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Abstract

Heterogeneity in mortality rates is known to exist in populations, undermining
the use of age and sex as the only rating factors for life insurance and annuity
products. Life insurers underwrite life products using a variety of rating factors to
allow for this heterogeneity. In the case of life annuities, there is limited underwri-
ting used. Life insurers rely on an assumption that lives will self select and price the
longevity risk with an annuity mortality table that assumes above average longe-
vity. This leads to annuities being less attractive to a wide range of individuals, and
limits the ability of private annuity markets to meet longevity risk product needs
of a large part of the population. There is an increasing use of rating for life annuity
pricing such as impaired annuities and postcode underwriting in the UK. In order
to fairly price life annuities and support a broader life annuity market, a better
understanding of the extent of heterogeneity in population mortality is required.
This paper applies well established frailty models and more recently developed
Markov models to quantify the extent of heterogeneity in Australian population
mortality. The results confirm significant heterogeneity exists. The impact of he-
terogeneity on life annuity rates and pension costs provides a compelling case for
identifying and quantifying more explicitly the factors that determine mortality
heterogeneity, particularly at the older ages, including hereditary, socio-economic,
and health factors as well as personal habits.

Keywords: longevity risk, mortality heterogeneity, frailty model, Markov ageing
model, physiological age, annuity pricing

JEL Classifications: G22, G23, J11, C46
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1 Introduction

Heterogeneity of mortality rates is known to exist in populations (Vaupel, Manton, and
Stallard (1979) [10]). Although this is taken into account in underwriting life insurance
products it is not as common to underwrite life annuity products. Many countries
provide social security aged pensions funded through the taxation system and offered
on the basis of solidarity with no allowance for risk factors such as age, sex or health
status in determining the pension payment. These government aged pensions are
usually at a basic level and individuals are either required or encouraged to save for
their own retirement through private pensions or other private savings. In the private
pensions market the life annuity markets are thin and virtually non-existent in some
countries such as Australia (Ganegoda and Bateman (2008) [3]). Adverse selection
loadings in premiums, along with capital and risk loadings arising from regulatory
requirements such as Solvency II also result in annuity rates that are unattractive to a
significant portion of the population.

There are limited studies that quantify the extent to which heterogeneity in popu-
lation mortality impacts the pricing of life annuities. Olivieri (2006) [9] assesses the
risk of a portfolio of life annuities using frailty models but not the implications for life
annuity pricing. Individual data required to identify the risk factors contributing to
heterogeneity for life annuitants and older aged members of the population is limited
because it is confidential information of insurers, confidential individual census data
for a population or individual survey data that may not be specifically collected for
this purpose. A number of models have been proposed to quantify heterogeneity in
population mortality based on widely available population level data. These include
frailty models and also a Markov ageing model. A challenge for these models is to
separate variability in population mortality rates that arises from heterogeneity as
opposed to inherent randomness in mortality.

This paper aims to use Australian population mortality data to assess and fit a
number of models of heterogeneity and illustrate the financial impact of heterogeneity
by assessing the distribution of life annuity values implied by the models. It is the
first study using Australian data to quantify this variability. The paper also compares
the different models used and identifies strengths and weaknesses of the models. The
results provide a compelling case for identifying more explicitly the factors that de-
termine mortality heterogeneity, particularly at the older ages, including hereditary,
socio-economic, and health factors as well as personal habits.

2 Frailty Models

Frailty models, introduced in Vaupel et al. (1979), allow for mortality heterogeneity
using an unobserved mortality risk factor referred to as frailty, where frailty represents
an individuals’ relative susceptibility to death compared to a standard. Frailty is as-
sumed to be fixed at birth, and does not vary with age. Frailer individuals are more
subject to death, and the survivors on average become less frail as age increases. The
selective effect of frailty means that the aging of a cohort as a whole is less than for the
standard. With a frailty model, observed mortality at older ages improves relative to
the standard because the frailer lives die relatively earlier.

The frailty factor is usually defined in terms of the force of mortality. For an indivi-
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dual aged x with frailty z, the force of mortality has the form:

µ(x, z) = z · µ(x, 1)

where µ(x, 1) is the standard force of mortality or the force of mortality for individuals
with frailty 1. The frailty factor z is unobserved, and is assumed to follow a speciifed
statistical distribution.

Under this definition for frailty, there are two sources of variability in observed
mortality experience. One comes from the randomness of time to death given the mor-
tality rates µ. The other source comes from the stochastic variability of µ. Individual
mortality rates differ because of heterogeneity of the population. Heterogeneity is the
source of variability in µ in frailty models.

The standard force of mortality and the distribution of the frailty factor can not both
be directly determined from population mortality data. Assumptions are required for
these in order to fit and assess different models. A common assumption is that the
standard force of mortality follows a Gompertz mortality function with:

µ(x, 1) = α · eβx (1)

For the frailty distribution, common assumptions include Gamma, Inverse Gaussian,
and Lognormal. The Gamma and Inverse Gaussian distributions for frailty will be
considered.

The following notation will be used throughout for the frailty model:

µ(x, 1) : standard force of mortality at age x
µ(x, z) : force of mortality for an individual with frailty z

z̄x : mean frailty at age x
fZ(z) : marginal density function of frailty distribution

fZ|X(z|X = x) : density function of frailty for survivors at age x

f ∗Z|X(z|X = x) : density function of frailty distribution for deaths at age x

fX(x) : marginal density function of survival time
fX|Z(x|Z = z) : Conditional density function of survival time given frailty z

fX,Z(x, z) : Joint density function of time to death x and frailty z
sX|Z(x|Z = z) : Conditional survival function given frailty z

H(x) : Cumulative hazard of standard force of mortality at age x
µx : Force of mortality at age x, which is a random variable

f (µx) : Density function of individual force of mortality at age x
µ̄x : Mean force of mortality at age x
µ̂x : Sample mean of force of mortality at age x, which is a random variable

2.1 Gamma Distributed Frailty

Under the assumption of Gamma distributed frailty with shape parameter k and scale
parameter λ (Gamma(k, λ)), the marginal density of frailty fZ|X(z|X = 0) or fZ(z) is:

fZ(z) = fZ|X(z|X = 0) =
λk

Γ(k)
· zk−1 · e−λ·z (2)
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The mean frailty at birth is E[z] = z̄x = k/λ. The level of population heterogeneity

is measured by either the variance k
λ2 or coefficient of variation

√
1
k . A nice property

of assuming a Gamma distributed frailty is that the distribution of frailty at different
ages also follows a Gamma distribution with the same shape parameter (Vaupel et
al. 1979). That is, conditional on surviving up to age x, the distribution of frailty is
Gamma(k, λ(x)) with density:

fZ|X(z|X = x) =
(λ(x))k

Γ(k)
· zk−1 · e−λ(x)·z (3)

where

λ(x) = λ + H(x)

= λ +
∫ x

0
µ(t)dt (4)

This is shown using the definition of force of mortality in the form of a conditional
distribution:

µ(x, z) =
fX|Z(x|Z = z)
sX|Z(x|Z = z)

(5)

where

sX|Z(x|Z = z) = e−
∫ x

0 µ(t,z)dt

= e−z·
∫ x

0 µ(t,1)dt

= e−z·H(x) (6)

Therefore,

fX|Z(x|Z = z) = µ(x, z) · sX|Z(x|Z = z)

= z · µ(x, 1) · e−z·H(x) (7)

From the relationship between a conditional and an unconditional distribution, the
joint distribution of age and frailty fX,Z(x, z) is:

fX,Z(x, z) = fX|Z(x|Z = z) · fZ(z)

= z · µ(x, 1) · e−z·H(x) · λk

Γ(k)
· zk−1 · e−λ·z

=
λk

Γ(k)
· zk · e−λ(x)·z · µ(x, 1) (8)

The conditional distribution of z given survival up to age x is obtained by integrating
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the joint density function from 0 to infinity with respect to x:

fZ|X(z|X = x) = fX,Z(x, z|X > x) =
∫ ∞

x
fT,Z(t, z)dt

=
∫ ∞

x
fZ(z) · fT|Z(t|Z = z)dt

= fZ(z) ·
∫ ∞

x
fT|Z(t|Z = z)dt (9)

=
λk

Γ(k)
· zk−1 · e−λ·z · e−z·H(x)

=
λk

Γ(k)
· zk−1 · e−(λ+H(x))·z (10)

Normalizing the result to make it a density function (integrate to 1) gives the form in
(3), which is a Gamma(k, λ(x)).

The mean frailty of the cohort, k
λ(x) , is decreasing as age increases. This is the

selection effect that is a feature of the frailty model. The lower the value of k, the higher
the level of heterogeneity, and the faster the decrease in mean frailty of the cohort.
This produces a more significant selective effect from frailty. The variance k

(λ(x))2 is

also decreasing with age. But the coefficient of variation for a Gamma distribution
√

1
k

is constant and does not change with age. This is the unique property of a Gamma
distributed frailty, whereas other assumed forms of frailty usually exhibit a decreasing
coefficient of variation. An example of this case is the Inverse Gaussian distributed
frailty discussed next.

The distribution of frailty for the deaths at age x is also Gamma with parameters
Gamma(k + 1, λ(x)). To show this, the joint density of age and frailty derived in (8) is
integrated over all possible values of z to obtain the unconditional distribution for age
x:

fX(x) =
∫ ∞

0

λk

Γ(k)
· zk · e−λ(x)·z · µ(x)dz

= µ(x, 1) · k · λk

(λ(x))k+1 ·
∫ ∞

0

(λ(x))k+1

Γ(k + 1)
· zk+1−1 · e−λ(x)·zdz (11)

= µ(x, 1) · k · λk

(λ(x))k+1 (12)

since the integrand in (11) is a Gamma density.
Hence the conditional density of frailty is:

f ∗Z|X(z|X = x) = fZ|X(z|X = x) =
fX,Z(x, z)

fX(x)

=

λk

Γ(k) · z
k · e−λ(x)·z · µ(x, 1)

µ(x) · k · λk

(λ(x))k+1

=
(λ(x))k+1

Γ(k + 1)
· z(k+1)−1 · e−λ(x)·z (13)
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which is the density function of a Gamma(k + 1, λ(x)). The mean frailty for the deaths
at age x is k+1

λ(x) , which is higher than the average frailty for survivors. Again this shows
that, as the frailer individuals die first, the average frailty is decreasing as age increases.

A property of the Gamma distribution is that it can be scaled to obtain another
Gamma distribution with the same shape parameter. If X ∼ Gamma(k, λ), then αX ∼
Gamma(k, λ

α ). If the distribution of frailty z among survivors at age x is Gamma(k, λ(x)),
then since µ(x, z) = z · µ(x, 1), the distribution for the force of mortality at age x is
Gamma(k, λ(x)

µ(x,1)). Therefore:

f (µx) =
( λ(x)

µ(x,1))
k

Γ(k)
· (µx)

k−1 · e−
λ(x)

µ(x,1) ·µx (14)

2.2 Inverse Gaussian distributed frailty

Another common form of distribution assumed for frailty is the Inverse Gaussian
distribution. Under the Inverse Gaussian distributed frailty, the density function for
frailty (Hougaard, 1984) is:

fZ(z) = fZ|X(z|X = 0) = (
δ

π
)

1
2 · e
√

4δθ · z− 3
2 · e−θz− δ

z (15)

The mean and variance of frailty at age 0 are:

E[z] = z̄0 = (
δ

θ
)

1
2 , Var[z] =

1
2

√
δ

θ3 (16)

Similar to the Gamma distributed frailty, under the Inverse Gaussian distribution (IG(δ, θ)),
the distribution of frailty for survivors at age x is also Inverse Gaussian (IG(δ, θ(x))),
with:

θ(x) = θ + H(x)

= θ +
∫ x

0
µ(t)dt (17)

The proof is similar to that for the Gamma distribution. The conditional distribution
of frailty given survival to age x ( fx(z)) is derived by integrating the joint distribution
function of x and z with respect to age from x to infinity:

fZ|X(z|X = x) = fX,Z(x, z|X > x) =
∫ ∞

x
fT,Z(t, z)dt

=
∫ ∞

x
fZ(z) · fT|Z(t|z)dt

= fZ(z) ·
∫ ∞

x
fT|Z(t|z)dt

= (
δ

π
)

1
2 · e
√

4δθ · z− 3
2 · e−θz− δ

z · e−z·H(x)

= (
δ

π
)

1
2 · e
√

4δθ · z− 3
2 · e−(θ+H(x))z− δ

z (18)
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The result is normalized to form another Inverse Gaussian density with

δ′ = δ, θ′ = θ + H(x) (19)

Therefore, fZ|X(z|X = x) is:

fZ|X(z|X = x) = (
δ

π
)

1
2 · e
√

4δθ(x) · z− 3
2 · e−θ(x)·z− δ

z (20)

The mean frailty of survivors up to age x under the Inverse Gaussian distributed
frailty is ( δ

θ(x))
1
2 , which is decreasing with age. The speed of decrease is higher if the

population is more heterogeneous (smaller θ) as is the variance 1
2

√
δ

(θ(x))3 .

In contrast to the Gamma distributed frailty, the coefficient of variation (4δθ(x))−
1
4

is a decreasing function of age, whereas under the Gamma assumption, the coefficient
of variation is constant. The Inverse Gaussian distribution is also closed under scaling.
X ∼ IG(δ, θ) can be scaled by α to form another Inverse Gaussian distribution: αX ∼
IG(αδ, θ

α ). Therefore, if z is IG(δ, θ(x)), the distribution for µ, which is z scaled by the
standard force of mortality µ(x, 1), follows an IG(µ(x, 1)δ, θ(x)

µ(x,1)):

f (µx) = (
µ(x, 1)δ

π
)

1
2 · e
√

4δθ(x) · µ−
3
2

x · e
− θ(x)

µ(x,1) ·µx− µ(x,1)δ
z (21)

2.3 Parameter Estimation for Frailty Models

A commonly used approach to estimate the parameters for the standard force of mor-
tality and frailty distribution based on observed population mortality data is the mean
frailty approach (Vaupel et al. (1986), Butt and Haberman (2002)). Under the mean
frailty approach, it is assumed that the observed force of mortality is the population
average force of mortality of the cohort:

µ̄x = µ(x, 1) · z̄x

and the number of deaths of the cohort dx follows a Poisson distribution with λ = µ̄xEx
assuming the cohort exposure to risk Ex is large.

Under the mean frailty approach, there are in theory many different functional
forms for the observed force of mortality and the distribution of frailty consistent with
the population data. Both µ(x, 1) and z̄x are difficult to separately identify (Elber and
Ridder, 1982). The fitted models under the mean frailty approach are dependent on
the choice of the standard force of mortality. Frailty provides the link between the
standard force of mortality and the observed cohort force of mortality. These are
not uniquely determined by the model estimation. In the case where the form for
the standard force of mortality has a similar pattern to the observed cohort force of
mortality, heterogeneity in the frailty distribution will appear to be insignificant.

In order to improve the estimation, an alternative method is proposed that takes
into account the variability of the observed population data. Under a frailty model, the
population is assumed to be heterogeneous, and the degree of heterogeneity is repre-
sented by the distribution of the unobserved frailty factor z. If the distributional form
for the frailty factor (Gamma or Inverse Gaussian) is given, then the distribution for
the individual force of mortality is known (scaled Gamma or scaled Inverse Gaussian).
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The observed cohort deaths data is treated as a sample drawn from the population
with size Ex. Since only the total number of deaths of the cohort can be observed, the
only information available about the force of mortality is the observed cohort force of
mortality estimated from dx

Ex
, which is the mean mortality rate of the sample.

The individual forces of mortality are randomly distributed with mean E[µ] and
variance Var[µ]. From the central limit theorem, the sample mean with sample size Ex

is approximately normally distributed with mean, E[µ], and variance Var[µ]
Ex

. The popu-
lation mortality data likelihood is then determined based on this assumed distribution
of the sample mean of µ. The marginal distribution of frailty is assumed to follow a
Gamma or Inverse Gaussian distribution.

The mean and variance of the individual force of mortality at age x under these two
distributions is:

• Gamma distribution

E[µx] =
µ(x) · k

k + H(x)
, Var[µx] =

(µ(x))2k
(k + H(x))2 (22)

• Inverse Gaussian distribution

E[µx] = µ(x) · ( δ

δ + H(x)
)

1
2 , Var[µx] =

(µ(x))2

2

√
δ

(δ + H(x))3 (23)

Therefore, the mean and variance for the sample mean µ̂x is:

• Gamma distribution

E[µ̂x] =
Ex · E[µx]

Ex
= E[µx] =

µ(x) · k
k + H(x)

Var[µ̂x] =
Ex ·Var[µx]

(Ex)2 =
Var[µx]

Ex
=

(µ(x))2 · k
Ex · (k + H(x))2 (24)

• Inverse Gaussian distribution

E[µ̂x] =
Ex · E[µx]

Ex
= E[µx] = µ(x) · ( δ

δ + H(x)
)

1
2

Var[µ̂x] =
Ex ·Var[µx]

(Ex)2 =
Var[µx]

Ex
=

(µ(x))2

2 · Ex

√
δ

(δ + H(x))3 (25)

The normal distribution can be fully specified by the first 2 moments (Wackerly, 2008),
and

f (x) =
1√

2πσ2
exp(− (x− µ)2

2σ2 ) (26)

where µ and σ are the mean and standard deviation of the normal distribution.
The log likelihood function of the observed cohort force of mortality to be maximi-

zed is a function of k(δ), and the standard force of mortality parameters:

L(µ̂x|Ex, k(δ), µ(x)) = ∑
x,i

{
−1

2
[log (2π) + log (σ2)]− (µ̂x − µ)2

2σ2

}
(27)

with µ and σ2 being the respective mean and variance of the frailty distribution. The
empirical distribution is used to estimate the standard force of mortality to minimize
bias for the selected parametric form.
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3 Markov Aging Model

Lin and Liu (2007) [7] developed and estimated a Markov aging model to describe the
aging process of the human body. Studies in human physiology suggest that aging of
human beings is associated with the change of a wide range of physiological functions,
such as disturbances of metabolism and rarefaction of bone structure. Deterioration of
physiological functions can be viewed as the worsening of health status, and as the
body becomes less functional, individuals are more subject to disease and death. The
concept of physiological age is introduced. The physiological age of an individual re-
presents the degree of aging in the human body, and each physiological age represents
a different level of functionality of the human body. Change in physiological age repre-
sents the decline in human body function, and the aging process is modelled in terms
of a physiological age. Most functional variables reach their maximum between age 3
to 20, and then start declining roughly linearly, although individuals are heterogeneous
in terms of the rate of decline.

The Markov model is specified based on the results of these studies. The Markov
aging model is a continuous-time discrete-state multi-state model with states defined
by physiological ages and death. Since human aging is irreversible, the transition
between states is assumed to be one-directional.

At state i, an individual can move either to the next state or to the death state, which
is an absorbing state. The transition rate matrix with n physiological ages (total of n+ 1
states) is given by:

Σ =


−(λ1 + q1) λ1 0 · · · 0 q1

0 −(λ2 + q2) λ2 · · · 0 q2
0 0 −(λ3 + q3) · · · 0 q3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · −qn qn
0 0 0 · · · 0 0



where λi represents the rate of transition from state i into the next state, and qi repre-
sents the rate of transition into the absorbing death state.

Since many physiological functions exhibit linear decline after a certain age, it is
assumed that the transition rate λi is constant after physiological age k so that:

λi = λ, for i > k (28)

The death rate qi in different states varies to reflect the mortality risk due to different
health conditions, and is assumed to be an increasing function of the number of the
state i after the initial k developmental periods. The Australian population mortality
rate has an approximate exponential growth at older ages. The following assumption
for the death rate is used:

qi = γ + αeβi, for i > k (29)

with γ a health-independent background rate, allowed to be different between states
to capture the mid age hump in observed mortality data. αeβi is a health-dependent
component. In developmental period k each state has unique rates of transition λ and
q.
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The transition rate matrix for the transient states is then:

Λ =



−(λ1 + q1) · · · 0 0 0 · · · 0
· · · · · · −(λk + qk) λk 0 · · · 0
0 · · · 0 −(λ + γ + αeβ(k+1)) λ · · · 0
0 · · · 0 0 −(λ + γ + αeβ(k+2)) · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 · · · −(α + eβn)



For these model assumptions, the time to death follows a phase-type distribution
with n + 1 phases. See Neuts (1981) for details of phase-type distribution. Under a
phase-type distribution, the survival function for time to death X = x has a simple
expression:

s(x) = α exp(Λx)e (30)

where α is the initial state vector. At age 0, it is a vector of zeros with the first entry
unity. exp(Λt) is the matrix exponential of the product of time and the transition rate
matrix for transient states. e is a vector of ones. The death probability under the phase-
type distribution is then:

q̂x =
s(x)− s(x + 1)

s(x)
(31)

The parameters are estimated by minimizing the weighted sum of squared errors
for the death probability qx:

SSE(qx|sx, λi, qi, λ, γ, α, β) =
ω−1

∑
x=0

(qx − q̂x)
2 · sx (32)

where sx is the observed survival probabilities. These are used as the weight factor so
that the squared errors at later ages, when qx is larger, are given reduced weight, since
sx and its variability decrease with age. The parameters to be estimated are λi, qi (for
0 < i < k), λ, γ, α, and β.

4 Data

Mortality data for Australia is obtained from the Human Mortality Database. Co-
hort data for the 1940 and 1945 birth cohorts are used for both models, since they
represent the recently retired population with the greatest potential demand for an-
nuity contracts.

For the frailty model, the required format of the data is the cohort central exposure
to risk, and cohort force of mortality. The cohort central exposure to risk is directly
available from HMD. The observed cohort force of mortality is estimated by the central
rate of death mx, also available from the HMD. Since the Gompertz law is assumed
for the standard force of mortality, which is an increasing function of age and is only
suitable for adult mortality, the age range of 30 onwards is selected. The cohort force of
mortality for birth cohort 1940 and 1945 for both males and females is shown in Figure
1. On the log scale these are close to linear and support the use of the Gompertz force
of mortality assumptions for the age range considered.
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Figure 1: Observed Cohort Force of Mortality: Log Transform
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For the Markov Aging Model, the required format of data is the cohort death pro-
bability qx and survival probability sx at different ages for cohorts. qx is not directly
available on HMD, so it is estimated from the central death rate mx, which is available,
by assuming a uniform distribution of death (UDD) during the year:

qx =
mx

1 + 1
2 mx

(33)

sx is then obtained from the calculated value of qx:

sx =
x

∏
k=0

(1− qk) (34)

The death probability qx (log scale) for the birth cohorts 1940 and 1945, both males and
females, is shown in Figure 2.

The Markov model is used to fit the full age range and the non-linear form for the
younger ages can be more flexibly handled with this model compared to the frailty
model.

Figure 2: Observed Cohort Death Probability: Log Transform
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5 Results

5.1 Model Estimation

5.1.1 Frailty Model

The estimated maximum likelihood values for the frailty distribution and the standard
force of mortality parameters are shown in Table 1.

Table 1: Estimated Parameters for Frailty Model
1940 Male 1945 Male 1940 Female 1945 Female

Gamma
Frailty parameter 0.21108 0.07775 0.16847 0.07170

α 0.00012 0.00008 0.00007 0.00005
β 0.08436 0.09981 0.08052 0.09218

Maximum Likelihood -4927.22546 -3360.19872 -1223.90347 -903.08733
Inverse Gaussian
Frailty parameter 0.00005 0.00003 0.00009 0.00005

α 0.00189 0.00208 0.00063 0.00051
β 0.14328 0.14701 0.13455 0.14178

Maximum Likelihood 276.05935 227.67831 274.60426 232.15072

For the frailty model, mortality heterogeneity for both male and female cohorts is
significant, as indicated by the small value of the frailty parameter. The estimated
average force of mortality (log transform) of the cohort is plotted and compared with
the observed cohort force of mortality in Figure 3.

Frailty is unobserved and there is no biological reason as to which distribution
should be selected for the frailty distribution. The Inverse Gaussian distribution pro-
vides a better fit to observed data and is selected. Figure 4 shows the projection of
cohort average force of mortality (log transform) to the higher ages for the Inverse
Gaussian assumption.

5.1.2 Markov Aging Model

For the Markov ageing model estimated parameters are given in Table 2. Figure 5
shows the fitted death probability, the observed death probability (log scale), and
predictions for higher ages. An important difference between the frailty model and
the Markov ageing model can be seen from these plots. For the frailty model the
assumption of Gompertz mortality leads to a linear projection of future mortality rates
at the older ages. For the Markov model the model forecasts a decline in mortality
rates at the older ages (on the log scale).

The model provides a good fit for all 4 cohorts given the number of parameters
involved. There are 12 for male or 15 for female as opposed to over 100 parameters in
models such as the Lee-Carter model (Lin and Liu, 2007)). To analyze the goodness-
of-fit of the model, the R2 coefficient is calculated for the cohorts. R2, the coefficient of
determination, is the proportion of variation in the observed data that is explained by
the model. In the Markov aging model, the total variation in observed data is defined
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Figure 3: Observed v.s. Fitted Cohort Average Force of Mortality: Frailty Model
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as:

SST =
ω−1

∑
x=0

(qx − q̄)2 · s(x) (35)

where ω is the observed highest age, and q̄ is the average death probability at all
observed ages. The variation that is not explained by the model is the weighted sum
of squared errors:

SSE =
ω−1

∑
x=0

(qx − q̂x)
2 · s(x) (36)

where q̂x is the model fitted death probability. The proportion of variation that is
explained by the model is:

R2 = 1− SSE
SST

(37)

The R2 coefficients for the Markov ageing model are shown in Table 2. The R2 for these
cohorts indicate a satisfactory fit.

5.2 Mortality Heterogeneity

5.2.1 Frailty Model

For the frailty model, the heterogeneity of the population is determined by the distri-
bution of frailty factor. The more disperse the distribution is, the more heterogeneous
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Figure 4: Predicted Cohort Force of Mortality at Higher Ages: Frailty Model
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the population. The probability density function of frailty is shown in Figure 6. The
distribution of frailty is heavily positively skewed for both males and females. At age
0, the majority of the population is concentrated at a low level of frailty with a long
tail to the right with mean frailty at age 0 equal to 1. As age increases, the more frail
individuals have a much higher chance of dying, and contribute to the majority of
deaths at early ages. As the more frail individuals die out, the survivors are more
concentrated to the left in the frailty distribution, and the selective effect of frailty
results in the remaining cohort having a much lower mean frailty. From age 0 to age
30, the change of shape of the density curve in the plots is not significant. From age 30
onwards, the density curve shrinks to the left, and at age 90, the majority of survivors
have a frailty value very close to 0.

The mean frailty of the cohort at each age is shown in Table 3. At age 0, a mean
frailty of 1 is assumed. At age 30, the mean frailty drops significantly for the 1940 male
cohort due to the deaths of the high frailty individuals. At age 90, the average frailty
is very low, and the majority of survivors are concentrated in the low frailty range.

The standard deviation of frailty at different ages is shown in Table 5. The heavy
skewness of the frailty distribution results in an extremely high standard deviation of
frailty at age 0. As age increases the standard deviation of frailty reduces significantly.

Mortality rates for individuals with different levels of frailty are also compared.
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Figure 5: Observed v.s. Fitted Death Probability: Markov Aging Model
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The death probability q(x, z) is estimated from the individual force of mortality using:

q(x, z) = 1− e−µ(x,z) (38)

with the individual force of mortality µ(x, z) assumed constant through each year age
interval. The mortality rates from the frailty model for individuals with frailty 1, 0.01,
0.001, 0.0005, 0.0001, and 0.00005 are shown in Figure 7.

The plots show that the aging of the cohort as a whole is much slower than that
for individuals. The slope of the curve for the cohort is much lower, especially at high
ages where the individual mortality rates curves become substantially steeper. For a
specific individual, if the individual is healthy with a low frailty, the chance of dying
will stay low even as age increases. Increasing frailty from higher susceptibility to
disease, which would correspond to a higher frailty, increases the chance of dying
significantly. The mortality rates for an individual vary significantly as shown in
Figure 7. Heterogeneity is significant with substantial differences in survival prospects
for individuals with differing frailties.

5.2.2 Markov Aging Model

For the Markov aging model, the heterogeneity of population mortality is measured by
the distribution of physiological ages through time. Heterogeneity reflects the different
health conditions of individuals at the same age. Under the phase-type distribution,
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Table 2: Estimated Parameters for Markov Aging Model
1940 Male 1945 Male 1940 Female 1945 Female

General Parameters λ 1.1018615 1.0635349 1.0152901 1.0439359
α 0.0000544 0.0000750 0.0000445 0.0000396
β 0.0715661 0.0688020 0.0710774 0.0713141
γ 0.0006377 0.0001717 0.0003111 0.0002565

Developmental Period λ1 3.1885624 2.0523974 5.7001226 2.0078893
q1 0.1457796 0.0812789 0.1858058 0.0633914
λ2 0.7862403 0.6058546 1.0377221 0.6080937
q2 0.0000000 0.0000000 0.0027803 0.0000000
λ3 0.8462262 0.6977650 1.0157749 0.6996102
q3 0.0130941 0.0000000 0.0085292 0.0000000
λ4 0.8476995 0.7001925 1.0181996 0.6996077
q4 0.0000000 0.0044590 0.0039534 0.0030335

Special Background Rates Period 2 (11,17) (11,16) N/A N/A
γ2 0.0002056 -0.0000635 N/A N/A

Period 3 (18,27) (17,28) N/A N/A
γ3 0.0016857 0.0016057 N/A N/A

Weighted Least Square 0.0000009 0.0000031 0.0000007 0.0000019

Table 3: Goodness-of-Fit: R2 Coefficients

Cohort 1940 Male 1945 Male 1940 Female 1945 Female
R2 0.9995 0.9972 0.9994 0.9973

assuming the initial state is 1, the probability for an individual aged x to be in state i
(denoted by Pi(x)) is given by the i-th entry of the vector [α exp(Λx)]:

Pi(x) = Pr(I = i, X = x) = [α exp(Λx)]i (39)

The conditional probability of being in state i, given surviving to age x is:

πi(x) =
Pi(x)
s(x)

= [
α exp(Λx)

α exp(Λx)e
]i (40)

Therefore, π(x) is the empirical density function for the distribution of physiologi-
cal age at age x. The plotted density curve for the distribution of physiological age at
different ages is shown in Figure 8.

Table 4: Mean Frailty of Cohort at Different Ages
Age 1940 Male 1945 Male 1940 Female 1945 Female

0 1.00000 1.00000 1.00000 1.00000
35 0.00575 0.00389 0.01374 0.01114
50 0.00171 0.00108 0.00479 0.00360
65 0.00057 0.00035 0.00174 0.00123
80 0.00020 0.00012 0.00063 0.00043
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Figure 6: Distribution of Frailty at different ages
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The model implicitly assumes that initially all individuals are physiological age 1.
Thereafter the aging patterns of individuals are allowed to differ. At lower ages, the
distribution is more concentrated, with the cohort at lower ages less heterogeneous.
As age increases, the density curve flattens, and the level of heterogeneity of the cohort
increases with age.

5.3 Implications for Annuity Market

Both models for heterogeneity have implications for annuity markets. If the heteroge-
neity is not significant then annuity rates will not vary much for any age and will be
close to the cohort annuity rates. However if annuity rates are found to vary signifi-
cantly for individuals with different levels of mortality based on the model results then

Table 5: Standard Deviation of Frailty at Different Ages
Age 1940 Male 1945 Male 1940 Female 1945 Female

0 101.80271 141.31027 74.89512 95.77401
35 0.04439 0.03428 0.12059 0.11261
50 0.00718 0.00505 0.02483 0.02071
65 0.00140 0.00094 0.00542 0.00416
80 0.00028 0.00018 0.00119 0.00084
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Figure 7: Mortality Rates of Individuals with Different Frailty
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this has significant implications for pricing and underwriting of life annuities. In order
to consider the implications for the life annuity market, annuity rates are computed
using the estimated models and projected future mortality for the cohorts.

Tables 6 and 7 show the annuity rates for a male individual assumed to be 65 under
the two models for the 1940 male cohort. The life annuity contracts included are a
whole life annuity at age 65 and a deferred whole life annuity with a deferred period of
20 years assuming an interest rate of 3%. The deferred whole life annuity has payments
starting from age 85.

Table 6: Annuity Rate for Individuals with Different Frailty: 1940 Male
Frailty Cohort 0.00005 0.0001 0.0002 0.0005 0.001 0.01

q65 0.012 0.001 0.002 0.004 0.010 0.021 0.189
Whole Life Annuity $14.31 $18.12 $16.36 $14.38 $11.49 $9.18 $2.59

Deferred Life Annuity $2.36 $4.32 $2.94 $1.66 $0.47 $0.08 $0.00
F(z) 19.40% 38.26% 56.95% 76.49% 86.70% 99.59%

The tables have been constructed so that annuity rates shown correspond to ap-
proximately the same proportion of the population for each case. These proportions
are shown in the last row of each table and denoted by the F(z) and F(j). For the
Markov model the physiological ages have a roughly equivalent mapping to the frailty
factor for these proportions of individuals in the population.
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Figure 8: Distribution of Physiological Age at Different Ages: Male
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The life annuity rates decrease significantly as the health condition of an individual
decreases, which is measured by the increase in frailty factor under the frailty model
and increase in physiological age under the Markov Aging Model.

The frailty model has a wider range of annuity values. The Markov Aging model
life annuity values are generally higher. For the frailty model, the healthiest 20% of
the population would pay a purchase price of $18.12 for each $1 of annuity income
whereas in the Markov model the healthiest 20% would pay $19.44 for every $1 of
annuity income. Similarly for the deferred annuities. The healthiest 20% would pay
$4.32 under the frailty model for every $1 of annuity income commencing at age 85
whereas the for the Markov model they would pay $4.55.

For the approximately least healthy 13% of individuals the frailty model produces
a life annuity rate of $9.18 for every $1 of annuity income whereas the Markov model
produces an annuity rate of $14.44.

The difference in results between the two models reflects the differing assumptions
as to how mortality heterogeneity is measured. Frailty is a health factor fixed at birth.
Given survival an individual’s percentile in the cohort is increasing with age. In the
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Table 7: Annuity Rates for Individuals with Different Physiological Age: 1940 Male
Physiological Age j 64 68 73 77 81 94

q65 0.006 0.008 0.011 0.015 0.019 0.047
Whole Life $19.44 $18.31 $16.83 $15.63 $14.44 $11.15

Deferred Life $5.34 $4.55 $3.63 $2.99 $2.46 $1.50
F(j) 19.47% 35.49% 59.01% 75.81% 87.83% 99.60%

Markov aging model, the distribution by physiological age is changing over time. As
the whole cohort ages a surviving individual moves into a physiological age according
to the estimated transition probabilities.

These models are based only on population level data. They imply distributions
of individuals heterogeneity based on model assumptions calibrated to data. They
do highlight the extent of heterogeneity. Given knowledge of an individual’s rela-
tive health they allow the determination of an annuity rate that reflects their survival
prospects. The results clearly indicate that there is substantial heterogeneity in the
population.

If a life annuity market is to be made viable for a wider range of individuals other
than the most healthy lives it will be essential to understand the major factors determi-
ning heterogeneity and to assess mortality in the underwriting process.

6 Conclusion

This paper has quantified heterogeneity in the Australian population mortality using
the well known frailty models as well as a more recently developed Markov ageing
model. Both models have their advantages and disadvantages. Neither model pro-
vides an explicit basis for incorporating heterogeneity in life annuity pricing but they
do allow a quantification of the importance of heterogeneity in life annuity pricing.

The frailty model was found to be heavily dependent on the underlying assump-
tions. It is difficult to differentiate between the volatility in mortality rates arising
from heterogeneity and the natural random variation in mortality rates through time.
Despite this both models provide a guide to the expected variability required in life
annuity rates to allow for heterogeneity.

The models can be used in pricing if it is possible to associate the different levels of
mortality in the models with causal factors such as health status and socio-economic
status. If pensions and annuities are to be provided to a broader population than the
individuals who self select to purchase life annuities in the private annuity market,
then the results show clearly that heterogeneity must be taken into account in annuity
pricing.
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