resolved in a conflicting multiple criteria envi-
ronment and there is a growing trend of resolving financial problems under multiple
objectives beyond risk and return.

The study by Steuer & Na (2003) found that portfolio analysis is the most popular
application of MCDM in finance. Their study also indicated that AHP and ELECTRE
are the most widely used MADM techniques in this area. Applications of AHP and its
variants in portfolio management can be found in a number of papers including Saaty
et al. (1980); Bahmani et al. (1987); Saraoglu & Detzler (2002); Tiryaki & Ahlatcioglu
(2009); Gupta et al. (2010). Similarly, ELECTRE is used in a number of papers, including
Martel et al. (1988); Khoury et al. (1993, 1994); Xidonas et al. (2009a, 2009b, 2010).

3 ILS market

Insurance linked securities (ILS) are tradable capital market products with returns con-
tingent on insurance risk events. Mocklow et al. (2002) notes that ILS have many
similar characteristics to other fixed income securities including a fixed annual return
(coupon), usually a margin over LIBOR, for the capital invested (principal), a fixed
maturity date when principal is expected to be return and a rating to indicate the like-
lihood of timely payment of coupon and repayment of principal.

Risk analysis of ILS is performed at a much more detailed level compared to other
bonds by specialised insurance risk assessment companies. Due to the lack of reliable
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historical information, computer simulation for losses from rare catastrophic event is
used. The most important output from the simulation is the loss exceedance curve,
detailing the estimated level of losses for varying probabilities of occurrence of a risk
event. A rating agency rates the ILS before it is offered in the market.

ILS is regarded as an attractive investment class to investors from a portfolio stand-
point as they are likely to have little, or no, correlation with other risky assets in their
portfolios (Banks, 2004). ILS also provide extra risk premiums due to the "newness fac-
tor" to entice investors. These two important characteristics make ILS appealing (Lane
& Beckwith, 2011). From an issuer’s viewpoint, the ILS product is also attractive as it
can be highly customised and structured to meet an issuer’s needs. It is an alternative
source for risk transfer in addition to traditional insurance/reinsurance contracts.

The ILS market is largely a private placement market for institutional investors
including hedge funds. The market is also relatively illiquid due to the lack of an
active secondary market. The most common investment strategy for ILS is to buy and
hold. A recent overview of the ILS market is provided in Lane & Beckwith (2011).
Market size at the end of June 2011 was about US$10.5B. Annual issuance size ranging
from US$0.9B to US$7.5B depending on whether the traditional insurance market was
in a hard or soft cycle. The market is dominated by CAT, or catastrophe, bonds, with
mortality bonds following a distant second.

The investment universe of 31 ILS used in the paper are as listed in Lane & Beck-
with (2010) (Table 2 in page 9 of the article). These are ILS issued in the year 2009. A
summary of the data set statistics is provided in Table 1.

Table 1: ILS data set statistics. Source: Lane & Beckwith (2010)
No. of ILS: 31
-Cat ILS 30
-Life ILS 1
Characteristics Max Min Mean Sd

Rating BB+ Not rated - -
Adj. spread to LIBOR (bps) 2180 548 1135 421
Expected loss (%) 10.12% 0.46% 3.13% 2.47%
Probability of first loss 12.45% 0.59% 3.78% 2.97%
Probability of exhaust 8.25% 0.32% 2.61% 2.09%
Expected excess return (%) 14.14% 4.65% 8.23% 2.84%
Conditional expected loss (%) 100.00% 63.30% 82.48% 10.50%

4 Portfolio management process

The portfolio management process consists of three elements similar to many other
business processes (Maginn et al., 2007):

• Planning: Investor’s inputs are used to identify investment objectives, prefer-
ences and constraints. This information is then formulated into an investment
policy statement (IPS). Next, relevant market information (economics, social, po-
litical, industry data and views) is collected and analysed to form capital market
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expectations. These expectations are combined together with the IPS to create the
strategic asset allocation.

• Execution: in this step, portfolio managers decide to select specific assets or se-
curities for the portfolio and the amount of funds committed to each individual
security. Portfolio selection and composition decisions are made based on inputs
from asset analysts. Quantitative tools such as portfolio optimisation can be used
to construct select the portfolio.

• Feedback: this step involves 2 components: (1) monitoring and rebalancing, and
(2) performance evaluation.

The execution step can often involve a two stage process (Spronk et al., 2005; Xi-
donas et al., 2009a):

• Screening of available securities: evaluate assets in the market under the in-
vestor’s preferences and system of values in order to select the ones that best
satisfy investor requirements

• Portfolio optimisation: allocate specific amounts of capital to be invested in each
of the securities chosen in the first stage.

4.1 Mean-variance portfolio optimisation

Portfolio selection involves selecting efficient portfolios that trade off risk and return
(Steuer et al., 2008; Spronk et al., 2005; Maginn et al., 2007). Portfolio returns, rp, are a
weighted average of the individual security returns given by

rp =
n

∑
i=1

xiri

where xi is the proportion of the initial capital (investment proportion or weight) in-
vested in security i at the beginning of the period and ri is a random variable denoting
the percentage return of security i over the holding period. The means of ri (their
expected values), variances (σ2

i ) and covariances (σij) of ri’s distribution are assumed
known. Investors are assumed risk averse, preferring higher return and lower risk,
where risk is measured by variance.

The portfolio selection problem can be specified as:

Max{E(rp) =
n

∑
i=1

xiE(ri)} for a given variance

or

Min{Var(rp) =
n

∑
i=1

n

∑
j=1

xixjσij} for a given mean

Subject to the constraints:

n

∑
i=1

xi = 1, and optionally li ≤ xi ≤ ui
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where li and ui are minimum and maximum permissible exposures for each secu-
rity.

The set of efficient portfolios when plotted as a curve in mean-variance space is
referred to as the efficient frontier. The investor selects the preferred combination of
expected return and variance from this efficient frontier.

The MV model is a special case of a multiple criteria decision problem with bi-
criteria: mean and variance (Zopounidis, 1999; Spronk et al., 2005; Steuer et al., 2008).
For any given level of expected return or variance the problem becomes a classical
mono-criteria optimisation with constraints.

The Markowitz MV model has a number of limitations (Bodie et al., 2008). As the
number of securities under consideration increases, the variance-covariance matrix be-
comes very large. Specifically, the number of parameters to be estimated in MV opti-
misation is n(n + 3)/2, consisting of n expected returns, n variances and n(n − 1)/2
covariances. The model does not provide a basis for determining forecast expected
returns and ensuring these are consistent with the covariance matrix, which is crucial
for the construction of an efficient frontier. The MV model is also very sensitive to the
quality of inputs, especially to errors in estimation of expected return. Maginn et al.
(2007) highlights how small changes in input values can result in a significant propor-
tion of the assets not being included in the optimal portfolio.

4.2 Multiple factor models

Asset returns are known to be determined by many factors. The multiple factor model
introduced by Ross (1976) assumes a set of return drivers or risk factors affect all assets
to a greater or lesser degree. A linear multi-factor model for k factors has the form:

ri = ai + βi1F1 + βi2F2 + . . . + βikFk + ei

where ai is an intercept term; Fj, j = 1 . . . k is the portion of return attributable to factor
j; βij represents the sensitivity of return of asset i to factor return j, also called factor
loadings, factor sensitivities or factor betas, and ei is the residual or error term with zero
mean. It is assumed that ei is uncorrelated with the k factors as well as the residuals of
other assets.

In the case of a single factor model, such as an index model underlying the CAPM,
the number of estimates required is 3n + 2, including n intercept terms, n betas, n
asset’s specific variances (σ2

i (ei)), 1 expected factor return and 1 factor variance. The
common factors produce correlations between asset returns for different assets. This
makes the portfolio selection process computationally efficient.

The multi-factor model is useful for modeling asset returns and covariances since it
is simpler to estimate the variance-covariance matrix as the number of factors chosen
is small compared to number of assets, it filters out noise (random variation in data)
and facilitates verification of the consistency of covariance matrix (Maginn et al., 2007).

These models allow multiple factors to be taken into account in portfolio selection
but still assuming a mean-variance framework.
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5 Methodology

5.1 ILS Portfolio selection

The assumptions for the ILS portfolio selection is a single period investment horizon
of 1 year. The portfolio selection process consists of two stages. Initially there is a
screening of available assets to select the highest ranked 20 ILS. The portfolio optimi-
sation is applied to these highest ranked 20 ILS individual assets after screening. For
the screening step both AHP and ELECTRE III are used to rank the ILS securities us-
ing the criteria rating, adjusted premium spread, probability of first dollar loss and
conditional expected loss.

After screening, portfolio optimisation uses linear optimisation to minimise the
portfolio expected loss with a specified level of expected excess return as a constraint.
The Matlab linear optimiser is used. The linear optimisation model is:

Min{E(lp) =
20

∑
i=1

xiE(li)}

subject to: E(rp) =
20

∑
i=1

xiE(ri) = c,
20

∑
i=1

xi = 1 and 0.01 ≤ xi ≤ 0.3

where li is ILS expected loss, ri is ILS expected excess return and c is a target level of
portfolio excess return, ranging from 6% to 12%.

In practice, investors hold portfolios of a smaller subset of available assets. This
reflects the computational and other difficulties in optimizing portfolios with a large
numbers of assets, especially under the multiple objective programming framework.
Trading and monitoring a smaller number of preferred assets is also more cost and
time efficient. The screening process reduces the number of securities to a number that
ensures the portfolio will be well diversified. Although diversification benefits increase
with the number of assets when the number of assets increases beyond 20 the increase
in diversification benefit is small. This is shown for a portfolio of equally weighted
stocks from the New York Stock Exchange in Statman (1987).

5.2 Analytical Hierarchy Process (AHP)

The Analytical Hierarchy Process, first introduced by Saaty in the 1970s, is one of the
most popular MADM methods. It has been used extensively in many decision prob-
lems across different fields including economics, medical, manufacturing, engineering
and environment (Saaty, 2006; Fulop, 2005; Triantaphyllou, 2000). AHP is based on the
observation that humans are more capable of making relative judgments than absolute
judgments (Saaty, 2006).

A description of the steps in applying AHP based on Saaty (2006) is included here
for completeness and Appendix A illustrates the method using a multiple criteria de-
cision example.

The steps required are:

1. Problem formulation:
Define the problem, set the goal and possible alternatives or solutions.
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2. Building a hierarchy:
Analyze and decompose the problem into smaller components, constructing an
hierarchy structure that adequately represents the problem consisting of the goal,
criteria, subcriteria and alternatives in multiple levels.

3. Perform pairwise comparison
At each level, construct a pairwise comparison matrix to compare elements with
each another based on each criterion using AHP’s fundamental scale for compar-
ative judgments (see Table 2 from Saaty (2006)).

Table 2: AHP Fundamental 9 point scale for pairwise comparison
Importance Intensity Definition Explanation

1 Equal importance Two activities contribute equally to the objective
2 Weak
3 Moderate importance Experience and judgment slightly favour one activity

over another
4 Moderate plus
5 Strong importance Experience and judgment strongly favour one activity

over another
6 Strong plus
7 Very strong or demonstrated importance An activity is favoured very strongly over another; itŠs

dominance demonstrated in practice
8 Very, very strong
9 Extreme importance The evidence favouring one activity over another is of the

highest possible order of affirmation

Reciprocals of above If activity i has one of the above non zero value assign
to it when compared to j, then j has the reciprocal value
when compared to i

A reasonable assumption (consistency)

For a level in the hierarchy having n elements, the total number of comparisons
needed is n(n − 1)/2. A comparison matrix is used with the main diagonal el-
ements equal 1 and half of the elements are the reciprocals of the other compar-
isons (principle of consistency). See Table 3.

Table 3: Pairwise comparison matrix

Importance A1 .. Aj .. An

A1 1 .. aij .. a1n
: .. 1 .. .. ..

Aj 1/aij .. 1 .. ..
: .. .. .. 1 ..

An 1/a1n .. .. 1

4. Evaluate consistency of pairwise comparisons
Consistency for a comparison matrix is measured by calculating the consistency
index (CI).

CI = (λmax − n)/(n− 1)

n is the number of elements and λmax is the maximum eigenvalue of the compar-
ison matrix.

This consistency index is then compared to a random index (RI). The RI is the av-
erage CI of randomly generated reciprocal matrices using the scale 1/9, 1/8,. . . ,
8, 9. The random consistency index for different dimensions n is given in Table 4
(from Saaty (2006)).
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Table 4: Random consistency index

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0 0 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49 1.51 1.54 1.56 1.57 1.58

The consistency ratio is defined as CR = CI/RI. For n = 3 and n = 4, conven-
tionally it is required that CR ≤ 0.05 and 0.08 respectively to be acceptable. For
n ≥ 5, a consistency ratio of 0.10 or less is acceptable.

5. Determine the local priority (local weight)
Based on the comparison matrix, a priority vector is derived using an eigenvector
method. Eigenvectors for the matrix are given by:

A.w = λmax.w

where A is the pairwise comparison matrix, w = (w1, w2, ..., wn) is the right prin-
cipal eigenvector and λmax is the maximum eigenvalue of matrix A. Normalising
w by dividing each element by the sum of the elements, ensures they are in the
range between 0 and 1. This is referred to as the local priority vector of one level
with respect to the upper level.

6. Calculate global priorities (total performance scores)

Each alternative is assigned a global score by aggregating local priorities weighted
by the importance of the respective criteria:

xi =
m

∑
j=1

k jwij, for i = 1, . . . , n

where xi is the global priority score of alternative i, wij is the local priority of i
with respective to criterion j, k j is the importance weight (local priority) of crite-
rion j, j = 1, . . . , m. Global priority values are ranked in the range between 0 and
1 and measured in (dimensionless) priority units.

AHP has some limitations that need to be recognised. AHP uses a weight allocation
technique without any reference to the ranges of performance of the alternatives under
consideration (Lenzen, 2006). For the AHP fundamental scale, Triantaphyllou (2000)
notes there is no particular reason that the scale should be evenly distributed from 1
to 9 but not between 1/9 and 1. An important issue with AHP is rank reversal. This
occurs where the ranks of an existing set of alternatives are changed when other alter-
natives are added or deleted. This happens under the normal or distributive version
of AHP where the normalisation is done by dividing the local eigenvector by the sum.

To avoid rank reversal, Saaty (2006) proposes a variation of AHP referred to as
ideal mode or the revised AHP method. For this method the right eigenvector of the
comparison matrix is normalised by dividing by the largest element instead of the
total sum. This ensures that no rank reversal occurs. Another version of AHP uses
a direct rating technique. In this method, alternatives are directly rated under each
criterion based on a common, predefined scale instead of using a pairwise comparison
and eigenvector values. This helps reduce the number of comparisons significantly
and is useful in problems with a large numbers of alternatives. It also avoids the rank
reversal problem. This is the method used in this paper.
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5.3 Elimination and Choice Translating Reality technique (ELEC-
TRE) III

ELECTRE has a number of different versions which have been developed and im-
proved over the years:

• ELECTRE I, ELECTRE Iv, ELECTRE IS: choice/ selection problems

• ELECTRE II, III, IV: ranking problems

• ELECTRE Tri: sorting problems

ELECTRE III is a version of ELECTRE which belongs to the broader group of the
outranking family. The concept of outranking was proposed by Bernard Roy in the late
1960s (Fulop, 2005). The outranking relation S is a binary relation defined on the set of
alternatives by using pairwise comparison under each criterion. Alternative a outranks
b if on most of the criteria a performs at least as good as b (concordance condition), and
for those criteria where a has worse performance than b, it is still considered acceptable
(non-discordance condition).

The outranking method finds all alternatives that dominate others while they are
not dominated by any other alternative. Dominated alternatives have another alterna-
tive performing better in one or more criteria and performing equally for the remaining
criteria. Since the method can result in an incomplete or partial ranking, there may be
a smaller set of non-dominated alternatives.

ELECTRE III has been successfully applied in a broad range of decision problems
(Figuiera et al., 2005; Belton & Stewart, 2002; Rogers et al., 2000). Further details on the
ELECTRE III technique can be found in Buchanan et al. (1999); Buchanan & Vander-
pooten (2007); Roy (1991); Rogers et al. (2000); Belton & Stewart (2002). An example is
given in Appendix A.

Preference modeling in ELECTRE III
Consider comparing a set of alternatives A under a predefined set of criteria

F = g1, . . . , gm. ELECTRE III allows for imprecision and uncertainty in judgements
by making use of the concept of an indifference threshold q and preference thresholds
p.

Preference relations under a single criterion g are defined as follows (assuming an
increasing performance scale):

• a is strictly preferred to b (aPb): g(a)− g(b) ≥ p

• a is weakly preferred to b (aQb): q < g(a)− g(b) < p

• a is indifferent to b (aIb): |g(a)− g(b)| ≤ q

This double threshold avoids the need for a clear distinction between indifference
and strict preference. This is illustrated in Figure 1.

ELECTRE III aims to produce an outranking relation S between every ordered pair
(a, b) in A when evaluated under the whole set of criteria F. aSb means that according
to the decision maker’s preferences, "a is as least as good as b" or, equivalently, "a is
not worse than b" when considering all criteria. The assertion aSb is tested using two
principles:

• Concordance principle: a sufficient majority of criteria support this assertion.
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Figure 1: ELECTRE III double thresholds

• Non-discordance principle: for the minority of criteria that do not support the
assertion, none of them is strongly against the assertion.

The criteria gj is in concordance with aSb if and only if a is as least as good as b
when compared under gj, that is aSjb. Even if gj(a) is less than gj(b) by an amount up
to qj, it still fully supports the assertion aSb. The gj criterion does not support aSb only
when bPa, that is, gj(b) is larger than gj(a) by an amount at least equal to pj.

With all criteria to be maximised (increasing performance scale), the strength of
support for aSb (concordance force) is measured by a global concordance index:

C(a, b) =
m

∑
j=1

k jcj(a, b)/
m

∑
j=1

k j

with k j is the important weight for gj and cj(a, b) is the partial concordance index de-
fined as:

cj(a, b) =


1 , if gj(a) + qj ≥ gj(b)
0 , if gj(a) + pj ≤ gj(b)
pj + gj(a)− gj(b)

pj − qj
, otherwise.

To calculate a discordance force (the strength of evidence against aSb), a veto threshold
v is introduced. Complete dismissal of the assertion aSb occurs if, for any one criterion
gj, gj(b) is larger than gj(a) by at least vj. The gj criteria is not against aSb if b is not
strictly preferred to a, that is even when gj(b) is larger than gj(a) by an amount smaller
than pj.

A partial discordance index is defined as follow:

dj(a, b) =


1 , if gj(a) + vj ≤ gj(b)
0 , if gj(a) + pj ≥ gj(b)
gj(b)− gj(a)− pj

vj − pj
, otherwise.

Unlike the concordance index, no global discordance index is defined. If no veto
thresholds is specified for gj then dj(a, b) = 0 for all pairs of alternatives (a, b).

Finally, the degree of outranking is measured by combining the concordance and
discordance index. A credibility index S(a, b) is defined as:

S(a, b) =


C(a, b) , if dj(a, b) ≤ C(a, b)∀j

C(a, b) ∏
j∈J(a,b)

1− dj(a, b)
1− C(a, b)

, otherwise.
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where J(a, b) is the subset of criteria for which dj(a, b) > C(a, b).
The credibility matrix S has the credibility indices for all ordered pairs (a, b) of the

alternatives in A as its elements.
The credibility matrix S is then used to establish outranking relations and to rank

alternatives. In ELECTRE III, this procedure is called distillation. There are two ways
to perform the procedure.

Descending distillation:
The steps are (Rogers et al., 2000; Belton & Stewart, 2002):

1. A minimum acceptable value of the credibility index is defined and used to de-
termine if the credibility index is compatible with the assertion aSb. Denoting by
λ0 = Max {S(a, b), a 6= b }, the smallest value of S(a, b) that is still considered
acceptable must be sufficiently close to λ0. A cut-off level is defined λ∗ as:

λ∗ = Max{S(a, b), S(a, b) < λ0 − s(λ0), a 6= b}

s is known as the discrimination threshold. In ELECTRE III, s is usually set at
s(λ) = 0.3− 0.15λ.

2. At cut-off level λ∗, a outranks b if and only if S(a, b) exceeds the cut off level
and S(a, b) is greater than S(b, a) by more than the discriminant threshold. The
credibility matrix S is converted into an outranking relation matrix T with entries
as follows:

aSλ∗b = T(a, b) =

{
1 , if S(a, b) > λ∗ and S(a, b)− S(b, a) > s((Sa, b))
0 , otherwise

3. Each alternative is assigned a qualification Q(a), defined as the difference be-
tween number of alternatives outranked by a and number of alternatives outrank
a. Q(a) is the row sum minus the column sum of T for alternative a.

4. The set of alternatives having the largest Q is the first distillation D1 of A.

5. If D1 has more than one member, repeat the process inside D1 until D1 has only
one member or if it still has more than one member but is no longer reducible.
As we proceed, λ0 is subsequently reduced from maximum of S(a, b) to λ∗ of
the previous step. Thus the cut off level is reduced accordingly toward 0. Once
D1 is reduced to only one member or becomes irreducible, we then repeat the
process with the original set of alternatives A excluding D1, until all alternatives
are ranked.

Ascending distillation:
The process is similar to descending distillation except in step 4 the alternative(s)

with smallest qualification Q is retained first.
The rankings from both distillations are combined to get a final overall ranking for

all alternatives.
Outranking techniques allow for situations where not all alternatives or actions

are comparable (incomparability cases). They can also be structured as a non-
compensatory approach, where good performance under one criterion cannot make
up for poor performance on another criterion, through the use of veto thresholds.

12



The technique may not provide a complete order and thus a single best alterna-
tive for a choice problem. Concepts, such as threshold and veto levels, can be difficult
to understand and difficult to assign values. The aggregation procedure and rank-
ing algorithm can appear at first to be complicated and not very transparent Belton &
Stewart (2002).

6 Application to ILS Portfolio Selection

AHP
AHP is applied in ratings mode. The hierarchy model for our ILS screening phase

is shown in Figure 2.

Figure 2: AHP Hierarchy for ILS screening

The 5 point intensity scale used is the same as in the example in Appendix A Ta-
ble 18. The same 5 point scale is used for all 4 criteria. For each criterion, the range
between maximum and minimum performance scores is split into five equal intervals
and each alternative is assigned into the corresponding rating, depending on their raw
performance scores. Table 5 shows the rating scale for the ILS criteria.

Table 5: AHP rating scale for criteria set
Criteria Max Min Excellent Good Average Poor Very Poor

Rating BB+ Not rated BB+ BB, BB- B+, B B- Not rated
Adjusted spread (bps) 2180 548 2180-1853.6 1853.6-1527.2 1527.2-1200.8 1200.8-874.4 874.4-548
Probability first $ loss (%) 12.45 0.59 0.59-2.96 2.96-5.33 5.33-7.71 7.71-10.08 10.08-12.45
Conditional expected loss
(%)

100.00% 63.30% 63.30-70.64 70.64-77.98 77.98-85.32 85.32-92.66 92.66-100.00

The next step is to convert the intensity level or rating into a local priority (prefer-
ence weight). AHP pairwise comparison is used to get a local priority corresponding
to each performance level based on the eigenvector method. The same comparison for
all four criteria is used as in the AHP example in Appendix .

Eigenvector values and consistency checking are calculated using the AHP soft-
ware called SuperDecision. Local priority is standardised by dividing the eigenvector
element by the largest value. This is to ensure that an alternative with the highest
ratings under all criteria will have a global priority score of 1. This helps avoid the
problem of rank reversal. We use an equal weighting for the criteria set, with an im-
portance weight for each criterion of 0.25.

ELECTRE
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For the ILS portfolio selection problem, Matlab is used to carry out the ELECTRE III
computations. Most of the scripts are taken from the Matlab Decision Theory Toolbox
with some modifications to obtain the final ranking. Equal importance weight is given
to the four criteria, each with 0.25 weight. The ILS rating is converted into numerical
scores from 1 to 7 as in Table 6.

Table 6: Rating scores

BB+ BB BB- B+ B B- Not rated

7 6 5 4 3 2 1

The ELECTRE III inputs are indifference, preference, and veto thresholds for each
individual criterion. These thresholds reflect both standard errors, or level of impreci-
sion, associated with the performance scores of the alternatives and subjective inputs
from decision makers.

Preference thresholds can be set at twice the indifference thresholds, and veto
thresholds are usually set between 3 to 10 times preference thresholds (Rogers et al.,
2000). In our case, no veto threshold is used and the preference thresholds are set at
twice the indifference thresholds. Threshold values used for the four criteria are shown
in Table 7. Final ranking for each ILS is based on averaging ranks obtained from de-

Table 7: ELECTRE III thresholds
Rating Adj. Spread premium Prob 1st loss Cond. expected loss

q 1 100bps 0.59% 10%
p 2 200bps 1.18% 20%
v inf inf inf inf

scending and ascending distillations.

7 ILS Portfolio Results

The rankings of the 31 ILS from the screening using AHP and ELECTRE are shown in
Figure 3. The top 20 ILS are used in the optimisation. For tie-breaks for rank 20 we
select the security that comes first alphabetically. Those ILS having rank highlighted
in blue (shaded) are selected for the portfolio optimisation step. The top ranked ILS
by AHP is Vita IV E which was ranked 4th by ELECTRE III. The highest ranked ILS by
ELECTRE is Residential Re 2009-3 which was ranked 2nd by AHP. The top 20 ILS from
AHP and ELECTRE differ by only 3 ILS. A scatter plot for ILS ranks based on AHP and
ELECTRE III is shown Figure 4. The rank correlation is 0.77, which could be viewed as
moderate.

The optimal portfolios constructed from the AHP and ELECTRE top 20 list for a
given level of expected excess return are shown in Table 8. For the case where the
portfolio includes all 31 ILS (market portfolio), the expected excess return and expected
loss are 8.23% and 3.13% respectively for an equally weighted market portfolio and
7.68% and 2.34% for a deal size weighted market portfolio. Optimal portfolios from
AHP and ELECTRE dominate these portfolios showing that the screening process is
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Figure 3: Rankings of ILS by AHP and ELECTRE III

Figure 4: Scatter plot AHP vs ELECTRE III rankings

effective and adds value. As long as the criteria set and input values select better
risk and return assets, the resulting optimal portfolios will be superior to holding the
market portfolio.

Figure 5 shows the efficient frontier for the AHP and ELECTRE optimised portfo-
lios in expected loss and excess return space. Optimal portfolios from AHP screening
dominate those from ELECTRE screening. At a 6% expected excess return level, the
difference in expected loss is 0.11 percentage point or over 11% lower in favour of
AHP optimal portfolios. As the level of expected return increases, the difference in
expected loss becomes smaller, dropping to just 0.02 percentage point at an expected
return of 12%.

7.1 Robustness of MCDM methods in ILS Portfolio Selection

Subjective factors are used in the screening results and the optimal portfolios depend
on the MCDM technique used and the preference inputs/value system used in the
decision problem. Results from screening using AHP direct rating are affected by the
rating scale used to convert raw performance data into performance/intensity levels
as well as the pairwise comparison of intensities to compute local priority. To assess
the impact of this, we consider how the pairwise comparison of intensity level affects
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Table 8: Optimised Portfolios

Portfolio return Portfolio expected loss

AHP ELECTRE III
6% 0.86% 0.97%
7% 0.89% 0.98%
8% 0.94% 1.03%
9% 1.08% 1.16%
10% 1.27% 1.35%
11% 1.49% 1.57%
12% 2.00% 2.02%

Figure 5: AHP and ELECTRE III efficient frontiers

the AHP final optimal portfolios. The elements in the pairwise comparison matrix are
reduced to 75%, 50% and 35% of the original judgments. Table 9 shows the case for the
50% reduction.

With the new local priority for each performance level, we reapply AHP calcula-
tions to select the top 20 ILS for portfolio optimisation phase. Ranking results for AHP
variants are provided in Figure 6.

Rank correlations between AHP screening variants are very high as shown in Table
10. For the top 20 lists, they are the same for AHP 0.75 and AHP 0.5 and this differs
from the original AHP by only 1 ILS; the AHP 0.35 top 20 list also has 2 different ILS
compared to the original AHP.

Optimal portfolios for AHP and ELECTRE variants are shown in Table 11. The
corresponding efficient frontiers for AHP variants are shown in Figure 7. The efficient
frontiers are the same for the AHP 0.75 and AHP 0.5, since the top 20 lists are the same,
followed by the the AHP 0.35. They dominate the original AHP. The difference in
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Table 9: Pairwise comparison for rating scale - AHP 0.5

Rating intensity E G A P V Normalised eigenvector Local priority

Excellent 1 1.5 2.5 3.5 4.5 0.38 1.00
Good 1/1.5 1 1.5 2.5 3.5 0.26 0.68
Average 1/2.5 1/1.5 1 1.5 2.5 0.17 0.44
Poor 1/3.5 1/2.5 1/1.5 1 1.5 0.11 0.29
Very Poor 1/4.5 1/3.5 1/2.5 1/1.5 1 0.08 0.20

Figure 6: Ranking of ILS by AHP and ELECTRE variants

expected loss compared to the original AHP for a given return level is very small, only
0.04 percentage point at the 6% return level and reducing even further as the expected
excess return increases.

The results from screening using ELECTRE III are affected by various threshold lev-
els necessary to derive outranking relations and final rankings. The threshold values
are varied from 75%, 50% and 25% of the original values and new optimal portfolios
determined. Table 12 shows the threshold values at a 50% reduction.

Ranking results after reapplying ELECTRE screening with the new threshold val-
ues are shown in Figure 6. For the top 20 list as compared to the original ELECTRE
case, ELECTRE 0.75 and ELECTRE 0.25 differ only by 1 ILS and for ELECTRE 0.5 the
top 20 list differs by 2 ILS. Rank correlations with the original ELECTRE case are high
and shown in Table 13. But they are less than those for AHP variants.

Efficient frontiers for the optimal portfolios for ELECTRE variants are shown in
Figure 8. The efficient frontiers for all ELECTRE variants dominate the original ELEC-
TRE case. The ones for ELECTRE 0.75, 0.25 and original case are very close together ,

Table 10: AHP rank correlation
Rank correlation AHP AHP 0.75 AHP 0.5 AHP 0.35

AHP 1.0000 0.9916 0.9695 0.9430
AHP 0.75 0.9916 1.0000 0.9824 0.9619
AHP 0.5 0.9695 0.9824 1.0000 0.9855
AHP 0.35 0.9430 0.9619 0.9855 1.0000
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Table 11: Optimal portfolios for AHP and ELECTRE variants
Portfolio return Portfolio expected loss

AHP AHP 0.5, 0.75 AHP 0.35 ELECTRE ELECTRE 0.75 ELECTRE 0.5 ELECTRE 0.25
6% 0.86% 0.82% 0.84% 0.97% 0.95% 0.88% 0.96%
7% 0.89% 0.85% 0.87% 0.98% 0.96% 0.90% 0.97%
8% 0.94% 0.91% 0.92% 1.03% 1.01% 0.95% 1.02%
9% 1.08% 1.05% 1.06% 1.16% 1.14% 1.09% 1.15%

10% 1.27% 1.24% 1.25% 1.35% 1.33% 1.28% 1.34%
11% 1.49% 1.46% 1.47% 1.57% 1.55% 1.50% 1.56%
12% 2.00% 2.00% 2.00% 2.02% 2.01% 1.99% 2.02%

Figure 7: Optimal portfolios for AHP variants

differing by only 0.01 to 0.02 percentage point at 6% return level and getting narrower
as expected excess return increases. In contrast, the efficient frontier for ELECTRE 0.5
is further apart from the rest and is closer to the ones from AHP variants. Considering
only ELECTRE variants, the most efficient portfolios come from ELECTRE 0.5 variant
with as much as 0.09 percentage point difference compared to original ELECTRE. In
cross comparison to AHP variants, optimised portfolios from ELECTRE variants are
still dominated by the ones from AHP even though the ones from ELECTRE 0.5 come
very close to the original AHP case.

Optimised portfolios can be compared using their multiples, which is the ratio be-
tween expected excess return and expected loss. Portfolios having the highest multi-
ples are at the intersection of the tangent line to the efficient frontiers. Figure 9 shows

Table 12: Threshold values for the case of ELECTRE 0.5
Rating Adj. Spread premium Prob 1st loss Cond. expected loss

q 0.5 50bps 0.30% 5%
p 1 100bps 0.59% 10%
v inf inf inf inf
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Table 13: ELECTRE Rank correlation
Rank correlation ELECTRE ELECTRE 0.75 ELECTRE 0.5 ELECTRE 0.25

ELECTRE 1.0000 0.9675 0.9479 0.9377
ELECTRE 0.75 0.9675 1.0000 0.9722 0.9418
ELECTRE 0.5 0.9479 0.9722 1.0000 0.9480
ELECTRE 0.25 0.9377 0.9418 0.9480 1.0000

Figure 8: Optimal portfolios for ELECTRE variants

portfolio multiples for optimal portfolios from ELECTRE and AHP from the sensitivity
analysis. AHP screening produces higher multiples compared to those from ELECTRE
screening at any given level of expected loss. AHP 0.75 and 0.25 portfolios have the
highest multiples.

8 Conclusion

The paper applies multi-criteria decision making (MCDM) techniques to ILS port-
folio selection by screening assets. The methodology incorporates decision mak-
ers/investors value and preference systems as well as expert inputs to rank and select
preferred ILS for portfolio optimisation. A comparative analysis of AHP and ELEC-
TRE III in ILS portfolio selection is also provided.

Two popular MCDM techniques, AHP (direct rating mode) and ELECTRE III, are
applied to insurance linked security portfolio selection for the first time. MCDM
methods are used to screen a subset of ILS from which portfolio optimisation is con-
ducted using linear programming with constraints. The results demonstrate that using
MCDM to incorporate investor preferences and value systems selects better perform-
ing assets and improves portfolio optimisation.
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Figure 9: Portfolio multiples

Rankings of ILS by AHP and ELECTRE are correlated. Optimal portfolios con-
structed from ILS screened by AHP and ELECTRE dominate portfolios constructed
without MCDM screening compared to investing in all assets with equal weighting or
deal size weighting. For the ILS data, optimised portfolios from AHP screening dom-
inate those from ELECTRE screening. Sensitivity analysis shows that AHP portfolios
are not very sensitive to the subjective pairwise comparison of rating intensities used
to rate individual assets. In contrast, ELECTRE portfolios are more sensitive to changes
in threshold levels used.
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A Appendix

AHP example
A simple example of AHP (direct rating version) is provided for illustration pur-

poses. Consider the decision problem to select the best car among 3 potential options.
The decision maker has analysed the problem and decided that the three main criteria
are price, power and safety. Figure 10 presents the hierarchy constructed for this prob-
lem. Performance scores for each alternative are given in Table 14. The importance
weight for each criterion with respect to the goal are derived from pairwise compar-
isons as shown in Table 15.

Figure 10: AHP Hierarchy for car selection

Table 14: Performance scores
Price ($) Power (kW) Safety (1-5)

Car 1 21000 140 4
Car 2 28000 190 3
Car 3 41000 250 5

Table 15: Criteria weight (CR = 0.037 ≤ 0.05)

Importance Price Power Safety Local priority

Price 1 3 1/3 0.26
Power 1/3 1 1/5 0.10
Safety 3 5 1 0.64

In the direct rating mode, each alternative is rated according to a predefined in-
tensity or performance scale. We assume that the rating scales for the three criteria
are derived from available information in the car market and decision maker inputs as
shown in Table 16. Based on these rating scales, the rating for each alternative is shown
in Table 17.

The next step is to convert intensity level to priority weight. Different performance
levels are compared to one another using the pairwise comparison shown in Table 18.
We use the same five point scale for all criteria to simplify the computation. In practice,
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Table 16: Rating scales

Criteria Excellent (E) Good (G) Average (A) Poor (P) Very Poor (VP)

Price < 20000 20000-30000 30000-40000 40000-50000 ≥ 50000
Power ≥ 300 300-200 200-150 150-100 < 100
Safety 5 4 3 2 1

Table 17: Ratings of alternatives

Price Power Safety

Car 1 G P G
Car 2 G A A
Car 3 P G E

the rating scale and priority weight can be defined differently for each criterion. We
normalise the priority weight by dividing eigenvector entries by the largest value.

Table 18: Pairwise comparison for rating scale (CR = 0.0530 ≤ 0.1)

Importance E G A P V Normalised eigenvector Local priority

Excellent 1 3 5 7 9 0.51 1.00
Good 1/3 1 3 5 7 0.26 0.51
Average 1/5 1/3 1 3 5 0.13 0.25
Poor 1/7 1/5 1/3 1 3 0.06 0.12
Very Poor 1/9 1/7 1/5 1/3 1 0.03 0.07

Finally, we can calculate global priority scores by summing local performance
scores weighted by corresponding criteria importance weight. For example, global
score for car 1 is computed as:

0.51× 0.26 + 0.12× 0.10 + 0.51× 0.64 = 0.47

Results of the AHP application for this problem are summarised in Table 19.
Car 3 is the best option, following by car 1 and car 2 ranked last.
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Table 19: Summary of AHP results

Price (0.26) Power (0.10) Safety (0.64) Global score Rank

Car 1 0.51 0.12 0.51 0.47 2
Car 2 0.51 0.25 0.25 0.32 3
Car 3 0.12 0.51 1.00 0.72 1
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ELECTRE example
We apply ELECTRE III to the same decision problem for car selection as in the AHP

example. We assume thresholds values for the three criteria are as in Table 20 based on
the decision maker’s inputs. No veto threshold is specified.

Table 20: Threshold values for car selection
Price ($) Power (kW) Safety (1-5)

q 5000 50 1
p 10000 100 2
v inf inf inf

Credibility indices for each pair of alternatives are computed, using ELECTRE for-
mulas. As an example, consider the pair (car 3, car 1):

• Under criterion 1 (price, negative scale): g1(3) − g1(1) = 41000 − 21000 =
20000 > p1 = 10000, hence, c1(3, 1) = 0

• Under criterion 2 (power, positive scale): g2(3) = 250 > g2(1) = 140, hence,
c2(3, 1) = 1

• Under criterion 3 (safety, positive scale): g3(3) = 5 > g3(1) = 4, hence, c3(3, 1) =
1

Thus, the global concordance index C(3, 1) = 0.26× 0 + 0.10× 1 + 0.64× 1 = 0.74.
Because we don’t use a veto threshold, the discordance indices are zeros for all

criteria. Therefore, the credibility index will equal the global concordance index. The
credibility matrix S for the problem is given in Table 21.

Table 21: Credibility matrix

Car 1 Car 2 Car 3

Car 1 - 1 0.9
Car 2 0.896 - 0.34
Car 3 0.74 0.74 -

In the next step, we perform distillation procedure to rank the 3 cars.
Descending distillation
First distillation:
Step 1.1:

λ0 = Max S(a, b) = 1, s = 0.3− 0.15× 1 = 0.15, λ0− s(λ0) = 0.85, λ∗ = 0.74. Outrank-
ing matrix T is provided in Table 22. At this cut off level, no alternative outranks one
another. D1 = {1, 2, 3}.

Step 1.2:
Lower λ0 to the previous λ∗, λ0 = 0.74, s = 0.3− 0.15× 0.74 = 0.189, λ0 − s(λ0) =
0.74− 0.189 = 0.551, λ∗ = 0.34. Outranking matrix T is provided in Table 23. At this
cut off level, car 3 has the highest qualification. Thus the result of the first distillation
is D1 = {3}. Second distillation:
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Table 22: First distillation outranking matrix - Step 1.1

Car 1 Car 2 Car 3 Qualification

Car 1 - 0 0 0
Car 2 0 - 0 0
Car 3 0 0 - 0

Table 23: First distillation outranking matrix - Step 1.2

Car 1 Car 2 Car 3 Qualification

Car 1 - 0 0 0
Car 2 0 - 0 -1
Car 3 0 1 - 1

Step 2.1:
λ0 = 1, s = 0.3− 0.15× 1 = 0.15, λ0 − s(λ0) = 1− 0.0.15 = 0.85, λ∗ = 0. Outranking
matrix T is provided in Table 24. Since S(1, 2)− S(2, 1) = 1− 0.896 = 0.104 < 0.15 =
min s(λ), the 2 options don’t outrank each other. D2 = {1, 2}.

Table 24: Second distillation - Step 2.1

Car 1 Car 2 Qualification

Car 1 - 0 0
Car 2 0 - 0

Ascending distillation
First distillation:
Computations and resulting outranking matrix T are exactly the same as in the

descending distillation.
Step 1.1:

All options have the same qualification index, no alternative outranks one another.
D1 = {1, 2, 3}.

Step 1.2:
Based on Table 23, car 2 has the lowest qualification. Thus result of first distillation is
D1 = {2}.

Second distillation:
Step 2.1:

λ0 = 0.90, s = 0.3− 0.15× 0.90 = 0.165, λ0 − s(λ0) = 0.90− 0.165 = 0.735, λ∗ = 0.
Outranking matrix T is provided in Table 25. Since S(1, 3)− S(3, 1) = 0.90− 0.74 =
0.16 < 0.165 = s(S(1, 3)), the 2 options don’t outrank each other. D2 = {1, 3}.

Results of both distillations are combined to get the final rankings as shown in Table
26. The rankings are the same as in AHP application, car 3 ranked first, following by
car 1 and car 2.
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Table 25: Second distillation - Step 2.1

Car 1 Car 3 Qualification

Car 1 - 0 0
Car 3 0 - 0

Table 26: Summary table - ELECTRE III ranking

Descending distillation Ascending distillation Final rank

Car 1 2 1 2
Car 2 2 2 3
Car 3 1 1 1
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