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Abstract

This paper provides a detailed quantitative assessment of the impact of solvency capital
requirements on product pricing and shareholder value for a life insurer. A multi-period firm
value maximization model for a life annuity provider, allowing for stochastic mortality and
asset returns, imperfectly elastic product demand, as well as frictional costs, is used to derive
optimal capital and pricing strategies for a range of solvency levels reflecting differences in
regulatory regimes. The model is calibrated using realistic assumptions and the sensitivity
of results assessed. The results show that value-maximizing insurers should target higher
solvency levels than the Solvency II regulatory 99.5% under assumptions of reasonable levels
of policyholder’s aversion to insolvency risk. Even in the case of less restrictive solvency
regulation, policyholder price elasticity and solvency preferences are shown to be important
factors for a life insurer’s profit maximizing strategy.
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1 Introduction

International demographic change has highlighted the significance of sustainable products to

manage longevity risk - the uncertainty surrounding the risk of people living longer. Developed

countries require retirement solutions for an ageing population, whilst mortality continues to

improve. Effective longevity risk management solutions that transform retirement savings into

reliable retirement income sources need to be provided at an efficient cost.

Life annuities provide an ideal hedge against longevity risk (Brown and Orzag, 2008 [10]), and

risk averse individuals should value these annuities even more than the amount paid, since

the probability of outliving individual retirement savings is significant (Mitchell, 2001 [20]).

However, in reality, consumer demand for annuities is limited. This annuity puzzle is attributed

to a variety of reasons, including bequest motives (Piggott and Purcal, 2008 [23]), the poor value

for money of annuities (Brown et al., 1999 [9]), and the loss of liquidity and control over their

finances in the case of unexpected and uninsured events (Piggott and Purcal, 2008 [23]).

Effective regulatory controls help to develop and enhance market participation in longevity in-

surance products by ensuring that providers of these products will deliver on consumer contracts

to a high degree of certainty. Higher capital requirements will lower insolvency risks, reducing

insolvency costs to policyholders and shareholders, while at the same time increasing capital

costs leading to higher frictional costs and premiums. Welfare losses arise from higher premi-

ums since fewer individuals purchase longevity insurance, eschewing the longevity risk benefits

associated with these products.1 That is, effective solvency regulation needs to consider the

trade-off between prudential security and consumer affordability.

This paper provides a detailed quantitative assessment of the impact of solvency capital require-

ments on product pricing and shareholder value. A multi-period value maximization model for

a life insurer offering lifetime guaranteed annuities is developed and calibrated using realistic

assumptions and market data. The model incorporates a stochastic mortality model, stochastic

investment returns, and an imperfectly elastic demand function capturing consumer preferences

for financial quality. The model is used to derive optimal pricing and capitalization strategies

for a range of solvency levels reflecting differences in regulatory regimes.
1Rees, Gravelle and Wambach (1999) [24] examine the arguments for solvency regulation and find that solvency

regulation is unnecessary if consumers are fully informed about the risks of the insurer’s insolvency. In reality,
consumers cannot adequately inform themselves of insurer insolvency and its implications, hence prudential
regulation is justified.
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The results show that value-maximizing insurers should target higher solvency levels than the

Solvency II regulatory 99.5% under assumptions of reasonable levels of policyholder’s aversion

to insolvency risk. Even in the case of less restrictive solvency regulation, policyholder price

elasticity and solvency preferences are shown to be important factors for a life insurer’s profit

maximizing strategy.

The structure of this paper is as follows. Section 2 presents the insurer value maximization

model. Section 3 presents the calibration of the model. Section 4 presents the results of a

quantitative study of an annuity provider’s capitalization and pricing strategies under different

regulatory requirements. Section 5 concludes.

2 Insurer Value Maximizing Model

Value maximization models used to study the effect of solvency requirements on insurers should

incorporate consumer demand and frictional costs. The costs of holding high levels of capital

impact both shareholders and policyholders. High levels of capital result in higher costs of

capital and higher premiums. The effect of this on insurer profitability depends on consumer

preferences for solvency and price elasticity.

Much of the analysis of the impact of solvency, capital and the links with pricing has been

for non-life insurers. Optimal insurer capitalization was considered by Munch and Smallwood

(1981) [21] to assess the effect of solvency regulation on the property and casualty insurance

industry. Optimal capitalization strategies were determined by maximizing the market value

of the insurance firm. The firm value maximization model of Rees, Gravelle and Wambach

(1999) [24] included the consumer’s willingness to pay for insurance depending on the insurer’s

insolvency risk and consumers were assumed to be fully informed of insurer insolvency risk.

Imperfectly elastic demand for insurance and frictional costs of capital were incorporated in a

single-period value maximization model for a multi-line non-life insurance company by Zanjani

(2002) [31]. Yow and Sherris (2008) [30] used a single period model based on Zanjani (2002) [31]

to assess the effects of frictional costs on a multi-line non-life insurance company’s pricing and

capitalization strategies. The model includes frictional costs of agency, bankruptcy and taxation

and consumer preferences for solvency. Zimmer, Gründl and Schade (2011) [33] incorporated a

demand curve into a single-period shareholder value maximization model similar to the model
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developed in Zanjani (2002) [31] and used the model to analyze the impact of consumer reactions

to default risk on an insurer’s optimal solvency level.

A single-period shareholder value maximization model for a life insurance company offering term

life insurance and life annuities to insolvency-averse consumers was developed in Gründl, Post

and Schulze (2006) [16] and used to study the impact of demographic risk on the optimal risk

management mix of the insurer.

2.1 A Value Maximization Model for a Life Annuity Provider

Amodel is developed to assess for different default levels optimal capital and pricing strategies for

a life insurer offering life annuities. Optimal strategies are those that maximize economic value

added by the insurance business for shareholders over a one-year horizon. A one-year horizon is

chosen to reflect international solvency requirements (including Solvency II). Although a one-

year horizon is used, cash-flows are multi-period and stochastic to reflect changes in the reserves

and in the asset values.

The model in Yow and Sherris (2008) [30] was used as a framework to develop a multiple period

cash flow life insurer model depending on stochastic mortality. The insurer model includes,

in addition, a stochastic term structure model to value future expected annuity cash flows,

stochastic investment returns and a price-default risk demand curve based on that estimated by

Zimmer, Gründl and Schade (2011) [33].

Enterprise Value Added (EVA), as in Yow and Sherris (2008) [30], is used as the measure of

economic value added by the insurance business for shareholders. This is determined as the

expected profit over the first year after allowing for the establishment of reserves for future

labilities for survivors at the end of the first year. To allow for the initial capital subscribed an

allowance is also made for the cost of capital (CoC) to determine an EVA adjusted for CoC. Both

EVA and EVA adjusted for CoC measure the economic value added for the life insurer.

A single cohort of males aged 65 is simulated in the model. Stochastic values of assets and

liabilities are determined at the end of the period using simulation of stochastic future mortality

rates and yield curves. These are used to determine stochastic profit realizations over the

year.

Premiums: Single premiums include a loading on the best estimate annuity prices determined
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using the future expected survival rates and the current market yield curve. Policyholder demand

is assumed to depend on the price per contract and the solvency, or default risk, of the insurance

company. Total premium income P at time 0 is the number of policies sold by the per policy

single premium:

P = Q(π, d) · π, (1)

where Q is the number of annuities sold at time 0. Q depends on the default probability d and

on the per policy single premium π. For each policy

π = (1 + k) ·A ·
45∑
t=1

tp65,0 · ν(0, t), (2)

where k is the premium loading, A is the fixed annual payment, tp65,0 is the expected probability

of a male aged 65 to survive another t years at time 0, and ν(0, t) is the discount factor for a

payment at time t. The discount factor is derived from the expected yield curve at time 0, fitted

with a Vasicek model described below.

Stochastic Mortality Model: Survival probabilities are derived from the stochastic mortality

model presented in Wills and Sherris (2010) [29]. This model extends the traditional Lee-Carter

mortality model (Lee and Carter, 1992 [19]) to incorporate age and cohort effects as well as

multiple risk factors. The force of mortality µ(x, t) for age x at time t is modeled as a discrete

approximation to a stochastic diffusion process:

dµ(x, t) = (a(x0 + t) + b)µ(x, t)dt+ σµ(x, t)dW (x, t), (3)

where a, b and σ are constants and dW (x, t) is a multivariate Wiener process. x0 is the initial

age at the start of the contract.

The Wills-Sherris model provides a very good fit to Australian mortality data for lives aged 50

to 99 and includes a simulation procedure for projecting future mortality rates incorporating

cohort longevity improvements over time. The model was re-calibrated to incorporate ages up

to 110.

Demand Curve: Product demand with respect to solvency and price is a critical component

of a model that aims to assess the solvency trade-off. Estimates of consumers’ reactions to

insurance default risk are reported in Zimmer, Schade and Gründl (2009) [32] and Zimmer,
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Gründl and Schade (2011) [33] based on experiments used to elicit an individuals’ willingness

to pay for theft insurance contracts for differing levels of default risk.

Four levels of default (0%, 1%, 2% and 3%) were used to calibrate the demand function. Mon-

etary incentives and the secret price mechanism developed by Schade et al (2009) [25], which

provides an accurate reflection of maximum willingness to pay, increased the experiment’s re-

liability. A range of different demand functions were fitted to the data and the exponential

demand function was the overall best fit. The price-default risk demand curve from Zimmer,

Gründl and Schade (2011) [33] captures both the default risk aversion and the price sensitivity

of policyholders. The functional form is given in the equation below.

φ(π, d) = e(α·d+β·π+γ), (4)

where φ(π, d) represents the percentage of individuals willing to buy annuities at price π from

an insurer with default probability d, α is the default sensitivity parameter (α < 0), β is the

price sensitivity factor (β < 0) and γ is a constant.

Given the demand function and the maximum potential market size,M , the number of annuities

Q sold at time 0 is:

Q(π, d) = M · φ(π, d). (5)

Initial Capital: Initial capital, R, is subscribed from the shareholders at time 0 in order to

achieve a target solvency level d promised to the policyholders.

Expenses: Expenses are assumed to be a fixed percentage of the single annuity premium π and

are a one-off, paid at the end of the first year. Total expenses are given by:

c = P · expense factor. (6)

Although in practice there are other expenses, these are the major form of expenses.

Claims and Reserves: Claims at the end of the first period are random. They are given

by:

L̃1 = Q(π, d) ·A · 1p̃65, (7)

where Q is the number of annuities sold at time 0, A is the fixed annual payment per annuity
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contract, and 1p̃65 the random probability of a 65-year old to survive to age 66.

The policy liability reserves are set up to include the net present value of future liabilities as

well as premium loadings weighted by the proportion of survivors, valued using the government

bond yields to maturity. The reserve at time 0 is given by:

Reserve0 = Q(π, d) · (1 + k) ·A ·
[ 45∑
t=1

tp65,0 · ν(0, t)
]
. (8)

The reserve at time 1 is calculated using random time 1 survival probabilities tp̃66,1 and discount

factors ν̃(1, t). These differ across simulation scenarios. The reserve is established for the random

number of survivors in each scenario 1p̃65 ·Q(π, d):

˜Reserve1 = 1p̃65 ·Q(π, d) · (1 + k) ·A
[ 44∑
t=1

tp̃66,1 · ν̃(1, t)
]
. (9)

The reserves include the value of the loadings in the single premium. Since expenses are as-

sumed to be incurred at the end of year 1 as a single up front payment, the premium loadings

are included in the determination of economic profit to offset the initial expenses in the first

period.

Term Structure Model: The Vasicek model (Vasicek, 1977 [27]) is used for the term structure

model. This is a one-factor short rate model that incorporates mean reversion of interest rates.2

The stochastic process for the short rate rt is:

drt = α(µr − rt)dt+ σrdWt, (10)

where α, µr and σr, together with the initial condition r0, characterize the dynamics of the

instantaneous interest rate. Discount factors ν(t, T ) for the value at time t of a payment at time

T assuming continuously compounded zero-coupon bond yields are given by (see Van Deventer,

Imai, and Mesler, 2005 [28], pp. 209-212):

ν(t, T ) = e−F (t,T )rt−G(t,T ), (11)
2The Vasicek model can generate negative interest rates which are unrealistic. This problem is dealt with

by eliminating simulation runs where the short rate becomes negative and the same number of simulations that
attain the highest returns are also removed to avoid bias.
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Balance Sheet
Assets Liabilities
Stocks Reserve
Bonds Equity
Cash Capital subscribed

Profit and Loss Account
Income Expenses
Premiums Claims
Investment income Expenses

Frictional costs
Change in the reserve

Figure 1: Insurer balance sheet and profit and loss account over the first year.

where (using τ to denote the maturity):

F (t, T ) = F (τ) = 1
α

(1 − e−ατ ) (12)

G(t, T ) = G(τ) =
[
µ+ λσ

α
− σ2

2α2

]
[τ − F (τ)] + σ2

4αF
2(τ). (13)

When calibrating the model’s parameter, a market price of risk λ is calibrated to observed market

yield curve data (see Van Deventer, Imai, and Mesler, 2005 [28], pp. 209-212 and 222-225).

Assets and Investment Returns: Assets at time 0 comprise the total premium income P

and the capital R subscribed from the shareholders: V0 = P + R. Returns on the assets are

random and denoted by r̃eturnt, a weighted average of the per period returns from different

investments. Asset classes included in the model are bonds, stocks and a cash account.

The short rates generated by the Vasicek model are used for single period bond returns. Stock

prices and cash rates are modeled as Geometric Brownian motions with drift terms µs and µc,

and volatility parameters σs and σc, respectively (see, e.g., Hull, 2009 [17]).

Frictional Costs: Three types of frictional costs are included in Yow and Sherris (2008) [30]:

taxation, agency and bankruptcy costs. The taxation rate is denoted as τ1. Total agency costs

are assumed to be proportional to the initial capital subscribed, τ2R. Bankruptcy costs, f ,

reflecting financial distress, are included whenever profit is negative and are larger in absolute

amount for larger losses.

Insurer Profit and Enterprise Value Added: Insurer profit is calculated using an economic

valuation approach. Balance sheet amounts are market value based in accordance with Interna-

tional Financial Reporting Standards.3 The balance sheet and the profit and loss account, used

to determine economic profit, are shown in Figure 1.
3Balance sheet amounts are also in accordance with the Australian Accounting Standards set by AASB.
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Enterprise Value Added (EVA) is defined as the expected present value of profits to shareholders

in excess of the initial capital subscribed. This is determined based on the random profit over

the first year:

P̃ rofit1 =



Reserve0 + K̃ + (P +R) · r̃eturn1 · (1 − τ1) − L̃1 − c− τ2 ·R−Reserve1 if P̃ rofit1 > 0(
Reserve0 + K̃ + (P +R) · r̃eturn1 · (1 − τ1) − L̃1 − c− τ2 ·R−Reserve1

)
(1 + f)

if P̃ rofit1 < 0.
(14)

The profit is determined as the premium, which is used to establish the time 0 initial reserve,

plus the present value of future premium loadings for the survivors, K̃ = 1p̃65 · k
1+k · P , and

asset returns, less claims, expenses, frictional costs as well as the amount required to establish

a reserve at the end of the year for the survivors. The simulated EVA then depends on the

amount of capital subscribed and, where this is positive, the extent to which it offsets losses.

For lower levels of solvency and higher levels of premium loadings it is possible that the amount

of capital required to establish the target solvency is negative. This reflects the fact that the

premium loadings alone are sufficient to ensure the target solvency level, suggesting a mutual

structure for the life insurer.

That is, there are two main cases for EVA. In the first case, a positive amount of capital

R is subscribed from shareholders to establish the target default probability d. In this case,

shareholders can either receive a profit (EVA = P̃ rofit1) or, if the losses are large, lose their

initial capital (EVA = −R). In the second main case, shareholders can withdraw capital at

time 0 because the total premium income is more than enough to establish the target default

probability. In this case, shareholders either receive a profit (EVA = P̃ rofit1) or the company

defaults but EVA = 0 because shareholders did not have to invest capital at time 0.4

The EVA is the expected value of this simulated EVA across all the simulation scenarios. The

EVA adjusted for cost of capital is the EVA minus the initial subscribed capital times the cost

of capital.
4In this model, reserves are calculated assuming no default of the insurer as required by accounting and solvency

requirements. As a result, the reserves include the default put option (DPO) value (which is given by the expected
value of the payments policyholders will not receive in the case of insolvency, that is if R + P rofit < 0).
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Parameter MLE Value
â 4.5089e− 04
b̂ −0.1011
σ̂ 0.0605

Table 1: Parameter estimates for the mortality model using MLE techniques.

Figure 2: Standardized residuals from the mortality model.

3 Calibration of the Life Insurer Model

The model was calibrated to market and other relevant Australian data for yield curves, asset

returns, expenses, mortality and frictional costs. The demand function and the frictional costs

are the most challenging to calibrate to market data. There are no studies or industry infor-

mation that can be readily used for this purpose. We follow a similar process as in Yow and

Sherris (2008) [30] to do this calibration. The robustness of these calibrations are assessed in

the results.

Stochastic Mortality Model: The stochastic mortality model was estimated using Australian

male mortality rates for ages 50 to 110 from 1971 to 2007 obtained from the Human Mortality

Database (2011), [18]. The maximum likelihood parameter estimates are shown in Table 1.

Figure 2 shows the age-specific (standardized) model residuals. The model fits Australian mor-

tality data well. Prior to 1960, mortality data in the Human Mortality Database for older ages

was smoothed which results in smooth residuals past the age of 96. Prior to this age, the model

residuals fluctuate randomly around a mean of zero without age or time trends.

Table 2 gives the descriptive statistics of the standardized residuals. The standard error of the
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mean estimate is small and the standard deviation is very close to one.

Parameter Value
Mean 4.5797e− 016

Standard Error 0.0215
Standard Deviation 1.0002

Minimum −4.3935
Maximum 4.6108

Table 2: Residuals descriptive statistics for the standardized residuals from the mortality model.

Pearson’s chi-square goodness of fit test between observed mortality rates and expected mortality

rates has a value of χ2 = 124.42. This statistic approximately has a chi-square distribution with

326 degrees of freedom.5 The critical value is χ2
326 at 99% = 269.55 and the test statistic is less

than the critical value, confirming the model provides a good fit to the data.

Mortality scenarios are simulated using the procedure in Wills and Sherris (2010) [29]. Figure

3 plots the expected survival curve for a 65 year old at time t = 1 together with confidence

intervals.

Figure 3: Simulated survival probabilities at time t = 1, mean values and 95% confidence
intervals.

Premiums: With a zero loading, the average annual payment of A = $5, 149.70 was based

on a single premium of $70,000 using expected survival rates and the fitted initial yield curve.

This is consistent with the average retirement savings of approximately $71,000 for a 65 year

old (Australian Bureau of Statistics, 2010, [2]).

Expenses: Expenses were assumed to be 3.3% of the total annuity premium (including the

loading). Challenger Life Company Ltd is the major company writing lifetime guaranteed an-
5There are 2160 observations, 3 parameters in the main model and 1830 parameters in the 60 × 60 correlation

matrix of dW (x, t): df = number of observations − number ofindependent parameters − 1 = 326.
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nuities in Australia. Their product disclosure statement reports an upfront adviser service fee

of up to 3.3% of the purchase price (Challenger, 2011 [11]).

Assets Allocation: The insurer’s asset mix was based on investment strategies of insurers

offering annuities with longevity risk. The Australian Prudential Regulation Authority (APRA)

publishes assets backing policy liabilities in their Half Yearly Life Insurance Bulletin. An al-

location of 5.5% in cash, 86.8% in bonds, and 7.7% in stocks was used (APRA, 2010a [4]). A

portfolio consisting largely of bonds provides a matching investment strategy for a life insurer

issuing life annuities. However the maturity of available government bonds in Australia are not

long enough for full asset liability matching. As a result, interest rate risk is captured in the

model over the one year horizon with a stochastic yield curve model.

Yield Curve and Asset Returns: The data used to calibrate the yield curve and asset

return models came from ‘Australian Government Bonds Yields and Interest Rates’ obtained

from Bloomberg (accessed September 2011), time series for the period 1990-2010 for the ‘Cash

Rate - Interbank Rate’ (accessed August 2011) and capital market yields of 10-year Australian

Government Bonds (accessed July 2011) from the Reserve Bank of Australia.

Least squares was used to estimate the parameters of the Vasicek model. The fitted initial

yield curve and simulated yield curves at time 1 are shown in Figure 4. The initial curve fits

the current Australian yield curve well apart from the very short maturity. The Vasicek model

parameters are shown in Table 3.

Figure 4: Fitted yield curve at time t = 0 and simulated yield curves at time t = 1, mean values
and 95% confidence intervals.

Parameters of the stochastic processes for the stock returns and the cash rate were estimated

based on 1990-2010 data for the ‘S&P/ASX 200 Accumulation Index’ and for ‘Cash Rate -

Interbank Rate’ provided by the Reserve Bank of Australia and are shown in Table 3. The time
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series used for the ‘S&P/ASX 200 Accumulation Index’ covering this period was constructed by

linking 2006-2010 data from the Reserve Bank of Australia and with a longer time series from

a free internet resource6 (both accessed June 2011).

The correlation matrix between cash, bond, and stock returns over the period 1990-2010 is

shown in Table 4.

Yield Curve Stock Returns Cash Rate
Parameter Value Parameter Value Parameter Value

α̂r 0.0790 µ̂s 0.0981 µ̂c 0.0613
µ̂r 0.0608 σ̂s 0.1239 σ̂c 0.0222
σ̂r 0.0079
r̂0 0.0285
λ̂ 0.0102

Table 3: Parameter estimations for yield curve and asset return models, annual data for the
period 1990-2010.

Cash Bond Stock
Cash 1.0000 0.9490 0.0167
Bond 0.9490 1.0000 0.0013
Stock 0.0167 0.0013 1.0000

Table 4: Correlation matrix between asset returns, annual data for the period 1990-2010.

Frictional costs: For the shareholder value we assume a tax rate of 0% allowing for the benefits

from the imputation credit system in Australia.7 The taxation rate, τ1, for life annuities owned

as superannuation is normally 15% and applies to investment income. The shareholder agency

cost of capital, τ2, was assumed to be 2% based on Swiss Re (2005) [26]. The bankruptcy cost

factor, f , was assumed to be 15%.

Cost of capital: The one-year bond rate is used for the cost of capital. This is 3.3% from the

market yield curve used to calibrate the yield curve model.

Market size: A maximum potential market size of M = 25, 000 was assumed for the rep-

resentative life annuity provider. The current Australian male population aged 65 is 102,857

(Australian Bureau of Statistics, 2010 [2]). In 2010, the largest life insurer in Australia had a

market share of 25-30% (APRA, 2011a [5]).
6http://www.economagic.com/em-cgi/data.exe/rba/fsmspasx2ai
7The Australian imputation system allows corporate tax entities to distribute to their members franking credits

for taxes paid by these corporations in order to avoid double taxation of the same income earned. These franking
credits act as a tax offset on assessable income for the shareholders of these corporations (Australian Tax Office,
2011 [7]).

13



Figure 5: Assumed price and default sensitivity of the demand for annuities.

Demand curve: There is no empirical study that we are aware of that provides estimates of

the price and default risk sensitivity of the demand for life annuities.8 Annuity markets sizes and

premium loadings observed internationally provide only limited insight because of differences in

solvency regulations and social security systems.

The price-default risk life annuity demand curve was calibrated based on studies of the Aus-

tralian annuity market along with informed judgement. The sensitivity of the analysis to this

assumption is assessed in Section 4.2. The assumed demand curve is:

φ(π, d) = e(α·d+β·π+γ) (15)

= e(−100·d−0.00015·π+10), (16)

where φ(π, d) represents the percentage of individuals willing to buy the annuity contract at the

premium of π from an insurer with default probability d. The default sensitivity parameter is

set to α = −100, the price sensitivity factor is β = −0.00015, and the constant is γ = 10.

Figure 5 shows the reduction in demand due to changes in price and the demand curve’s responses

to changes in default risk. The assumed fair annuity premium is $70,000. The left graph plots

annuity demand φ(π, d) against different levels of the premium loading k, assuming a default

probability of d = 0.5%. At a zero loading, 37% of individuals would be willing to purchase

the annuity contract. At a loading of k = 24% a very small demand of 3% results, which

is consistent with annuity demand in the Australian market.9 The right graph plots φ(π, d)
8Babbel and Merrill (2006) [8] employ a multi-period utility maximization framework to study the impact of

an insurer’s default risk on annuity demand. The results of this theoretical study suggest that for moderate levels
of risk aversion annuity demand is not very sensitive towards premium loadings of up to 30%. However, optimal
annuitization levels are shown to drop sharply when the default risk of the annuity provider is stepwise increased
from riskless to a ‘AAA’, ‘AA’, and ‘A’ rating.

9Ganegoda and Bateman (2008) [15] estimate the loading on a nominal Australian life annuity for a 65 year
old male in the general population to be approximately 24%. See Evans and Sherris (2009) [14] for an assessment
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against the default probability d for a premium of $70,000. Annuity demand decreases rapidly

as insolvency risk increases. At a default probability of d = 5% demand is zero.

4 Optimal Solvency and Premium Loadings

4.1 The Life Insurer’s Value Optimization

The life annuity insurer maximizes enterprise value added (EVA) over a one-year horizon by

choosing the default probability d, the premium loading k and initial capital subscribed from

shareholders R. The premium loading and the initial capital determine the default probability

d, which has an indirect impact on the EVA via the price-default risk demand curve φ(π, d).

A complex optimization problem arises. For a given default probability, the combination of

premium loading and capital that results in a higher EVA (or higher EVA adjusted for the cost

of capital) is preferred by the shareholders.

The optimal strategy is the combination of default probability d, premium loading k and initial

capital R that gives the highest EVA or adjusted EVA value. This optimum is determined by

comparing insurer profit and EVA for different combinations of d, k and R. For each combina-

tion, 100,000 simulations of the insurer model are used to estimate a profit and EVA distribu-

tion.

A given default probability, say d∗, can result from a number of different combinations of the

premium loading k and initial capital R. These combinations are determined by considering

different levels of the loading k in the range k = 0, 5%, 10%, 20%, 30% and applying an iterative

algorithm that determines for each k the initial shareholder capital R needed to achieve the

target default probability d∗.

Different regulated environments are considered including a case where all insurers have the

solvency probability of 99.5%, the Australian and European situation, and where insurers have

flexibility to choose a target solvency level and credit rating, reflecting the situation in the

United States.

EVA for a Target Solvency Probability of 99.5%

Figure 6 shows the EVA for different combinations of premium loading and initial capital sub-

of annuity demand in Australia.
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Figure 6: EVA for different combinations of premium loading and initial capital subscribed
resulting in a solvency level of 99.5%.

Loading k Capital R Premiums P P/(P +R) Quantity Q EVA EVA adj CoC
0% 190.5 643.8 0.228 9,197 -25.2 -31.5
5% 90.9 399.9 0.185 5,441 5.3 2.3
10% 41.1 247.8 0.142 3,218 14.7 13.4
20% 5.9 94.6 0.059 1,126 13.0 12.8
30% -0.9 35.9 Note 394 7.3 7.3

Table 5: Number of annuities sold (Quantity Q), EVA and EVA adjusted for CoC in millions for
different combinations of premium loading and initial capital subscribed resulting in a solvency
level of 99.5%. Note: When the loading is high enough, the solvency requirement is met wholly
from policyholder loadings and no capital subscription is required from shareholders. This is
the situation where the insurer would be structured as a mutual.

scribed that provide a solvency probability of 99.5%. There is a hump-shaped relationship

between premium loading and EVA reflecting the demand curve elasticity. The highest EVA

value, for the loadings considered, occurs for a loading of 10%. The EVA adjusted for CoC

occurs for higher loadings where the level of initial capital subscribed by shareholders is lower.

At a zero loading EVA is negative because of the up-front expenses.

Table 5 shows the numerical results. The higher the premium loading k is, the less initial capital

R is required from the shareholders to attain the solvency level of 99.5%. At a loading of 30%,

total premiums P are more than enough to ensure the target solvency probability of 99.5%

and initial capital R is negative. In this case the policyholder loadings are sufficient to meet

solvency requirements and no shareholder funds are required. In these cases, from a policyholder

perspective, the insurer would be optimally structured as a mutual. Insurance demand, given

by the number of annuities sold Q, decreases as the loading increases.

EVA for Varying Solvency Probabilities

A range of different one-year default probability is considered (d = 0.1%, 0.5%, 1%, 3%) and
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Figure 7: EVA for different combinations of premium loading and initial capital subscribed
resulting for different solvency levels.

insurers are assumed to select the default level that maximises EVA. The default probabilities

reflect AM Best ratings developed for the insurance sector (AM Best, 2007 [3]).

Figure 7 plots the EVA for different combinations of premium loading and initial capital sub-

scribed resulting for each default probability. Higher solvency levels, or lower default probabili-

ties, result in higher EVA values for positive premium loadings. For each case the highest EVA

value is attained at a premium loading of 10%. At a default probability of 3% only very few

annuity contracts are sold (for example, 755 at a zero loading and 447 at a loading of 10%).

4.2 Robustness of the Model Assumptions

The calibration of the demand curve and the assumption regarding the frictional costs for

bankruptcy are the hardest to calibrate because of a lack of market data. These are impor-

tant assumptions for our model. In order to confirm the robustness of our analysis, different

assumptions are considered for their impact on maximum EVA.

Demand Elasticities

As a first case it is assumed that policyholders are more default risk averse than in the orig-

inal case. The demand curve φ(π, d) is determined by three parameters, a default sensitivity

parameter α, a price sensitivity factor β and a constant γ. The calibration for these parameters

was α = −100, β = −0.00015, γ = 10. Due to the exponential functional form of φ(π, d),

changing the default sensitivity parameter α also affects the demand’s reaction to price changes.

To ensure separate effects, all three parameters are calibrated such that in the first case pol-

icyholders’ demand reacts to price changes as before and only the reaction to default risk is
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Figure 8: Sensitivity analysis: Policyholders being more default sensitive. Assumed price and
default sensitivity of the demand for annuities.

Figure 9: Sensitivity analysis: Policyholders being less price sensitive. Assumed price and
default sensitivity of the demand for annuities.

increased. The parameters for this situation are α = −200, β = −0.00014997, γ = 10.48479301

and the corresponding graphs for the demand function are shown in Figure 8. Annuity demand

decreases more sharply with default risk than in the original case. At a default probability of

2% demand is basically zero, whereas in the original case demand was positive up until a default

probability of 5%.

The second case assumes that policyholders are less price sensitive. All three parameters are

calibrated such that only the demand reaction to price changes is changed (lowered) and the

reaction to default is the same as in the original analysis. The corresponding parameters are α =

−100.00625552, β = −0.00010000, γ = 6.49997956. Figure 9 shows that the price sensitivity

now runs flatter than in the original case and that there is a positive demand for the highest

loading shown here (40%).

Figure 10 shows the EVA results for these alternative demand curves. As in Figure 7, default

probabilities d = 0.1%, 0.5%, 1%, 3% are compared. The graph to the left is the case where

policyholders are more default sensitive. As before, EVA shows a hump shape pattern for all

four cases d = 0.1%, 0.5%, 1%, 3% when loadings are increased from 0% to 30%. EVA is negative
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Figure 10: Sensitivity analysis: EVA levels for different assumptions about the demand curve
φ(π, d).

for a zero loading and for each default probability the highest EVA value occurs at a loading of

10%. The relative ranking is unchanged. EVA is highest for a default probability of d = 0.1%.

There are some differences to the original case. At a target default probability of d = 0.1%,

more annuities are sold and EVA is higher for loadings of 5%, 10%, 20% and 30%, and the loss

at a zero loading is also higher than in the base case. At a default probability of d = 0.5%,

results are very similar to the original case. At d = 1% and 3%, less annuity business is sold

and EVA is lower than originally.

The graph to the right in Figure 10 is the case where policyholders are less price sensitive. As

before, the relative ranking of the cases is the same. EVA is highest for a default probability

of d = 0.1%. However, the highest EVA value now occurs at a higher loading of 20%. Price

sensitivity is an important determining factor for the level of the loading in the premium but

not for the optimal solvency level.

The results show that the model’s results are robust to assumptions regarding the policyholder’s

default sensitivity: EVA is highest for higher levels of solvency with lower default probabilities.

The optimal loading depends on the policyholders’ assumed price sensitivity but this does not

impact on the conclusions for the solvency level. Similar conclusions are obtained for the adjusted

EVA allowing for the cost of capital.

Frictional Costs for Financial Distress

Frictional costs for bankruptcy f were assumed to be 15% and applied to any losses. Optimal

solvency levels for costs of 0% and 30% are consistent with the results for a 15% bankruptcy

cost. The premium and demand are not dependent on the level of bankruptcy cost rate.

Figure 11 shows the sensitivity to different frictional costs. The percentage of these costs does
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Figure 11: Sensitivity analysis: EVA levels for different frictional costs for bankruptcy f .

not have a significant impact on the results. This is the case since financial distress only occurs

with a low probability given the level of solvency assumed.

5 Conclusion

Ensuring that life insurers will be able to deliver on long term life annuity contracts with a very

high degree of certainty is important to both regulators and consumers. This is a fundamental

requirement to support the development of a viable private sector annuity market. The analysis

of the optimal level of solvency, which balances the regulatory trade-off between prudential

concerns and consumer attitudes towards purchasing annuities, has shown that higher solvency

levels will maximize shareholder wealth and also satisfy consumer preferences for solvency.

The results are based on a realistic calibration of a life insurer model including stochastic mor-

tality, interest rates and consumer preferences. The results were shown to be robust to different

levels of default sensitivity. The main impact of price-default elasticity was on the optimal load-

ing in the premium that maximized the shareholder value and not the solvency capital level.

Higher levels of solvency than a 99.5% confidence level for a one-year time horizon were found

to be optimal for a life insurer based on reasonable assumptions for consumer preferences for

solvency.

The paper shows how solvency is critical for a life insurer. A base requirement for policyholders

to purchase long term life annuity contracts is a high level of confidence in the life insurer

meeting its obligations. To do this, a life insurer needs to hold higher levels of capital than the

regulatory requirements under Solvency II. Although policyholders will pay higher premiums,

welfare of both shareholders and policyholders can be improved in these circumstances.
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