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Abstract

Mortality risk models have been developed to capture trends and common fac-
tors driving mortality improvement. Multiple factor models take many forms and
are often developed and fitted to older ages. In order to capture trends from young
ages it is necessary to take into account the richer age structure of mortality im-
provement from young ages to middle and then into older ages. The Heligman
and Pollard (1980) model is a parametric model which captures the main features
of period mortality tables and has parameters that are interpreted according to age
range and effect on rates. Although time series techniques have been applied to
model parameters in various parametric mortality models, there has been limited
analysis of parameter risk using Bayesian techniques. This paper uses a Bayesian
Vector Autoregressive (BVAR) model for the parameters of the Heligman-Pollard
model and fits the model to Australian data. As VAR models allow for dependence
between the parameters of the Heligman-Pollard model they are flexible and bet-
ter reflect trends in the data, giving better forecasts of the parameters. Forecasts
can readily incorporate parameter uncertainty using the models. Bayesian Vector
Autoregressive (BVAR) models are shown to significantly improve the forecast ac-
curacy of VAR models for mortality rates based on Australian data. The Bayesian
model allows for parameter uncertainty, shown to be a significant component of
total risk.

Keywords: mortality, parameter risk, vector auto-regression, Bayesian, Heligman-
Pollard model

JEL Classifications: J11, C11, G22
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1 Introduction

Mortality rates around the world have been improving significantly over the 20th cen-
tury. In Australia significant improvements have occurred particular since the 1970’s.
Longevity risk has been the focus of much recent research because of the need for finan-
cial products to manage the risk that individuals will outlive their financial resources.
This is important because Australian retirees are increasingly accountable for manag-
ing their own longevity risk (Henry, 2009). The baby boomers born between 1946 and
1964 have begun to enter retirement.

Institutions and social schemes such as Social Security in USA that offer living bene-
fits may face fiscal stress regardless of implementing policy changes such as increasing
the eligibility age for normal retirement benefits from 65 to 67 by 2025 (Lee and Skinner
(1999)). In order for product providers of longevity insurance to meet their guarantees
of payments to individuals it is necessary to assess the risk that they take on and the
resulting capital requirements. This risk should not only take into account trend risk
but also parameter risk in the models used. The classical Lee-Carter model has many
parameters and only one common factor for mortality improvements.

In contrast, parametric mortality models smooth mortality rates and trends, reduc-
ing the number of parameters and parameter risk. They can be used to compare mor-
tality in different countries and at different times (Congdon, 1993). The Heligman and
Pollard (1980) model is a parametric model that fits the whole age range of mortality
rates. Parameters provide information about mortality for differing age ranges. Pa-
rameters are modeled as a time series to capture trends and risks in mortality rates.
Forfar and Smith (1987), Rogers (1986), McNown and Rogers (1989) and Thompson,
Bell, Long, and Miller (1989) use time series techniques to model the time evolution of
mortality model parameters. Dependence between lifetimes at a given point in time is
influenced by common environmental factors and this creates parameter risk (Denuit
& Frostig, 2009).

Similar modeling techniques have been applied to multivariate economic data.
The modeling techniques have direct application to mortality data and parametric
mortality models. Reichmuth and Sarferaz (2008) and Pedroza (2006) apply Bayesian
techniques to non-parametric mortality models. Dellaportas, Smith, and Stavropoulos
(2001) and Sharrow, Clark, Collinson, Kahn, and Tollman (2010) apply Bayesian tech-
niques to the fitting of the parameters of the Heligman and Pollard model. They do not
apply this approach to the time evolution of the parameters. This is required to quan-
tify parameter risk in a dynamic mortality model. Denuit and Frostig (2007, 2008, 2009)
quantify parameter risk for the classical Lee and Carter (1992) model which allows for
dependence in lifetimes due to exposure to common factors.

Parametric mortality models for mortality rates capture the trends and volatility of
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large body of data with a small number of parameters. The parameters are easy to in-
terpret and easy to manipulate for analysis (Rogers, 1986; Congdon, 1993). Parametric
models allow comparisons of mortality rates over time and by region. Non-parametric
models such as Lee and Carter (1992) have been popular. Econometric models provide
a more general framework for modeling mortality trends and volatility.

In this paper, the parameters in the Heligman-Pollard model are modeled as a mul-
tivariate time series system in an age-period mortality model. The correlation between
the Heligman and Pollard model parameters is captured in the econometric methods
allowing interaction between changes in mortality for differing ages. A vector autore-
gression (VAR) model is used for the relationship between the past (lagged) values and
current values of the Heligman-Pollard parameters. The classical unrestricted VAR
model does not account for uncertainty in its coefficients. A Bayesian VAR model ac-
counts for the uncertainty in the VAR coefficients allowing quantification of parameter
risk. These models will be referred to as the HP-VAR and HP-BVAR models respec-
tively.

Models, such as the Lee-Carter model, are used to model old age mortality and per-
form best when estimated using data from middle ages to older ages. Models for older
ages often ignore trends at younger ages by excluding the mortality rates of those age
64 and under. Improvement in the age structure of mortality that is due to improve-
ment in mortality at younger ages contains information useful for older age mortality
because of the systematic improvements that impact all ages to a greater or lesser ex-
tent.

This paper applies Bayesian techniques to capture parameter risk in HP-VAR and
HP-BVAR mortality models. Australian mortality is analysed using population data
from the Human Mortality Database to model longevity at the population level. The
paper extends the methodology of McNown and Rogers (1989), that combines para-
metric mortality models with time series models, by modeling mortality with a HP-
BVAR. The results demonstrate that the Bayesian Vector Autoregressive model pro-
vides improved forecasts of the model parameters with a 50 (1946-1995) year look-back
horizon used to forecast parameters for 12 years (1996-2007). Parameter risk is quanti-
fied and shown to be a significant component of total mortality uncertainty. Although
not the focus of the paper, the results have important implications for the determina-
tion of capital requirements for product providers of life annuities and pensions.

2 Data

The data set used is Australian population data obtained from the Human Mortality
Database (HMD, Human Mortality Database, 2010). The HMD data for ages above 80 are
not the actual death rates (Wilmoth, Andreev, Jdanov, & Glei, 2007). At the older ages
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the volatility of mortality rates increases. The maximum age used for modeling is 89 in
order to increase the reliability of the model estimation. For Australian deaths before
1964 the Human Mortality Database data was only provided in 5 year age groups and
was split into annual data using cubic splines and smoothed as described in McNeil,
Trussell, and Turner (1977). Until 1971 the population data was not adjusted for net
undercounts and the data from 1971 onwards is of better quality and complete.

Mortality in Australia, as for many developed economies, has been declining
steadily over the recent past as shown in Figure 2, prepared using the method in Peng
(2008). The vertical axis on the main plot represents ages with age zero (0) at the bot-
tom increasing to age one hundred and ten and over (110+) at the top. The data values
are divided into three categories and represented as low values (Yellow or Very Light
Grey), medium values (Orange or moderately grey) and high values (Red or Darker
Grey). Missing data for the very old ages is represented by white areas at the top of the
main plot.
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(b) Females

Figure 1: Declining Mortality Rates for Australia from 1921 to 2007 for ages 0 to 110+
from bottom to top. Red=High mortality, Orange=Moderate mortality, Yellow=Low mortal-
ity, White=Missing Data. The panel on the right of the main plots has boxplots of the data in
each time series. In the bottom panel are median values across all the time series of mortality
rates for each time point.

There are more yellow areas (light shade) on the right hand side of the plot and
more red areas (dark shade) on the left hand side of the plot. Mortality rates have
declined significantly. From the box plots in the panel on the right side of the main
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Figure 2: Log qx for Australian Males
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Figure 3: Log qx for Australian Females

plot, the variation in mortality rates is highest for the older ages, the dots are increasing
and the whiskers (lines on either side of the dot) are longer for the older ages. The plot
of levels on the bottom is the median values for all the mortality rate time series and
quantifies the strong downward trend in mortality rates. There has been a decline
in the rate of decrease in mortality rates in more recent years, from the late 1990s.
An explanation for this is that mortality trend improvements are subject to a law of
“diminishing returns" ( Wong-Fupuy and Haberman (2004)). Capturing these changes
in trends is an important feature of a mortality model.

Mortality curves reflect four main features ( Heligman and Pollard (1980); Rogers
(1986)). Initially a high death rate in the first year of life that declines in childhood then
rises in late teenage years to form a hump. This hump is more pronounced in males
due to accidents and less pronounced and later in females due to maternal causes. At
older ages the death rates increases at a more or less constant rate.

Figures 2 and 3 plot the Australian mortality data across time and age.
Figure 4 shows the typical pattern across age for mortality rates using the Heligman-

Pollard model.
Mortality rates have maintained this shape over long time periods. Parametric

models can capture these mortality rate curves and allow efficient dynamic models
to be fitted to the data (Congdon 1993).

3 Notation

The probability of death between times t and t + 1 for individuals aged x is denoted
qtrue

x,t at time t. E(x, t) denotes the number of observed exposed-to-risk between ages x
and x + t at time t and D(x, t) the number of observed deaths in those exposed aged
between x and x + t at time t. qtrue

x,t is estimated by the crude mortality rate in year
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Figure 4: Heligman and Pollard Model. Red broken line = childhood mortality. Green dotted
line = adult mortality. Blue dot-dashed line = old age mortality.

t, qx,t, using the observed deaths and observed exposures. The crude death rates are
denoted and defined as m(x, t) = D(x,t)

E(x,t) . µx denotes the instantaneous rate (force) of
mortality. Assuming a constant force of mortality for integer age, x, and time, t, and a
stationary population, the force of mortality, µx,t, is approximated by the age specific
central death rates, m(x, t). For a given set of parameters, θt:

m(x, t) ' µx(θt) = µx+ξ,t+τ(θt) 0 ≤ ξ, τ < 1

Crude death rates, m(x, t), are related to the probability of death by qx,t = 1 −
exp (−m(x, t)).

The number of deaths is large so its distribution can be estimated by a Normal
distribution with expectation and variance that are both equal to E[m(x, t)]E(x, t), as-
suming a Poisson distribution for number of deaths.

Denoting the estimated values of mx,t by m̂x,t. The mortality model residuals are
ex,t = mx,t − m̂x,t. The residuals ex,t are also approximately Normal and the standard-
ized mortality rates are:

zx,t =
Dx,t − Ex,tm̂x,t√

Ex,tm̂x,t
' m(x, t)−E[m(x, t)]√

E[m(x, t)]/E(x, t)
(1)

These standardized residuals are approximately independent and identically dis-
tributed N(0, 1) variables. Positive and negative residuals should be randomly dis-
tributed for the underlying model to be valid (Cairns, Blake, Dowd, Coughlan, &
Epstein, 2007).
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3.1 Heligman and Pollard Model

Denote by θ′t = (At, Bt, Ct, Dt, Et, Ft, Gt, Ht) model parameters at time t. The probability
of death qx,t at time point t is assumed given by the Heligman-Pollard model:

qx(θt) = qx,t = A(x+Bt)
Ct

t + Dt exp[−Et(log{ x
Ft
})2] +

GtHx
t

1 + GtHx
t

(2)

The parameters A, B, C, D, G are all in [0,1], E, F in [0,∞) and H in [0,15].
Each of the parameters has a demographic interpretation. The first component,

A(x+B)C
, is a rapidly declining exponential to reflect the fall in mortality during the

early childhood years. The middle term in the model reflects accident mortality for
males and accident and maternal mortality for females. The third term in the model,
GHx is a Gompertz exponential that reflects the rise in mortality in adults due to the
aging of the body.

Parameters are estimated for qx for x=0,1,. . . ,85 for the Heligman-Pollard model
for the years 1946-2007 by minimizing the weighted sum of squared errors between
observed, qx and the fitted, q̂x:

S2 =
85

∑
x=0

1
q2

x
(q̂x − qx)

2 (3)

The weights in Equation 3 are used in Heligman and Pollard (1980) and are based
on the assumption that the coefficient of variation is constant across age. The variance
of qx,t, denoted by σ2

x,t, is assumed directly proportional to q2
x,t. Dellaportas et al. (2001)

argue that Equation 2 is too restrictive as it assumes a deterministic relationship be-
tween qx,t and θt. Consequently not all the variation in qx,t is explained by θt. This
requires assumptions about the distribution of qx,t. Dellaportas et al. (2001) consider
different probability distributions and apply Bayesian techniques to estimate θt.

Denote by Θ = (θt0 , . . . , θtT) the matrix of the estimated parameters at times
t0, . . . , tT:

Θ =


At0 At1 . . . AtT

Bt0 Bt1 . . . BtT
... . . .

Ht0 Ht1 . . . HtT

 (4)

For old age mortality, the third term of Equation 2 is sufficient for estimating qx,t.
In particular:

qx,t

px,t
= GtHx

t (5)

Assume that px,t → 1. The trends in the relative rate of increase in mortality represent
the rate at which G is declining (Heligman & Pollard, 1980). As shown in Wong-Fupuy
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and Haberman (2004) the relative rate of change of mortality increase is:

q′x,t

qx,t
= ln(H)

A small ln(H) implies that there has been a small decline in G while a larger ln(H)

implies that there has been a larger decline in G.

4 Econometric Models

Denote by yt the univariate time series that are in θt. Time series are classified as either
stationary or non-stationary (integrated). When time series show non-stationarity in
the mean or have a trending behavior the process is integrated. A stationary process is
modeled using an equation with fixed coefficients estimated from past data.

Australian Mortality rates by age exhibit non-stationary behavior at many ages. Sherris
and Njenga (2009) provide a more detailed analysis. When mortality rates are es-
timated using a parametric relationship they are affected by shocks or unexpected
changes in the parameters of the model. If yt is a stationary time series then the shocks
gradually die away and their effect reduces with time. If yt is a non-stationary time
series then the effect of the shock will persist infinitely.

For an AR(1) time series yt:

yt = κ + δt + φut−1 + εt εt ∼WN(0, σ2) (6)

κ + δt is the deterministic linear trend and φut−1 + εt is AR(1). When |φ| < 1 the pro-
cess yt is stationary, denoted I(0), about the deterministic linear trend (or trend station-
ary). When φ = 1, the AR(1) can be written as ut = ut−1 + εt = u0 + ∑t

i=1 εi, which is
a stochastic trend. In this case, yt is I(1) with drift. Stationary (I(0)) processes are short
memory processes. After long lags observations at different times are independent. In-
tegrated (I(1)) processes are long memory processes. After long lags observations are
not independent so differencing data leads to a loss of information.

The Augmented Dickey Fuller (ADF) Test is used to test for integration. The null
hypothesis is that φ = 1(H0 : φ = 1 ⇒ yt ∼ I(1) ) or that the time series is difference
stationary against the alternative that it is trend stationary (Ha : |φ| < 1⇒ yt ∼ I(0)).

An autoregressive-moving average model, ARMA(p,q), is defined by a pth order
stochastic difference equation:

yt = δ +
p

∑
i=1

φiyt−i +
q

∑
j=1

θjεt−j + εt (7)
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where εt WN(0, σ2)

ARMA(p,q) models are based on the assumption that the process yt is stationary.
If the data is trending then Box and Jenkins (1976) propose differencing the data d
times to eliminate the trend and hence suitable for modeling using ARMA(p,q). Such
a model is an ARIMA(p,d,q) (Hamilton, 1994).

In McNown and Rogers (1989) a parameterized time series is modeled as described
in Thompson et al. (1989) using the techniques of Box and Jenkins (1976). A unit root
in the time series of the parameters required differencing the time series to achieve sta-
tionarity (McNown & Rogers, 1989). The parameters for an ARIMA models were then
extrapolated to obtain a series of Heligman-Pollard curves with time varying parame-
ters. Because of the assumption of independence of the Heligman-Pollard parameters
in the process given in Rogers (1986) the forecasts are not accurate and will be incon-
sistent (Lee, 1992). Lee (1992) also notes the absence of confidence intervals which is
attributed to problems that arise from the independence assumption.

Sims (1980) developed a Vector Autoregression model with p lags, VAR(p) for ex-
pressing a set of variables as a weighted linear combination of each variable’s past
values and the past values of the other variables in the set. The VAR(p) models are
more flexible than AR models and have a rich structure that captures more features of
the mortality system.

θt, t = 1, 2, . . . , T is a column vector of n variables. For the Heligman-Pollard pa-
rameters θt is θt = (At, Bt, . . . , Ht)′ with n = 8. The unrestricted VAR(p) model is:

θt = c +
p

∑
l=1

Ωlθt−l + εt (8)

c = (c1, . . . , cn)′ is a n× 1 vector of unknown constants. Ωl is an unknown n× n matrix
of coefficients of θt−l at lag l. εt, t = 1, . . . , T are independent identically distributed
errors distributed as Nn(0, Σ) as E(εt) = 0, E(εtε

′
t) = Σ and E(εtεt−l) = 0 for l 6=

0. εt measures the degree to which the contemporaneous vector θt is determined by
the VAR(p). εt is a variable that is influenced by the number of lags, p in the VAR
model and the choice of coefficients, υ = (c, Ω1, . . . , Ωp), that give weights in the linear
combination that forms the VAR(p).

To illustrate, for n = 3 and p = 2,the VAR(2) can be written:

θt = c + Ω1θt−1 + Ω2θt−2 + εt (9)
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Equation 9 is written in matrix form as:

θ1t

θ2t

θ3t

 =

c1

c2

c3

+

ω1
11 ω1

12 ω1
13

ω1
21 ω1

22 ω1
23

ω1
31 ω1

32 ω1
33


θ1t−1

θ2t−1

θ3t−1

+

ω2
11 ω2

12 ω2
13

ω2
21 ω2

22 ω2
23

ω2
31 ω2

32 ω2
33


θ1t−2

θ2t−2

θ3t−2

+

ε1t

ε2t

ε3t

 (10)

Equation 10 can be written equation-by-equation as:

θ1t = c1 + ω1
11θ1t−1 + ω1

12θ2t−1 + ω1
13θ3t−1 + ω2

11θ1t−2 + ω2
12θ2t−2 + ω2

13θ3t−2 + ε1t (11)

θ2t = c2 + ω1
21θ1t−1 + ω1

22θ2t−1 + ω1
23θ3t−1 + ω2

21θ1t−2 + ω2
22θ2t−2 + ω2

23θ3t−2 + ε2t

θ3t = c3 + ω1
31θ1t−1 + ω1

32θ2t−1 + ω1
33θ3t−1 + ω2

31θ1t−2 + ω2
32θ2t−2 + ω2

33θ3t−2 + ε3t

The VAR(p) can be written in concise matrix notation which is useful for speci-
fying the prior distribution of a VAR(p). Let θ=(θp, θp+1, . . . , θT), υ=(c, Ω1, . . . , Ωp),
X=(X0, . . . , XT−1), Xt=(1, θ′t, . . . , θ′t−p+1), ξ=(εp, . . . , εT). Then, the VAR(p) is:

θ = Xυ + ξ (12)

The coefficients of the VAR(p) are estimated using the OLS estimator:

υOLS = (X′X)−1X′θ or υOLS
i = (X′X)−1X′θi (13)

where θi is a T × 1 vector with the t-th element θit.
The vector autoregressive (VAR) model extends univariate autoregressive models

to dynamic multivariate and provides better forecasts than univariate time series mod-
els (Zivot & Wang, 2006). VAR models are used to describe and forecast multivariate
time series for stationary time series.

For non-stationary time series a Vector Error Correction term is added to form a
vector error correction model (VECM) and it is necessary to test for the existence of a
stationary linear combination of the non-stationary terms (cointegration).

The unknown relationship that generates the multivariate time series is the evo-
lution of qx over time. When two variables simultaneously influence each other they
are referred to as endogenous variables. Since all the parameters are explained within
the mortality system the parameters of the Heligman-Pollard model are all treated as
endogenous variables.

From a VAR model it is possible to analyse the impacts that the variables have on
each other over time and how the variables respond to other unobservable factors. It
is also possible to assess if knowing about the past values of some of the parameters
tell us about the future values of other parameters. Key questions that may be asked
include whether the parameters that model the mortality schedule are related to each
other, if the current and past values of a parameter affect other parameters, how a
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change in one variable relates to a change in another variable, if the change in the
other variable is immediate or does it occur with a delay and, finally, how shocks to
the mortality system affect the variables.

4.1 Model Estimation

The first step in estimating a VAR is selecting the lag length, p. This decision is based
on minimizing a selection criterion (Lütkepohl, 1991). The Bayesian Information Cri-
terion (BIC(p)) and Hannan-Quinn Criterion (HQ(p)) penalize VAR(p) models with
large (p) and are:

BIC(p) = ln |Σ̃(p)|+ ln T
T

pn2 HQ(p) = ln |Σ̃(p)|+ 2 ln ln T
T

pn2 (14)

where

Σ̃(p) =
1
T

T

∑
t=1

ε̂tε̂
′
t

If all or some of the time series are I(1) while others are I(0) it is necessary to con-
sider a cointegrated VAR since it is possible for the I(1) variables to be cointegrated.
Cointegration relations are not directly apparent from a VAR(p) in levels such as Equa-
tion 8. It must be transformed into Vector Error Correction Model (VECM) by taking
the first difference of Yt so that:

∆θt = c + Πθt−1 +
p−1

∑
k=1

Γk∆θt−k + εt, k = 1, . . . , p− 1 (15)

where Π = ∑ Ωi − In and Γk = −∑
p
i=k+1 Ωi.

The variables in θt are at most I(1), ∆θt are I(0). Πθt is the only term that may
contain I(1) variables. Since ∆θt is I(0) then Πθt must also be I(0). Π is the long run
impact matrix and its rank determines the number of common stochastic trends. Due
to the unit root(s) Π is a singular matrix and thus it is not of full rank. Let rank(Π)=r.
If r=0 then Π = 0 and θt is I(1) with no cointegration. The VECM is therefore simply a
first differences VAR(p-1) in this case. If 0 < r < n, θt is I(1) with r linearly independent
cointegrating vectors and n− r common stochastic trends.

Denote the VECM by H(r). When r = 0 there is no cointegration and when r = n
the corresponding VAR(p) is made up of stationary variables. Testing for cointegration
involves a nested model:

H(0) ⊂ · · · ⊂ H(r) ⊂ · · · ⊂ H(n)

Rank(Π) determines the number of cointegrating relations in θt. Likelihood ratio
(LR) statistics for determining r are determined by the estimated eigenvalues of Π,
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λ
eigen
i , i = 1, . . . , n.

Johansen’s LR statistic test is formulated to test the nested hypothesis:

H0(r) : r = r0; Ha(r) : r > r0 (16)

The likelihood ratio trace statistic, LRtrace is:

LRtrace(r0) = −T
n

∑
i=r0

ln(1− λ
eigen
i ) (17)

4.2 Bayesian VAR

VAR models are often overparameterized since they impose no theoretical restrictions
to guide the specification of the model (Litterman, 1986; Zivot & Wang, 2006; Sims
& Zha, 1998; Robertson & Tallman, 1999; Brandt & Freeman, 2006; Baltagi, 2002). A
VAR requires the estimation of n + pn2 coefficients (parameters). The estimates of the
coefficients c and Ωl using an unrestricted VAR(p) model are considered to be fixed
quantities. These estimates of coefficients do not accurately reflect the underlying re-
lationship because some of the estimated coefficients of the VAR model are non-zero
purely by chance. Restrictions may be imposed to reduce the number of parameters
being estimated.

Bayesian inference assumes the data is fixed but the population parameters are
random. It requires knowledge of the distribution of the random parameters. In the
case of the Bayesian VAR there is uncertainty regarding the distribution of the coef-
ficient matrices. This is reflected in the prior and resulting posterior distribution of
the coefficients. One way of doing this is by giving the non-zero coefficients of recent
observations more weight (Robertson & Tallman, 1999). Litterman (1986) develops a
Bayesian method that views the coefficients c and Ωl as random variables rather than
viewing them as fixed quantities like in the unrestricted VAR(p).

Litterman (1986) specified the form of the prior distributions by giving them spe-
cific mean values and measuring the variation (the "tightness" of the distributions)
around these given prior mean values for a set of hyperparameters. This is known as
Litterman’s Prior or the Minnesota Prior because it was part of Litterman’s work at the
Federal Reserve Bank of Minneapolis and the University of Minnesota (Robertson &
Tallman, 1999). This method was extended by Sims and Zha (1998) to give the prior
that shall be used in the HP-BVAR model described in this paper.

What follows is the formulation of the Bayesian VAR starting with the unrestricted
VAR(p) from Equation 8 building it into a Bayesian VAR with Litterman’s Prior and a
Bayesian VAR with Sims-Zha’s Prior.

Each Ωl, the individual elements, ωl
ij, are independent normally distributed ran-
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dom variables and each variable follows a random walk with a drift that may be
nonzero. The random walk assumption is implemented by giving the following means
for the lagged coefficient matrices. At l = 1, the mean of the coefficient matrix, Ω1, is
the identity matrix (the prior mean for the coefficient of the j = i-th variable in equation
i is 1) and at l 6= 1, the mean of the coefficient matrix is the zero matrix:

E[Ωl] =




ω1

11 ω1
12 ω1

13

ω1
21 ω1

22 ω1
23

ω1
31 ω1

32 ω1
33

 =


1 0 0

0 1 0

0 0 1

 , if l = 1;


ωl

11 ωl
12 ωl

13

ωl
21 ωl

22 ωl
23

ωl
31 ωl

32 ωl
33

 =


0 0 0

0 0 0

0 0 0

 , if l 6= 1;

(18)

Denote the variance of Ωl as Ψl such that
√
V[ωl

ij] =
√

ψlij . The random walk as-
sumption imposed on the VAR(p) is loosened by specifying the standard deviations of
the individual elements, ωl

ij, of the coefficient matrices. The prior standard deviations
are measures of confidence in the prior means. A high confidence that the estimated
coefficients match the prior mean is indicated by a small prior standard deviation.

First, consider the elements along the diagonal of Ωl, that is, ωl
ij when i = j.

Litterman (1986) defined a hyperparameter, λh
1, to be the prior standard deviation of

ωl
ii which controls the extent to which the process is a random walk. As λh

1 gets smaller,
the random walk assumption becomes stronger since there is little variation around the
prior mean of ωl

ii which was set at 1 as in Equation 18 and ωl
ij when i 6= j will tend to

zero.
Litterman (1986) next considered each equation in the VAR(p) system to impose

further restrictions on the standard deviations of the prior means.
Using the example with n = 3 and p = 2 any row in Equation 12 can be written as:

θit = ci + ω1
i1θ1t−1 + ω1

i2θ2t−1 + ω1
i3θ3t−1 + ω2

i1θ1t−2 + ω2
i2θ2t−2 + ω2

i3θ3t−2 + εit (19)

The variation in the i-th variable comes from its past values, the past values of the
other variables in the system and the estimated constant. Litterman (1986) took the
prior mean of the constant ci as zero and the standard deviation of ci to be a weight or
fraction, denoted by the hyperparameter, λh

4 > 0, of the variation in the i-th variable,
σi and set the standard deviation of ci to be σiλ

h
4. A small λh

4 implies that there is little
variation in ci from zero.

Let σi be the standard deviation of the i-th variable and σj be the standard deviation
of the j-th variable. The ratio, σi

σj
affects the value of the coefficient of θjt−1 in equation
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i. If σi < σj then less weight will be given to the coefficient of θjt−1 in the i-th equation
and this coefficient will tend to zero. The contribution of the variable’s own lags to the
variable’s variation and the contribution of the other variable’s lags to the variable’s
variation is measured by a hyperparameter λh

2, (0, 1]. λh
2 = 1 implies that the contri-

bution to the variation from the variable’s own lagged values and the variation from
the other variables lagged values are the same. A small λh

2 implies that ωl
ij when i 6= j

will tend to zero. The coefficients at lags l > 1 have a prior mean of zero. Another
hyperparameter, λh

3 > 0, is used in the form lλh
3 . If λh

3 > 1, as the number of lags, l > 1
gets larger lλh

3 also gets larger.
Finally specifying Litterman (1986)’s prior standard deviations for the ωl

ij in Ωl as:

√
ψlij =


λh

1

lλh
3
, if i = j;

σiλ
h
1λh

2

σjl
λh

3
, if i 6= j;

(20)

gives Litterman’s Prior.
To illustrate this, consider the system of equations that forms the VAR(p) with n = 3

and p = 2. The diagonal of the prior covariance matrix for the i-th equation is given
by the standard deviations in parenthesis below the coefficients as:

θ1t = c1
(σ1λh

4)

+ ω1
11θ1t−1
(λh

1)

+ ω1
12θ2t−1

(
σ1λh

1 λh
2

σ2
)

+ ω1
13θ3t−1

(
σ1λh

1 λh
2

σ3
)

+ ω2
11θ1t−2

(
λh

1

2
λh

3
)

+ ω2
12θ2t−2

(
σ1λh

1 λh
2

σ22
λh

3
)

+ ω2
13θ3t−2

(
σ1λh

1 λh
2

σ32
λh

3
)

+ ε1t (21)

θ2t = c2
(σ2λh

4)

+ ω1
21θ1t−1

(
σ2λh

1 λh
2

σ1
)

+ ω1
22θ2t−1
(λh

1)

+ ω1
23θ3t−1

(
σ2λh

1 λh
2

σ3
)

+ ω2
21θ1t−2

(
σ2λh

1 λh
2

σ12
λh

3
)

+ ω2
22θ2t−2

(
λh

1

2
λh

3
)

+ ω2
23θ3t−2

(
σ2λh

1 λh
2

σ32
λh

3
)

+ ε2t

θ3t = c3
(σ3λh

4)

+ ω1
31θ1t−1

(
σ3λh

1 λh
2

σ1
)

+ ω1
32θ2t−1

(
σ3λh

1 λh
2

σ2
)

+ ω1
33θ3t−1
(λh

1)

+ ω2
31θ1t−2

(
σ3λh

1 λh
2

σ12
λh

3
)

+ ω2
32θ2t−2

(
σ3λh

1 λh
2

σ22
λh

3
)

+ ω2
33θ3t−2

(
λh

1

2
λh

3
)

+ ε3t

The prior means, E[υ′], and the prior covariance of the coefficients, V[υ′], are sum-
marised as:

υ′ = E[υ′] = E

 c′

Ω′1
Ω′2

 =



0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0


=
[
υi=1 υi=2 υi=3

]
(22)

Denote the diagonals of the i-th equation’s prior covariance matrix under the Litter-
man Prior by Gi (whose elements are the standard deviations in parenthesis in Equa-

13



tion 22 e.g. G1 = (σ1λh
4), (λ

h
1), (

σ1λh
1λh

2
σ2

), (σ1λh
1λh

2
σ3

), ( λh
1

2λh
3
), (σ1λh

1λh
2

σ22λh
3
), (σ1λh

1λh
2

σ32λh
3
)). The posterior

mean of υ, denoted υLit is used as a point estimator for υ (Lütkepohl, 2005). This is
calculated for the i-th equation as:

υLit
i = (G

−1
i + σ2

i X′X)−1(G
−1
i υi + σ2

i X′θi) (23)

Litterman’s Prior estimates the coefficients for one equation at a time.
Kadiyala and Karlsson (1997) analyse other options of priors that are used in es-

timating the coefficients of a VAR(p). Sims and Zha (1998) generalized the result into
one prior. Sims and Zha (1998) replaced Litterman’s Prior with a form of the Normal-
Wishart prior as follows.

First, the prior distribution of the coefficients given Σ is assumed to be normal. The
prior distribution of the covariance matrix, Σ is inverse Wishart (Drèze & Richard,
1983) with S the diagonal scale matrix in the inverse Wishart prior distribution of Σ.

The relation between the Minnesota prior and the Normal-Wishart prior is as fol-
lows. Let η be the (1 + np)n × 1 vector of stacked intercepts and coefficients in the
VAR(p), e.g.:

η = vec(υ) = (c1, c2, c3, ω1
11, ω1

21, ω1
31, . . . , ω2

13, ω2
23, ω2

33)
′ (24)

Similarly, ηOLS = vec(υOLS). Also, let ϑ be the nT × 1 stacking of the T observations of
the first variable, then the T observations of the second variable and so on:

ϑ = vec(θ) = (θ11, θ12, . . . , θ1T, θ21, . . . , θ3T)
′ (25)

In a similar way, e = vec(ξ). Then, the VAR(p) takes the form:

ϑ = (In ⊗ X)η + e (26)

where e ∼ N(0, σ⊗ IT). ⊗ is the Kronecker Product that for two matrices
A =

[ a11 a12
a21 a22

]
and

B =
[

b11 b12
b21 b22

]
, A⊗ B =

[ a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

]

Denote the sampling density of ϑ as p(ϑ|η, Σ). This sampling density can be broken
up into two parts. Firstly, the distribution for η given Σ:

η|Σ, ϑ ∼ N(ηOLS, Σ⊗ (X′X)−1) (27)
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Secondly, p(ϑ|η, Σ) also has a part where Σ−1 has a Wishart distribution:

Σ−1|ϑ ∼W([(ϑ− XυOLS)′(ϑ− XυOLS)]−1, T − (1 + np)− n− 1) (28)

Under the Normal-Wishart Prior, the posterior distribution is also Normal-Wishart
and the posterior mean or point estimate of υ is:

υNW = (H−1
+ X′X)−1(H−1

υ + X′θ) (29)

The estimate of the error covariance matrix, Σ is:

ΣOLS = T−1(θ′θ − υ′NW(X′X +H−1
)υNW) + υ′H−1

υ + S (30)

S is a diagonal matrix with elements (( σ1
λh

0
)2, ( σ2

λh
0
)2, ( σ3

λh
0
)2)

Sims-Zha’s prior standard deviations for the ωl
ij are specified as:

√
ψlij =

λh
0λh

1

σjlλh
3

(31)

H has diagonal elements (λh
0λh

4)
2, (λh

0λh
1

σ1
)2, (λh

0λh
1

σ2
)2, (λh

0λh
1

σ3
)2, ( λh

0λh
1

σ12λh
3
)2, ( λh

0λh
1

σ22λh
3
)2, ( λh

0λh
1

σ32λh
3
)2)

H⊗ S gives a matrix with elements equal to the variances under Litterman’s Prior
when λh

2 = 1. The Normal-Wishart Prior makes λh
2 redundant because the scale matrix

of the inverse Wishart distribution, S has the constant weight, λh
0 in its denominator

and prevents the prior from distinguishing between the lags of the i-th variable and
those of the other variables in the i-th equation.

The basic VAR(p) in levels model assumes that the series θt are stationary (Hamilton,
1994). Many economic time series are non-stationary and in some cases cointegrated.
In order to incorporate this into the Bayesian VAR models, Sims and Zha (1998) added
two hyperparameters that incorporated non-stationarity and cointegration into the pri-
ors. The first hyperparameter is based on Doan, Litterman, and Sims (1984) which
restricts the sum of the coefficients on the lagged values of the dependent variable in
each equation to 1 (i.e. ∑

p
l=1 Ωl = In) and the sum of the coefficients on each of the

other variables to 0 in a BVAR(p) in first differences. This restriction is referred to as
the sum of coefficients prior.

From Equation 15 this implies that the BVAR in first differences can be written as:

∆θt = c +
p−1

∑
k=1

Γk∆θt−k + εt, k = 1, . . . , p− 1 (32)

since Πθt−1 = ∑
p
l=1 Ωl − In = 0 because ∑

p
l=1 Ωl = In under the sum of coefficients
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prior.
Eliminating the Π term implies that there is no cointegration but there are non-

stationary variables in the system. The sum of coefficients prior is controlled by using
the hyperparameter, µh

5 ≥ 0. Sims and Zha (1998) assume that a good forecast of θi at
some point t = τ is the average of the lagged values of θi, denoted as θi, but θi does
not help to predict the values of θj for j 6= i. They introduced n dummy variables, θ

0
i at

the start of each data set where θ
0
i is the mean of the first p values of the i-th variable.

µh
5 assigns weights to the θ

0
i such that a large θ

0
i implies a high likelihood of Π = 0

such that in the long run the values of θ0
i → θ

0
i (Doan et al., 1984; Sims & Zha, 1998;

Robertson & Tallman, 1999; Summers, 2001).
The weighted dummy observations for the case n=3 and p = 2 is:

0 µh
5θ

0
1 0 0 µh

5θ
0
1 0 0

0 0 µh
5θ

0
2 0 0 µh

5θ
0
2 0

0 0 0 µh
5θ

0
3 0 0 µh

5θ
0
3

 (33)

The sum of coefficients prior implies that as µh
5 → ∞, Π → 0 the number of unit

roots is the same as the number of variables in the system and there is no cointegration.
The additional hyperparameter µh

6 allows the BVAR model to incorporate cointegration
by assuming there is one cointegrating relation and sets the value of the constant ci = 1.
The matrix of the weighted dummy observations for n = 3 and p = 2 is:µh

6 µh
6θ

0
1 µh

6θ
0
2 µh

6θ
0
3 µh

6θ
0
1 µh

6θ
0
2 µh

6θ
0
3

1 θ12 θ22 θ32 θ11 θ21 θ31

1 θ13 θ23 θ33 θ12 θ22 θ32

 (34)

Sims-Zha’s prior has a hyperparameter λh
0 for the overall tightness of the standard

deviation of the errors εit and their intercorrelations. This prior also allows for non-
stationary time series and cointegrated relations.

This prior is suitable for modeling the parameters of the Heligman-Pollard model
through time and this is the prior used in this paper to implement the HP-BVAR model.

λ0([0, 1]) controls the overall tightness of the prior on the error covariance matrix.
As it increases the coefficients have increased variance in the structural form such that
the model strays further from a random walk.

λ1(> 0) specifies how tight the random walk prior specification is. As λ1 → 0 the
diagonal elements of the coefficient matrix for the first lag tend to one and all other
elements tend to zero. This restriction is implemented only on the lagged matrices.
As the value increases the random walk prior will not be enforced as strictly and the
model will stray further from a random walk in the lags.

16



Increasing the value of λ3(> 0) shrinks the coefficients of higher order lags to zero
and by allowing the parameters contained in these lags to vary less around their con-
ditional mean of zero.

λ4 controls the tightness of the prior on the constants and as λ4 → 0 the constants
tend to zero. It is conditional on λ0.

µ5 controls the unit root prior. As it increases the likelihood that the model can be
expressed in first differences also increases.

µ6 controls the co-integration prior such that as it increases co-integration will be
given more weight.

Choice of values for the hyperparameters is determined by obtaining values from
previous studies or by evaluating the forecast performance of the model over a range
of hyperparameters (Joiner, 2001).

The BVAR includes a requirement for the coefficients of long-term lags to be closer
to zero than the short-term lags (Kadiyala & Karlsson, 1997). This is a way of imposing
structure on the system. It provides a compromise between over-parameterization (in
VAR modeling) and under-parameterization (in univariate modeling). It improves the
accuracy of estimates and subsequent forecasts by introducing appropriate prior infor-
mation into the model. In particular the BVAR model allows the standard deviations of
the coefficients to decrease as the lags increase. Litterman (1986) incorporates a prior
into the system by considering the behavior of each equation in the system on its own.
Sims and Zha (1998); Waggoner and Zha (1999) incorporate prior information into the
VAR model by considering the entire system.

5 Results

5.1 Parameters

The parameters of Heligman-Pollard Curves for 62 years from 1946 - 2007 are esti-
mated with 50 years worth of observations from 1946-1995. VAR and Bayesian-VAR
models are estimated for the fitted parameters. The fitted models are used to predict
out-of-sample parameter forecasts for 1996-2007 which are compared to the observed
estimated parameters. The estimated parameters of the Heligman-Pollard curves us-
ing data from 1946-2007 are shown in Figure 5. The male parameters, θt,m are the solid
line while the female parameters, θt, f are the broken line.

Am and A f are both declining. Mortality of children at age 1 has been steadily
declining. The gradient of the parameters is not as steep in recent years as it was
between 1950 and 1970. The difference between mortality at age one and mortality at
age 0, Bm and B f , and the rate at which mortality decreases during childhood, Cm and
C f , show no distinct trend although the Bs are higher for more recent years while the
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Cs are lower.
The intensity of young adult mortality is reflected in Dm and D f . Dm, is consistently

higher than D f . Between 1960 and 1970 Dm increased and then started to decline from
about 1980 although there was a short period of increase in the mid to late 1990s. An
increase in D implies that mortality for young adults increased. Em and E f vary in-
versely with the spread of the young adult mortality hump. An increase in E means
the hump is tight with little spread around the modal age while a decrease in E implies
that hump is more spread around the modal age. Since the 1970s Em and E f have been
declining. The spread of young adult mortality around the mortality hump is wide. Fm

and Ff is the location or the modal age of the accident hump (and maternal hump for
females). Before 1960, this location is higher for females than males but after 1965 Ff is
lower than Fm.

Gm and G f are the intercepts of the Gompertz curve at age 0. They represent the
base level of senescent mortality. G f is lower than Gm with a narrowing gap. Hm and
H f are the slope of the Gompertz curve. They represent the rate of increase of Gm

and G f . Until the late 1990s, late life mortality for both males and females had been
declining at an increasing rate. However, from 2000 late life mortality for both males
and females has been declining at a decreasing rate. This is consistent with the findings
of Risk Management Solutions medical-based longevity risk model where the level of
mortality improvement experienced in the last 30 years is estimated to tail off in 15
to 25 years (Risk Management Solutions, 2010a, 2010b). This is not easily captured
when mortality models do not give more weight to recent observations and leads to
underestimating of future mortality rates.

Testing for difference stationarity reveals that all the time series of the Heligman-
Pollard Parameters are I(1) except for the female B parameter.

A B C D E F G H
A ***** -0.128 0.572 0.204 0.268 -0.697 0.885 -0.824
B 0.322 ***** 0.605 -0.299 -0.5 0.472 -0.374 0.368
C <0.001 <0.001 ***** 0.02 -0.014 -0.245 0.423 -0.416
D 0.111 0.018 0.876 ***** 0.739 -0.663 0.372 -0.312
E 0.035 <0.001 0.911 <0.001 ***** -0.769 0.608 -0.614
F <0.001 <0.001 0.055 <0.001 <0.001 ***** -0.874 0.84
G <0.001 0.003 0.001 0.003 <0.001 <0.001 ***** -0.968
H <0.001 0.003 0.001 0.013 <0.001 <0.001 <0.001 *****

Table 1: Correlation and Significance Males: upper diagonal part contains correlation
coefficient estimates; lower diagonal part contains corresponding p-values. Parameters
with significant correlation have p-values <0.001.

The parameters of the Heligman-Pollard model are found to be highly correlated
which is consistent with Hartmann (1987). The correlation matrix of the parameters
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Figure 5: Heligman and Pollard Parameters for Australia Male and Females from 1946
to 2007. Solid Line=Males; Dotted Line=Females

are shown in Table 1 and 2 for males and females respectively.
The parameters with significant correlation have p-values <0.001. With the ex-

ception of D, there is significant correlation between parameters in different terms of
Equation 2. Am is significantly correlated with Cm, Fm, Gm and Hm; Bm with Cm, Em

and Fm, Dm with Em and Fm, Em with Fm,Gm and Hm, Fm with Gm and Hm, and Gm with
Hm. For females the number of significant correlations are fewer but there is still sig-
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A B C D E F G H
A ***** 0.104 0.567 0.512 -0.133 0.358 0.813 -0.401
B 0.42 ***** 0.785 -0.084 -0.152 0.048 -0.056 0.07
C <0.001 <0.001 ***** 0.145 -0.022 0.079 0.462 -0.297
D <0.001 0.517 0.262 ***** -0.127 0.714 0.138 0.204
E 0.304 0.237 0.863 0.325 ***** -0.583 0.265 -0.517
F 0.004 0.709 0.543 <0.001 <0.001 ***** -0.122 0.475
G <0.001 0.665 <0.001 0.285 0.037 0.343 ***** -0.794
H 0.001 0.588 0.019 0.112 <0.001 <0.001 <0.001 *****

Table 2: Correlation and Significance Females: upper diagonal part contains correlation
coefficient estimates; lower diagonal part contains corresponding p-values. Parameters
with significant correlation have p-values <0.001.

nificant correlation between the parameters in the different terms in equation 2 since
A f is significantly correlated with C f , D f and G f , C f with B f and G f and Ff with H f .
This shows how old age mortality is correlated with mortality at younger ages.

5.2 VAR model for Parameters

A VAR(p) model is fitted to the logarithms of the time series of the Heligman-
Pollard parameters for females and males using a model with an unrestricted con-
stant as there is both presence of a constant and presence of a trend in many of
the variables in the model. These are denoted by VAR(p) f and VAR(p)m for fe-
males and males respectively. θt, f = (At, f , Bt, f , Ct, f , Dt, f , Et, f , Ft, f , Gt, f , Ht, f ) and θt,m =

(At,m, Bt,m, Ct,m, Dt,m, Et,m, Ft,m, Gt,m, Ht,m) are the variables included in VAR(p) f and
VAR(p)m which model the VAR(p) for females and males.

In order to minimize the criteria in Equation 14 the number of lags p is selected as
2. Since the time series of the variables (time series of the Heligman-Pollard model) in
the VAR(p) have unit roots then it is also necessary to fit a VECM. Since a VAR(2) is
suited to model the time series of the parameters, the corresponding VECM is of lag
p− 1 = 2− 1 = 1.

The next step involves testing for the existence of a stationary linear combination
of the time series in the VECM.

Tables 3 and 4 show the results for the cointegration tests. In each case the LRtest

rejects the null that r0 = 0 at 1% significance and rejects the null that r0 = 1 at 5%
significance.

For forecasting the VECM is transformed back to a VAR.
A VAR(2) model is determined to be the appropriate model for the logarithms of

the parameters of the Heligman-Pollard model. There are unit roots and cointegrated
relations in the system. Using this information a Bayesian VAR is now estimated for
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Eigenvalue Trace Stat 95% CV 99% CV
H(0)++ 0.63 193.35 170.80 182.51
H(1)+ 0.58 145.86 136.61 146.99
H(2) 0.47 104.52 104.94 114.36
H(3) 0.42 73.82 77.74 85.78
H(4) 0.36 47.30 54.64 61.24
H(5) 0.28 25.62 34.55 40.49
H(6) 0.17 9.65 18.17 23.46
H(7) 0.01 0.62 3.74 6.40

Table 3: Female Cointegration Tests
Eigenvalue Trace Stat 95% CV 99% CV

H(0)++** 0.79 221.13 170.80 182.51
H(1)+ 0.61 146.81 136.61 146.99
H(2) 0.48 101.38 104.94 114.36
H(3) 0.40 69.91 77.74 85.78
H(4) 0.33 45.05 54.64 61.24
H(5) 0.26 25.49 34.55 40.49
H(6) 0.20 10.88 18.17 23.46
H(7) 0.00 0.06 3.74 6.40

Table 4: Male Cointegration Tests
Trace tests significant at the 5% level are flagged by ’ +’.
Trace tests significant at the 1% level are flagged by ’++’.
Max Eigenvalue tests significant at the 5% level are flagged by ’ *’.
Max Eigenvalue tests significant at the 1% level are flagged by ’**’.

the Australian data.

5.3 BVAR model

In modeling a B-VAR, cointegration is captured by the priors. There is no need for ex-
plicit modeling to be included. Since there are no values available from prior mortality
studies a range of hyperparameters were considered. The best model performance
was found to be for the set (λ0 = 0.9, λ1 = 0.1, λ2 = 1, λ3 = 1, λ4 = 0.05, µ5 = 5, µ6 = 5).
λ0 = 0.9 - the model strays from a random walk. λ1 = 0.1 - the diagonal elements of
the coefficient matrix for the first lag tend to one and all other elements tend to zero.
λ3 = 1 - the parameters contained in higher lags vary less around their conditional
mean of zero. λ4 = 0.05 - constants tend to zero. µ5 = 5 - increased likelihood that
the model can be expressed in first differences. µ6 = 5 - likelihood of co-integration is
given more weight.
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The predictions from fitting 50 years (1946-1995) of data are compared to the out-of-
sample 12 years (1996-2007) of data that are available for the VAR model for females are
displayed in Figure 6. The equivalent results for the BVAR(2) for females are shown
in Figure 7. The VAR model shows an initial increase in parameter uncertainty that
settles down to a long run distribution for each of the parameters. After an initial time
period the parameter risk would be considered as having reached its maximum.

The results for the BVAR model show a significantly higher level of parameter risk
and over the same horizon has not reached a long run distribution for the parameters.
It is clear that parameter uncertainty is very significant and prediction intervals that
take into account parameter risk are significantly higher than the case where this risk
is not included. Figure 8 shows the equivalent BVAR(2) results for males confirming
similar results as for females.

An advantage of the BVAR model is that parameters are estimated with greater
accuracy as well as reflecting the true uncertainty in the predictive distribution. Table
5 shows this. The VAR model parameter estimates can lack intuitive interpretation
whereas the BVAR model parameter estimates provide a more parsimonious model.

5.4 Mortality at Older Ages

For longevity risk the uncertainty at the older ages is of most interest. Figure 9 shows
the observed and predicted parameter values for old age mortality using both the VAR
and BVAR for males and females. The observed values are indicated by the green
line, the VAR predictions by the red line and the B-VAR predictions by the blue line.
ln(H) is the relative rate of old age mortality increase. This should reflect the decline
in the rate of mortality increase after the mid-1990s. The plots show how the relative
rate of change in mortality, given by ln(H), is over-estimated by the VAR whereas the
Bayesian-VAR captures the reducing rate of change of old age mortality.

Figures 10 and 11 show the predictive distributions from the BVAR model for the
male older age mortality parameters in the Heligman-Pollard model for 1996-2007 .
The actual parameter values are also shown. The VAR estimates are also shown for
comparison. The plots show how the BVAR model provides more accurate predic-
tions and also quantify uncertainty in parameter estimates consistent with the actual
mortality experience.
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Figure 7: Fitted Values (1946-1995) and Projected Values (1996-2007) of ln θt, f using
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Figure 9: Estimated Old Age Parameters and the realised values from 1996-2007

VAR models produced inaccurate estimates when forecasted. The confidence bands
for the estimated parameters are shown by the thin broken and thin dotted lines. The
thick red solid line is the observed value of the parameter estimated for that year, the
thick black broken line is the BVAR (with parameter risk) estimate of the parameter
for that year and the thick blue dot-dashed line is the VAR (without parameter risk)
estimate of the parameter for that year. The observed parameter value (thick red line)
should fall within the confidence bands of the density of the distribution of the pa-
rameter, as estimated by the BVAR, 95% of time. The closer the observed value of the
parameter for that year is to the BVAR estimate, the better the BVAR estimate. As the
time from the last observed value used in the model, T = 1995, increases, the difference
between the VAR estimate and the observed value increases. The plots show clearly
that the BVAR projections outperform the VAR projections.

The relative performance of the two models can be compared using the Root Mean
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Figure 10: Parameter Risk in G (Males) for the predicted values for 1996-2007. Red
(Thick Solid Line)=Observed, Black (Thick Broken Line)= BVAR Estimate, Blue (Thick
Dot-Dashed Line)=VAR Estimate. The 95% and 99% confidence intervals are indicated
by the thin dotted and thin broken line respectively.
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Figure 11: Parameter Risk in H (Males) for the predicted values for 1996-2007. Red
(Thick Solid Line)=Observed, Black (Thick Broken Line)= BVAR Estimate, Blue (Thick
Dot-Dashed Line)=VAR Estimate. The 95% and 99% confidence intervals are indicated
by the thin dotted and thin broken line respectively.
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Squared Error (RMSE):

RMSE =

√√√√ 1
N

N

∑
n=1

(yp
n − yn)2 (35)

where for N observations, yn is the observed value and yp
n is the predicted value of

observation n.
Table 6 shows the RMSE for the parameters for both males and females. The RMSE

for the estimates from the B-VAR are smaller demonstrating the improved fit.

VAR B-VAR
G

Female 2.39E-11 1.09E-11
Male 5.37E-11 3.25E-12

H
Female 5.98E-05 2.96E-05

Male 8.00E-05 1.42E-05

Table 6: RMSE of predicted values 1996-2007 for parameters G and H using the VAR
model (no parameter risk) and BVAR model (with parameter risk).

5.5 Mortality Rate Estimates

The performance of the models can also be considered in terms of the mortality rates
that are forecasted from the fitted VAR and BVAR models for the Heligman-Pollard
parameters. Denote the estimates of qx,t using the parameters predicted by the B-VAR
as q̂B−VAR

x,t , the estimates predicted by the VAR as q̂VAR
x,t .

The sum of squared errors (SSE) for the mortality rates is given by:

SSE = ∑
x,t
(qp

x,t − qx,t)
2 (36)

where the summation is taken over the entire projected age range and projected time
period. The model with the smallest SSE provides a better fit to the data. Table 7 shows
the SSE for male and female mortality rates for both the VAR and BVAR models.

B-VAR VAR
Females 0.01088 0.01041

Males 0.01045 0.02840

Table 7: Sum of squared errors of predicted values 1996-2007 for mortality rates using
the VAR model (no parameter risk) and BVAR model (with parameter risk).

The RMSE for each predicted year for mortality rates is shown in figures 12(a) and
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12(b) for females and males respectively. The root-mean-squared error (RMSE) in the
HP-BVAR (black solid line) and the RMSE in the HP-VAR model (blue dotted line).
There is a significant difference in the performance for males.
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Figure 12: RMSE of predicted qx for 12 years (1996-2007).

Figures 13 and 14 show the confidence intervals for ln qx. The solid black line and
the dotted black line are the BVAR estimate and 99% confidence intervals respectively
while the blue broken line and the blue dotted line are the VAR estimate and 99%
confidence intervals. The plots confirm the superior performance of the BVAR model.
They also demonstrate the increased uncertainty in prediction intervals for mortality
rates that arises from quantifying parameter risk in a Bayesian model framework.
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Figure 13: Old age Predictions of Male ln qx by Year using HP-VAR and HP-BVAR and
the observed ln qx (small circles). The blue lines are for the HP-VAR model while the
Black lines are for the HP-BVAR model. The HP-BVAR model has wider confidence
intervals that reflect the parameter uncertainty.
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Figure 14: Old age Predictions of Female ln qx by Year using HP-VAR and HP-BVAR
and the observed ln qx (small circles). The blue lines are for the HP-VAR model while
the Black lines are for the HP-BVAR model. The HP-BVAR model has wider confidence
intervals that reflect the parameter uncertainty.
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6 Conclusions

Bayesian models allow a quantification of parameter risk in a predictive distribution.
For mortality modeling, the full age range of mortality rates is often captured by a
parametric model at any given time in order to provide a parsimonious fit to the data.
To forecast future mortality, the parameters are fitted by a time series model and used
for projecting expected rates and the volatility of the rates. There has been limited
analysis and quantification of parameter uncertainty in mortality models.

This paper applies a Bayesian VAR model to the parameters of the Heligman-
Pollard model fitted to Australian mortality data. The Heligman-Pollard model is a
parsimonious representation of the mortality rates at any given time. Multivariate
time series models then capture dependence across the whole age range by modeling
the parameters including their correlation. The Bayesian VAR model provides a more
flexible modeling framework for modeling mortality trends and risks than the more
traditional VAR model.

HP-VAR and HP-BVAR models are implemented. Parameters of the HP-BVAR
model are stochastic and this allows the quantification of parameter risk. The HP-
VAR and HP-Bayesian VAR models are fitted and compared using Australian mor-
tality data. Parameter uncertainty is shown to be an important factor to include in
mortality models when assessing mortality risk. The HP-BVAR model is shown to
outperform the HP-VAR model in terms of parsimony, goodness of fit and forecast-
ing of mortality rates. At the same time, more information about future mortality rate
uncertainty is provided by the model.
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