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Abstract

This paper proposes and assesses consistent multi-factor dynamic affine mor-
tality models for longevity risk applications. The dynamics of the model produce
closed-form expressions for survival curves. The framework includes an arbitrage-
free model specification. Importantly, the mortality model provides consistent fu-
ture survival curves with the same parametric form as the initial curve. There are
multiple risk factors allowing applications to hedging and pricing mortality and
longevity bonds, mortality derivatives and more general risk management prob-
lems. A state-space representation is used to estimate parameters for the model
with the Kalman filter. The state-space form provides a separate measurement
and transition system of equations. A measurement error variance is included for
each age to capture the effect of sample population size. The transition system dy-
namics capture the stochastic properties of the underlying mortality rate. Swedish
mortality data is used to assess 2- and 3-factor implementations of the model. A
3-factor model specification is shown to provide a good fit to the observed survival
curves especially for older ages, and performs better than the 2-factor models.
Bootstrapping is used to derive model parameter estimate distributions. Residual
analysis is used to confirm model fit. Consistent models are shown to improve
model performance and stability.

Keywords: Mortality model, longevity risk, multi-factor, affine, arbitrage-free,
consistent, Kalman filter, Swedish mortality
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1 Introduction

This paper proposes and assesses consistent multi-factor dynamic affine mortality models
for modelling longevity risk based on the Affine Term Structure Model (ATSM), Duffie
and Kan (1996), that is used extensively in interest rate modelling. The mortality
survival curve age structure is modelled in a similar manner to the term structure of
interest rates. Other authors have proposed and applied mortality models with an affine
structure. Dahl (2004) presents an affine mortality structure for a cohort of lives of
the same age. Schrager (2006) develops an affine mortality intensity model for the
Thiele and Makeham mortality laws and considers all ages simultaneously. They do do
not consider the consistency property of the models.

The parametric survival curves proposed in this paper are consistent ensuring the
admissible set of forecast survival curves have the same parametric form as the original
fitted parametric curve. Models will need re-parameterizing at future dates if they do
not have the consistency property. If the model is rich enough to capture the dynamics of
mortality rates then this will be unnecessary. As a result the model provides a more reli-
able basis for hedging and pricing longevity risk transactions. Bjork and Christensen
(1999) establishes conditions for consistency. De Rossi (2004) applies these conditions
to derive a consistent 2-factor ATSM for interest rate modelling.

The model framework used has an arbitrage-free formulation allowing a calibration of
market prices of risk to relevant and available market data. The model’s factor dynamics
are defined under a risk-neutral measure for the risk-adjusted survival curve. Instead of
assuming a constant price of mortality risk for each factor, as in the “completely affine”
model of Duffie and Kan (1996), an “essentially affine” model introduced by Duffee
(2002) is adopted.

The modelled survival curve is exponentially affine in the stochastic factors and factor
loadings. The survival curve factor dynamics assume a mean-reverting process. Use of
mean-reverting dynamics in fitting and forecasting survival curves has been questioned,
Luciano and Vigna (2005). Historical data for mortality rates shows evidence of mean
reversion, Njenga and Sherris (2009). The mean-reverting assumption is assessed
when the models are fitted to historical data.

Estimation of the model uses a state-space form, with measurement and transition
systems. The model parameters are estimated using the Kalman filter, Kalman (1960),
to obtain a likelihood for a given set of parameters based on historical data. The state-
space representation has a measurement system for the parametric model of the observed
survival curve. An explicit allowance is included for an age-dependent measurement
error covariance matrix. Measurement errors are assumed independent between ages. A
parametric function of age is used for the errors. The transition system for the latent
stochastic factors driving the survival curve dynamics over time is a multi-factor Gaussian
process. Although this allows the possibility of negative mortality rates, which is also
the case for interest rate models, the fitted parameter values limit this happening.

The model framework allows closed-form expressions for risk-adjusted survival curves.
This is an advantage over popular econometric mortality pricing models. The specifi-
cation of the price of mortality risk allows different drift terms under the real-world,
P-measure, and risk-neutral, Q-measure, dynamics. Market traded longevity pricing in-
formation is not currently available, so the price of mortality risk structure is not readily
calibrated. As mortality swaps and other mortality based pricing information becomes
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available, the model is readily calibrated to market data. The number of traded instru-
ments required is the same as the number of latent factors.

Swedish data is used to calibrate and assess the model fit. The exponential survival
curve assumption is shown to be robust to the data fitting period. A state-space re-
sampling method, Stoffer and Wall (2004), is used to produce bootstrap distribution
confidence intervals for the parameter estimates. Under the model assumptions the
bootstrapped distribution for each parameter has an asymptotically normal distribution.

Different model assumptions are assessed including 2- and 3-factor models with and
without factor dependence. It is shown that 2-factor models are able to fit the data up to
the age of 85, while the 3-factor models are able to capture the majority of data variation
for the whole data age range from 50 to 99. The 3-factor model improves the fit over
the 2-factor models. Consistent dynamic mortality models are shown to perform better
than a model based on a modification of the Nelson-Siegel curve used in interest rate
modelling which is not consistent.

Section 2 outlines the survival curve modelled and summarizes the Swedish data used
to assess the models. In Section 3, the concept of consistency is introduced and illus-
trated with the popular Nelson-Siegel curve in interest rate yield curve models. Section
4 presents an outline of the derivation of the models with a 2-factor model used for il-
lustration. The models that are considered in the paper are then summarized in Section
5. Section 6 outlines the Kalman filter estimation of the model parameters. Section 7
provides an analysis of the results from fitting the models with Swedish mortality data.
Section 8 concludes with a summary of the paper.

2 Mortality survival curves

The model for survival curves used has a functional form that is a weighted sum of
exponentials with parameters that can be time varying. This is motivated by the popular
use of the Nelson-Siegel formula used to fit yield curves for interest rates. The mortality
equivalent of a yield curve of zero coupon bond yields for different maturities is the curve
of the average of the survival probabilities for different survival times.

The survival probability under the risk neutral probability for an individual aged x
at time t to age x+ T , hence surviving another τ = T − t years, in the affine framework
has the form

Sx,t(τ) = EQ
t

[
e−

∫ τ
0 µx+u,tdu

∣∣∣Ft] = e−B(τ)′Zt+C(τ) (1)

where µx+u,t is the force of mortality for an individual aged x + u at time t and Zt is a
vector of random factors. For an n-factor model, B(τ) is a matrix of the n-factor loadings
and C(τ) is a constant. The log of the survival probability is affine in the random factors
driving changes in mortality through time.

The maturity curve of survival probabilities equivalent to zero coupon yields to ma-
turity in interest rate models is given by

Mx,t(τ) = −1

τ
ln[Sx,t(τ)]

which is the average force of mortality for survival for τ years for a person aged x at time
t. The Mx,t(τ) is used for model fitting.
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Figure 1: Age-Period average force of mortality for Swedish males ages 50-99 for 1910 to
2007

The survival probability determined from mortality data is

Sx,t(τ) =
τ−1∏
s=0

(1− qx+s,t)

qx,t = 1− e−mx,t

where the one year death probability is qx,t, for a person aged x in year t with and mx,t

is the central rate of mortality. Which is calculated from mortality data as

mx,t =
Dx,t

Ex,t
=

# of deaths aged x in year t

Exposure aged x in year t
.

The models are fitted and assessed using raw deaths and population estimates for
Swedish mortality. Population exposures and number of deaths data is taken from the
Human Mortality Database for Sweden for the years 1910 to 2007. Sweden has been
recording deaths by individual ages since 1861 and cohort information since 1901. Al-
though Swedish deaths data is generally reliable, the Human Mortality Database has a
method’s protocol, Wilmoth et al. (2007), that describes the various smoothing tech-
niques used for the life-table data. Deaths data is reliable whereas population exposures
by age are mostly estimates. In the first half of the 20th century, accurate population es-
timates were only available for census years. For Sweden, this was every ten years. Since
the 1970s a registry system has been used to track population estimates on a yearly basis.
Population estimates between census years are estimates. As a result the mortality rates
include smoothing of the population estimates.

Figure 1 plots the average force of mortality for different survival times for Swedish
males between the ages of 50 and 99 for the years 1910 to 2007. This is the mortality
curve data used for our model fitting. The Figure shows clearly the improvement in
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Figure 2: Principal Component Analysis for Swedish males ages 50-99 for 1910 to 2007

mortality over the course of the 20th century and an exponential shape of the curve.
Mortality improvements have occurred at differing rates for different ages.

Figure 2 gives the mean and first two principal components of the average force of
mortality survival curve for the Swedish data. The mean and first principal component
explains 96.8% of the variation in the mortality curve data. This suggests that 2- and
3-factor mortality models should parsimoniously capture variations in observed mortality
survival curves. The principal component assumptions are that the mean is constant and
the principal components are orthogonal. The framework in this paper assumes a mean
equivalent that is a dynamic factor and allows interaction between factors under the risk
neutral, or risk adjusted, measure dynamics.

3 Consistent Survival Curve Dynamics

A main aim of this paper is to propose and assess consistent models for the survival
probability curve. These maintain the same functional form of the survival curve across
time. By assessing different model assumptions we show that these models perform
well across time. Mortality model consistency is defined in a similar way to Bjork and
Christensen (1999) for interest rate models. The dynamics of the underlying mortality
rate are determined to ensure consistency in the model.

Because of its popularity in interest rate modelling, a version of the Nelson-Siegel
model in Christensen et al. (2009) is used as one of the models for mortality survival
curves. We use this model in this section to demonstrate the concept of consistency.
Because the Nelson-Siegel model is not consistent it will provide a contrast with our
consistent 2- and 3-factor models.

The risk factor dynamics under the risk-neutral Q-measure of the force of mortality
curve is

dµx,t(τ) = νx,t(τ)dt+ Σx,t(τ)dWQ
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where νx,t(τ) is the drift vector, Σx,t(τ) is the vector of volatilities and dWQ is a vector
of Brownian motions.

Under these dynamics the risk-neutral price for $1 at time t paid on survival to time
T for an individual currently aged x is

Sx,t(τ) = e−B(τ)
′
Zt+C(τ)

where B(τ) and C(τ) are the solutions to a set of ordinary differential equations and Zt
are the latent risk factors at time t driving the dynamics of the mortality curve.

The stochastic differential equations for the risk factors of the 3-factor Nelson-Siegel
model in Christensen et al. (2009) under the Q measure aredZ1

t

dZ2
t

dZ3
t

 =

0 0 0
0 λ −λ
0 0 λ

µQ1µQ2
µQ3

−
Z1

t

Z2
t

Z3
t

 dt+

σ1 0 0
0 σ2 0
0 0 σ3

dW 1,Q
t

dW 2,Q
t

dW 3,Q
t


where λ, µQ1 , µ

Q
2 , µ

Q
3 , σ1, σ2, σ3 are parameters determining the drift and volatility.

The force of mortality dynamics can be written as

dµx,t(τ) = ν(Z1
t , Z

2
t , Z

3
t , t)dt+ σ1dW

1
t + σ2e

−λ(T−t)dW 2
t + σ3λe

−λ(T−t)dW 3
t .

The solution for the factor loadings are exponential functions given by

B1(τ) = τ

B2(τ) =
1− e−λτ

λ

B3(τ) =
1− e−λτ

λ
− τe−λτ

The solution for C(τ) is found in Christensen et al. (2009).
The force of mortality of the model is then given by

µx,t(τ) = −∂ [logSx,t(τ)]

∂T

Theorem 4.1 of Bjork and Christensen (1999) is directly applied to the Fréchet
derivatives of µx,t(τ) to determine consistency. These derivatives are used to verify drift
and volatility conditions for the underlying risk factor dynamics that ensure consistency.
The conditions are based on manifolds for future survival curves and Fréchet derivatives
of the mortality rate dynamics and full details are found in Bjork and Christensen
(1999).

The consistent drift condition requires the following for the drift:

µτ (τ, z) + σ(τ)

(∫ τ

0

σ(y)dy

)T
∈ Im[µz(τ, z)]

where µτ (τ, z) and µz(τ, z) are Fréchet derivatives with respect to τ and z respectively,
where the x, t subscript has been dropped for convenience of notation. The volatility
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term in the drift can be written as

σ(τ)

(∫ τ

0

σ(y)dy

)T
=
[
σ1 σ2e

−λτ + σ3λe
−λτ] [σ1τ σ2

(1− e−λτ )
λ

+ σ3

(
(1− e−λτ )

λ
− τe−λτ

)]T
= σ2

1τ + σ2
2

(e−λτ − e−2λτ )

λ
+ σ2

3

(
τ

(e−λτ − e−2λτ )

λ
− τ 2λe−2λτ

)
The force of mortality curve can be simplified in terms of time varying parameters

denoted by z and exponential terms in τ as

µx,t(τ, z) = z1 + z2e
−λτ + z3τe

−λτ + z4e
−2λτ

+ z5τe
−2λτ + z6τ

2e−2λτ + z7τ
2

The Fréchet derivatives of µx,t(τ, z) are

µz(τ, z) =
[
1 e−λτ τe−λτ e−2λτ xe−2λτ τ 2e−2λτ τ 2

]
µτ (τ, z) = (z3 − λz2)e−λτ − λz3τe

−λτ + (z5 − 2λz4)e−2λτ

+ (2z6 − 2λz5)τe−2λτ − 2λz6τ
2e−2λτ + z72τ

The consistent drift requirement can be written as

µτ (τ, z) + γ1e
−λτ + γ2τe

−λτ + γ3e
−2λτ + γ4τe

−2λτ (2)

+ γ5τ
2e−2λτ + γ6τ ∈ Im[µz(τ, z)]

where γi are constants after collecting terms in τ .
The vector of volatilities for dµx,t(τ, z) is

σ(τ) =
[
σ1 σ2e

−λτ σ3λe
−λτ]

It then follows from (2) that since γ6τ /∈ Im[µz(τ, z)] the Nelson Siegel survival curves
are not consistent.

4 Model Derivation

The model derivation for the survival curve and mortality rate dynamics follow the
standard affine term structure model defined by Duffie and Kan (1996). We summarise
the 2-factor model derivation for completeness. Mortality rates, and the survival curve,
are driven by unobserved (latent) risk factors following n-factor stochastic differential
equations under the risk-neutral Q-measure

dZt = ∆Q
[
ΘQ − Zt

]
dt+ Σ

√
v(Z)dWQ

t

where

v(Z) =

α1 + β1Z1 · · · 0
...

. . .
...

0 · · · αn + βnZn
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with ∆Q ∈ Rn×n, ΘQ ∈ Rn×1, Σ ∈ Rn×n.
The risk-adjusted survivor index is given by

Sx,t(τ) = EQ
t

[
e−

∫ τ
0 µx+u,tdu

∣∣∣Ft] = e−B(τ)′Zt+C(τ) (3)

where τ = T − t. This is the survival probability for an individual aged x at time t to
age x + T under the risk neutral probability or the price of $1 paid on survival to age
x + T . For an n-factor model, B(τ) is a matrix of the n-factor loadings and C(τ) is a
constant.

In order to use Equation (3) to determine B(τ) and C(τ) either the Martingale ap-
proach or the Feynman-Kac theorem can be applied to derive Partial Differential Equa-
tions (PDEs). The derivation here is based on the Martingale method under the Q-
measure. The “essentially affine” price of risk structure is used to transform the model
dynamics to the P-measure.

Define a Q-Martingale Y by

Yx,t(τ) := EQ
t

[
e−

∫ T
0 µx+u,tdu

∣∣∣Ft] = e−
∫ t
0 µx+u,tduSx,t(τ). (4)

Using the multi-dimensional Ito’s lemma, with independent Brownian Motions, the
dynamics of Y are

dY x,t(τ) =
∂Yx,t(τ)

∂t
dt+

n∑
i=1

∂Yx,t(τ)

∂Zi
dZi +

1

2

n∑
j=1

∂2Yx,t(τ)

∂2Zj
d[ZjZj]

=

(
∂Yx,t(τ)

∂t
+

n∑
i=1

∂Yx,t(τ)

∂Zi
∆Q
[
ΘQ − Zi

]
+

1

2

n∑
j=1

∂2Yx,t(τ)

∂2Zj
σ2
jjvj(Zj)

)
dt

+
∂Yx,t(τ)

∂Z
Σ
√
v(Z)dWQ (5)

Since Y is a Martingale, the drift component of equation (5) must equal zero. The
partial derivatives from equation (4) are

∂Yx,t(τ)

∂t
= −µx,te−

∫ t
0 µx+u,tduSx,t(τ) + e−

∫ t
0 µx+u,tdu

∂Sx,t(τ)

∂t
∂Yx,t(τ)

∂Zi
= e−

∫ t
0 µx+u,tdu

∂Sx,t(τ)

∂Zi
∂2Yx,t(τ)

∂2Zj
= e−

∫ t
0 µx+u,tdu

∂2Sx,t(τ)

∂Zi∂Zi

Upon substitution in equation (5) and equating the drift term to zero, the partial
differential equation can be written(

∂Sx,t(τ)

∂t
+

n∑
i=1

∂Sx,t(τ)

∂Zi
∆Q
[
ΘQ − Zi

]
+

1

2

n∑
j=1

∂2Sx,t(τ)

∂2Zjσ2
jj

vj(Zj)

)
− µx,tSx,t(τ) = 0 (6)
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The risk-adjusted survivor curve partial derivatives are

Sx,t(τ) = e−B(τ)′Zt+C(τ)

∂Sx,t(τ)

∂t
=
(
−Ċ(τ) + Ḃ(τ)′Z

)
Sx,t(τ)

∂Sx,t(τ)

∂Z
= −B(τ)Sx,t(τ)

∂2Sx,t(τ)

∂2Z
= B(τ)′B(τ)Sx,t(τ)

where Ċ = ∂C
∂t

and B(τ)′ is the transpose of B(τ).
Substituting these into equation (6) gives the general form of the PDE.(

−Ċ(τ) +B(τ)′Z
)
−

n∑
i=1

B(τ)′∆Q
[
ΘQ − Zi

]
+

1

2

n∑
j=1

(Σ′B(τ)v(Z)B(τ)′Σ)jj − µx,t(0) = 0

with the instantaneous force of mortality

µx,t(0) = ρ0 + ρZ = lim
τ→0

µx,t(τ) (7)

The PDE can be rearranged into two ordinary differential equations in terms of Ḃ(τ)
and Ċ(τ),

Ḃ(τ) = ρ+ ∆QB(τ)− 1

2

n∑
j=1

Σ′B(τ)B(τ)′Σβj, B(0) = 0

Ċ(τ) = ρ0 −B(τ)′∆QΘQ − 1

2

n∑
j=1

Σ′B(τ)B(τ)′Σαj, C(0) = 0

Christensen et al. (2009) shows, by an appropriate selection of ρ and ∆Q, how an
arbitrage-free version of the Nelson-Siegel model is derived. Schrager (2006) specified
ρ so that µx,t was a Gaussian stochastic version of the Thiele mortality model under the
P-measure.

We develop the model dynamics in the Q-measure and solve the ordinary differential
equations with ρ a constant in our derivation.

So far the derivation has been under the Q-measure, but mortality rates are observed
under the P-measure. We adopt the “essentially affine” model of Duffee (2002) which
allows us to estimate drift terms for the real-world stochastic processes and modify the
drift to obtain the risk-neutral dynamics.

The risk-neutral stochastic process for the model factors are

dZt = ∆Q
[
ΘQ − Zt

]
dt+ ΣV (Zt)dW

Q
t

In the “essentially affine” model the market price of mortality risk is

Λt = V (Zt)λ0 + V −(Zt)λZt
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where λ0 ∈ Rn×1 and λ ∈ Rn×n. V (Zt)
− is a matrix of the same order as V (Zt) and

given by

V −(Zt) =

(α1 + β1Zt)
−1/2 · · · 0

...
. . .

...
0 · · · (αn + βnZt)

−1/2


The change of measure is

dWQ
t = dW P

t + Λtdt

and the stochastic process under the P-measure is

dZt =
[
∆QΘQ −∆QZt

]
dt+ Σ

[
V 2(Zt)λ0 + I−λZt

]
dt+ ΣV (Zt)dW

P
t

where I− is a diagonal matrix that equals one for indices where V −(Zt) 6= 0. This
simplifies to

dZt =
[
∆QΘQ + Σαλ0

]
dt−

[
∆Q − Σβλ0 − ΣI−λ

]
Ztdt+ ΣV (Zt)dW

P
t

= ∆P
[
ΘP − Zt

]
dt+ ΣV (Zt)dW

P
t

where

α =

α1 · · · 0
...

. . .
...

0 · · · αn

 β =

β1 · · · 0
...

. . .
...

0 · · · βn


Under this change of measure the structure of the price of mortality risk is included.

The flexibility in the model is that λ0 only influences the long term mean while the λ
term only influences the speed of mean reversion when β = 0.

The solutions to the ordinary differential equations are derived under the Q-measure
and we estimate the drift term under the P-measure. The ΣV (Zt) terms are the same
under both probability measures.

5 Models for Longevity Risk Dynamics

This section summarizes the survival curve models to be assessed. Each model assumes
different structure for the dynamics of the latent risk factors driving the survival curve.
Dynamics include 2- and 3-factor models both with and without dependence between
the factors. A 3-factor version of the Nelson-Siegel dynamics for the survival curve is
included for comparison since this is known not to be a consistent model. The other
models are consistent.

5.1 Dependent 2-Factor Model

This is a 2-factor affine survival curve model with constant volatility term for each factor
and αi = 1 and βi = 0. The risk neutral dynamics are(

dZ1,t

dZ2,t

)
=

(
δ11 0
δ21 δ22

)[(
θQ1
θQ2

)
−
(
Z1,t

Z2,t

)]
dt+

(
σ11 σ12

σ21 σ22

)(
dWQ

1,t

dWQ
2,y

)
There is dependence in the drift and the volatility. The sign of δ11 determines if the factor
loading for Z1,t is exponentially increasing or decreasing. The dependence produces a
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factor loading that can be an exponentially increasing upward sloping, downward sloping
or curved shape, similar to the Nelson-Siegel specification. This dependence allows more
flexibility in the survival curve fitting data at the older ages.

The instantaneous force of mortality is

µx,t(0) = ρ1Z1,t + ρ2Z2,t

with ρ0 = 0. The set of ordinary differential equations are

dB(τ)

dt
= ρ+ ∆QB(τ), B(0) = 0

dC(τ)

dt
= −B(τ)′∆QΘQ − 1

2

n∑
j=1

(Σ′B(τ)B(τ)′Σ)j,j , C(0) = 0

In this section of the paper we explicitly include the time index t and write B(τ) as
B(t, T ) for clarity of presentation. To solve the differential equation for B(t, T ) note that

d

dt

[
e∆Q(T−t)B(t, T )

]
= e∆Q(T−t)dB(t, T )

dt
−∆Qe∆Q(T−t)B(t, T )

= e∆Q(T−t)dB(t, T )

dt
−
[
dB(t, T )

dt
− ρ
]
e∆Q(T−t)

= e∆Q(T−t)ρ.

Integrating both sides from t to T gives∫ T

t

d

ds

[
e∆Q(T−s)B(t, T )

]
=

∫ T

t

e∆Q(T−s)ρds

and using the boundary conditions we have

B(t, T ) = −e−∆Q(T−s)
∫ T

t

e∆Q(T−s)ρds. (8)

For this model assumptions, the matrix exponentials in equation (8) are as follows

e∆Q(T−t) =

(
eδ11(T−t) 0

δ21
δ11−δ22

(
eδ11(T−t) − eδ22(T−t)) eδ22(T−t)

)
e−∆Q(T−t) =

(
e−δ11(T−t) 0

δ21
δ11−δ22

(
e−δ11(T−t) − e−δ22(T−t)) e−δ22(T−t)

)
Substituting these into equation (8) gives

B(t, T ) = −
(

e−δ11(T−t) 0
δ21

δ11−δ22

(
e−δ11(T−t) − e−δ22(T−t)) e−δ22(T−t)

)
×∫ T

t

(
eδ11(T−s) 0

δ21
δ11−δ22

(
eδ11(T−s) − eδ22(T−s)) eδ22(T−s)

)(
ρ1

ρ2

)
ds

= −
(

e−δ11(T−t) 0
δ21

δ11−δ22

(
e−δ11(T−t) − e−δ22(T−t)) e−δ22(T−t)

)
×∫ T

t

(
ρ1e

δ11(T−s)

ρ1δ21
δ11−δ22

(
eδ11(T−s) − eδ22(T−s))+ ρ2e

δ22(T−s)

)
ds
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Finally simplifying the integral gives

B(t, T ) = −
(

e−δ11(T−t) 0
δ21

δ11−δ22

(
e−δ11(T−t) − e−δ22(T−t)) e−δ22(T−t)

)
×(

−ρ1
(1−eδ11(T−t))

δ11

ρ1
δ21

δ11−δ22

(
1−eδ11(T−t)
−δ11 − 1−eδ22(T−t)

−δ22

)
+ ρ2

1−eδ22(T−t)
−δ22

)

so that

B(t, T ) = −

(
ρ1

(1−e−δ11(T−t))
δ11

ρ1
δ21

δ11−δ22

(
1−e−δ11(T−t)

δ11
− 1−e−δ22(T−t)

δ22

)
+ ρ2

1−e−δ22(T−t)
δ22

)
(9)

For the constant term, C(t, T ), assuming that the long term mean parameter ΘQ is
equal to zero we have

C(t, T ) = −1

2

∫ T

t

n∑
j=1

(Σ′B(s, T )B(s, T )′Σ)jj ds

= −1

2

∫ T

t

[
(σ2

11 + σ2
12)B1(s, T )2 + (2σ11σ21 + 2σ12σ22)B1(s, T )B2(s, T )

+ (σ2
21 + σ2

22)B2(s, T )
]
ds (10)

There are only 3 integrals in terms of B(t, T ) with 4 unknown Σ parameters. This
means one of the Σ parameters will not be identifiable. Setting σ12 = 0 Equation (10)
becomes

C(t, T ) = −1

2

∫ T

t

[
σ2

11B1(s, T )2 + 2σ11σ21B1(s, T )B2(s, T ) + (σ2
21 + σ2

22)B2(s, T )2
]
ds

= −1

2

∫ T

t

[
σ2

11

(
ρ1

(1− e−δ11(T−s))

δ11

)2

+ 2σ11σ21

(
ρ1

(1− e−δ11(T−s))

δ11

)
×(

ρ1
δ21

δ11 − δ22

(
1− e−δ11(T−s)

δ11

− 1− e−δ22(T−s)

δ22

)
+ ρ2

1− e−δ22(T−s)

δ22

)
+

(σ2
21 + σ2

22)

(
ρ1

δ21

δ11 − δ22

(
1− e−δ11(T−s)

δ11

− 1− e−δ22(T−s)

δ22

)
+ ρ2

1− e−δ22(T−s)

δ22

)2]
ds

Simplifying the form of C(t, T ) in terms of (T − t) with other terms combined into
constants, ξi we have

C(t, T ) = ξ0 + ξ1(T − t) + ξ2
1− e−δ11(T−t)

δ11

+ ξ3
1− e−2δ11(T−t)

2δ11

+ ξ4
1− e−δ22(T−t)

δ22

+

ξ5
1− e−2δ22(T−t)

2δ22

+ ξ6
1− e−(δ11+δ22)(T−t)

δ11 + δ22

(11)

Applying the consistent drift and volatility conditions shows that the model is con-
sistent.
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5.2 Independent 2-Factor Model

A 2-factor model with no factor dependence and no interaction of the Brownian motions
is also considered. The model dynamics are(

dZ1,t

dZ2,t

)
=

(
δ11 0
0 δ22

)[(
θQ1
θQ2

)
−
(
Z1,t

Z2,t

)]
dt+

(
σ11 0
0 σ22

)(
dWQ

1,t

dWQ
2,y

)
with the instantaneous force of mortality as

µx,t(0) = Z1,t + Z2,t

This model has 4 fewer parameters compared to the dependent model. The solutions for
the factor loadings for this independent model are

B1(t, T ) = −1− e−δ11(T−t)

δ11

B2(t, T ) = −1− e−δ22(T−t)

δ22

(12)

and

C(t, T ) = −1

2

∫ T

t

n∑
j=1

(Σ′B(s, T )B(s, T )′Σ)j,j ds

= −1

2

∫ T

t

[
(σ2

11)B1(s, T )2 + (σ2
22)B2(s, T )2

]
ds

=
1

2

[
σ2

11

δ3
11

(
2e−δ11(T−t) − 1

2
e−2δ11(T−t) + δ11(T − t)− 3

2

)
σ2

22

δ3
22

(
2e−δ22(T−t) − 1

2
e−2δ22(T−t) + δ22(T − t)− 3

2

)]
(13)

This is similar in form to equation (11), with the ξ6 term zero since there is no interaction
between the factors. The model dynamics are also consistent.

5.3 2-Factor Model - Real World Measure

Estimation uses historical data under the P-measure. The 2-factor model under the
real-world P-measure is based on the dynamics

dZt = KP
[
µP − Zt

]
dt+ ΣV (Zt)dW

P
t (14)

which in the 2-factor case is(
dZ1,t

dZ2,t

)
=

(
κP11 0
0 κP22

)[(
µP1
µP2

)
−
(
Z1,t

Z2,t

)]
dt+

(
σ11 0
σ21 σ22

)(
dW P

1,t

dW P
2,y

)
This differs from the risk-neutral Q-measure dynamics. Under the P-measure inter-

action between the factors is not included and the “essentially affine” specification of the
price of mortality risk allows different drift terms in both measures. In the independent
model the σ21 parameter is zero.
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The survival curve estimated under the real-world measure is

Mx,t(τ) = −1

τ
ln[Sx,t(τ)] = −B1(τ)

τ
Z1,t −

B2(τ)

τ
Z2,t +

C(τ)

τ

which for the dependent model is

Mx,t(τ) =

[
ρ1

1− e−δ11(T−t)

δ11

]
Z1,t

τ
+

[
ρ1

δ21

δ11 − δ22

(
1− e−δ11(T−t)

δ11

− 1− e−δ22(T−t)

δ22

)
+

ρ2
1− e−δ22(T−t)

δ22

]
Z2,t

τ
− C(τ)

τ

and for the independent model is

Mx,t(τ) =

[
1− e−δ11(T−t)

δ11

]
Z1,t

τ
+

[
1− e−δ22(T−t)

δ22

]
Z2,t

τ
− C(τ)

τ

The constant term, C(τ), is given by equation (10) and equation (13) for the dependent
and independent models respectively.

5.4 3-Factor Model

For the 3-factor models we assess; a consistent dependent factor model, a consistent
independent factor model and a Nelson-Siegel model, which is known not to be consistent.
The factor dynamics of each of the models under the Q-measure are summarized here.

• Dependent 3-factor model. This model adds an additional independent factor to
the 2-factor dependent model. The dynamics are

dZ1,t

dZ2,t

dZ3,t

 =

δ
Q
11 0 0

0 δQ22 0

0 δQ32 δQ33



θ

Q
1

θQ2
θQ3

−
Z1,t

Z2,t

Z3,t


 dt+

σ11 0 0
0 σ22 0
0 σ32 σ33


dW

Q
1,t

dWQ
2,y

dWQ
3,y

 (15)

• Independent 3-factor model. Each of the factors are independent and there is no
correlation of the Brownian motions.

dZ1,t

dZ2,t

dZ3,t

 =

δ
Q
1 0 0

0 δQ2 0

0 0 δQ3



θ

Q
1

θQ2
θQ3

−
Z1,t

Z2,t

Z3,t


 dt+

σ1 0 0
0 σ2 0
0 0 σ3


dW

Q
1,t

dWQ
2,t

dWQ
3,t

 (16)

• Nelson-Siegel model. This is a restricted form of the 3-factor dependent model,

dZ1,t

dZ2,t

dZ3,t

 =

0 0 0
0 δQ 0
0 −δQ δQ



θ

Q
1

θQ2
θQ3

−
Z1,t

Z2,t

Z3,t


 dt+

σ1 0 0
0 σ2 0
0 0 σ3


dW

Q
1,t

dWQ
2,y

dWQ
3,y

 (17)
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5.5 3-Factor Dependent Model

For this model the instantaneous force of mortality is

µx,t(0) = ρ1Z1,t + ρ2Z2,t + ρ3Z3,t

The solution for B(t, T ) is

B(t, T ) = −


ρ1

(1−e−δ11(T−t))
δ11

ρ2
(1−e−δ22(T−t))

δ22

ρ2
δ32

δ22−δ33

(
1−e−δ22(T−t)

δ22
− 1−e−δ33(T−t)

δ33

)
+ ρ3

1−e−δ33(T−t)
δ33

 (18)

The constant adjustment term C(t, T ) follows as an extension of the 2-factor dependent
model,

C(t, T ) = −1

2

∫ T

t

[
σ2

11B1(s, T )2 + σ2
22B2(s, T )2 + 2σ22σ32B2(s, T )B3(s, T )+

(σ2
32 + σ2

33)B3(s, T )2
]
ds

= −1

2

∫ T

t

[
σ2

11

(
ρ1

(1− e−δ11(T−s))

δ11

)2

+ σ2
22

(
ρ2

(1− e−δ22(T−s))

δ22

)2

+

2σ22σ32

(
ρ2

(1− e−δ22(T−s))

δ22

)
×

(
ρ2

δ32

δ22 − δ33

(
1− e−δ22(T−s)

δ22

− 1− e−δ33(T−s)

δ33

)
+

ρ3
1− e−δ33(T−s)

δ33

)
+ (σ2

32 + σ2
33)

(
ρ2

δ32

δ22 − δ33

(
1− e−δ22(T−s)

δ22

− 1− e−δ33(T−s)

δ33

)
+

ρ3
1− e−δ33(T−s)

δ33

)2]
ds (19)

5.6 3-Factor Independent Model

The 3-factor independent dynamics under the Q-measure from equation (16) has 5 fewer
parameters than the dependent model. The instantaneous force of mortality is

µx,t(0) = Z1,t + Z2,t + Z3,t

The solution to the ordinary differential equations is

Bi(t, T ) =
1− e−δi(T−t)

δi
(20)

where i = 1, 2, 3 for each factor and

C(t, T ) =
1

2

∫ T

t

3∑
j=1

(
ΣTB(s, T )B(s, T )TΣ

)
jj
ds
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The constant term C(t, T ) becomes

C(t, T ) =
1

2

[
σ2

1

δ3
1

(
2e−δ1(T−t) − 1

2
e−2δ1(T−t) + δ1(T − t)− 3

2

)
σ2

2

δ3
2

(
2e−δ2(T−t) − 1

2
e−2δ2(T−t) + δ2(T − t)− 3

2

)
σ2

3

δ3
3

(
2e−δ3(T−t) − 1

2
e−2δ3(T−t) + δ3(T − t)− 3

2

)]
(21)

5.7 Nelson-Siegel Model

Christensen et al. (2009) present a Nelson-Siegel parametric model for the yield curve
with a 3-factor Gaussian model for the dynamics. This model is not consistent but
provides a contrast in assessing the models. This is a restricted version of the 3-factor
dependent model. The Q-measure dynamics of the survival curve are given by equation
(17). The solution is

B1(τ) = −τ

B2(τ) = −1− e−δτ

δ

B3(τ) = −
[1− e−δτ

δ
− τe−δτ

]
(22)

The solution for C(τ) is given in Christensen et al. (2009).

5.8 Three-Factor Consistency Test

For the 3-factor models the survival curve, or more specifically the curve of the average
force of mortality, is

Mx,t(τ) = −B1(τ)

τ
Z1,t −

B2(τ)

τ
Z2,t −

B3(τ)

τ
Z3,t +

C(τ)

τ

For the 3-factor dependent model this becomes

Mx,t(τ) =
1

τ

[
ξ0 + ξ1(T − t) + ξ2(t)

1− e−δ11(T−t)

δ11

+ ξ3
1− e−2δ11(T−t)

2δ11

+

ξ4(t)
1− e−δ22(T−t)

δ22

+ ξ5
1− e−2δ22(T−t)

2δ22

+ ξ6(t)
1− e−δ33(T−t)

δ33

+

ξ7
1− e−2δ33(T−t)

2δ33

+ ξ8
1− e−(δ22+δ33)(T−t)

δ22 + δ33

]
(23)

The force of mortality is

µx,t(τ) = ξ1+ξ2e
−δ11(T−t) + ξ3e

−2δ11(T−t) + ξ4e
−δ22(T−t) + ξ5e

−2δ22(T−t)

+ ξ6e
−δ33(T−t) + ξ7e

−2δ33(T−t) + ξ8e
−(δ22+δ33)(T−t)
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This shows that the addition of a third independent factor to the 2-factor dependent
model does not change the model consistency.

For the Nelson-Siegel model the average force of mortality is

Mx,t(τ) = Z1,t +
1− e−δτ

δτ
Z2,t +

[
1− e−δτ

δτ
− e−δτ

]
Z3,t −

C(τ)

τ
(24)

5.8.1 3-Factor Model - Real World Measure

The factor dynamics are estimated based on the independent factor model under the real
world measuredZ1,t

dZ2,t

dZ3,t

 =

κ1 0 0
0 κ2 0
0 0 κ3

µ1

µ2

µ3

−
Z1,t

Z2,t

Z3,t

 dt+

σ11 0 0
0 σ22 0
0 σ32 σ33

dW P
1,t

dW P
2,t

dW P
3,t.


The drift term under the real-world measure is the same for all the 3-factor models.

Under the independent and Nelson-Siegel models the σ32 term is equal to zero.
Under the P-measure the average force of mortality curve becomes

Mx,t(τ) = −B1(τ)

τ
Z1,t −

B2(τ)

τ
Z2,t −

B3(τ)

τ
Z3,t +

C(τ)

τ

The average force of mortality for the dependent model is

Mx,t(τ) =

[
ρ1

1− e−δ11(T−t)

δ11

]
Z1,t

τ
+

[
ρ2

1− e−δ22(T−t)

δ22

]
Z2,t

τ
+

[
ρ2

δ32

δ22 − δ33(1− e−δ22(T−t)

δ22

− 1− e−δ33(T−t)

δ33

)
+ ρ3

1− e−δ33(T−t)

δ33

]
Z3,t

τ
− C(τ)

τ

The average force of mortality for the independent model is

Mx,t(τ) =

[
1− e−δ11(T−t)

δ11

]
Z1,t

τ
+

[
1− e−δ22(T−t)

δ22

]
Z2,t

τ
+

[
1− e−δ33(T−t)

δ33

]
Z3,t

τ
− C(τ)

τ

The constant adjustment terms, C(τ), is given in equations (19) and (21) for the depen-
dent and independent 3-factor models respectively. The Nelson-Siegel average force of
mortality curve is given by equation (24), with the constant adjustment term C(τ) given
in Christensen et al. (2009).

6 Model Estimation

6.1 Kalman Filter

The Kalman filter is an optimal linear estimator, Kalman (1960). The Kalman filter
provides a recursive solution to the discrete linear filtering problem, see Welch and
Bishop (1995). The filter is optimal since it minimises the error covariance. The Kalman
filter has been increasingly used in financial applications including estimating affine term
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structure models, Babbs and Nowman (1999) and Andersen and Lund (1997). The
Kalman filter is based on a set of state-space equations with a linear stochastic difference
equation for the unobservable factors of the system, Z, where Z has n-dimensions. This
is the transition system and is given in discrete form by

Zt = A× Zt−1 +B + ηt−1

The matrix A ∈ Rn×n, assumed constant, gives the relationship between the previous
state of the factor, Zt−1, and the current state, Zt. The matrix B ∈ Rn is an external
control for the factors.

The second equation of the state-space representation is the measurement system
relating the unobserved factors to observed data, M , where M has m-dimensions.

Mt = H × Zt + C + εt

The matrix H ∈ Rm×n, assumed constant, gives the relationship between the current
factor of the process, Zt, and the measurement Mt. A constant C ∈ Rm provides external
control to the measurement equation.

The random variables ηt ∈ Rn×n and εt ∈ Rm×m are the transition and measurement
noise respectively. They are assumed to be independent and normally distributed,

ηt ∼ N(0, Q)

εt ∼ N(0, R)

The measurement system noise covariance, R ∈ Rm×m, is assumed constant. The transi-
tion system noise covariance, Q ∈ Rn×n, is determined by the transition system dynamics.
We assume measurement noise is independent, so that R is a diagonal matrix.

The Kalman filter estimates the unobserved states, Zt, at each time interval and
uses feedback from the measurements, Mt to update estimates. The Kalman filter has
time update equations and measurement update equations. The time update equations
project the current state and error covariance to obtain an estimate for the next time
step. The measurement update equations incorporate new information to improve the
estimate from the time update equations.

The time update equations are,

Ẑ−t = A× Ẑt−1 +B × ut
P̂−t = A× P̂t−1 × A

′
+Q.

When initialising the filter, the starting values for the recursion are the unconditional
mean, Z0, and variance, P0, of the transition system. These are calculated from historical
data given by

Ẑ−t = A× Z0 +B × ut
P̂−t = A× P0 × A

′
+Q.

The Kalman Gain, K, minimizes the covariance error of the system. It weights
the difference between the actual measurement, Mt, and the predicted measurement,
HẐ−t +C. As the measurement error covariance approaches zero, the actual measurement
is weighted more heavily.
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The error term and the residual variance-covariance matrix is

εt = Mt − C −H × Ẑ−

St = H × P̂−t ×H
′
+R.

These two quantities determine the standardised residuals,

et =
εt√
St

The Kalman Gain is then calculated,

Kt =
P̂−t ×H

′

St

The measurement update equations are,

Ẑt = Ẑ−t +Kt

(
Mt −H × Ẑ−t

)
P̂t = (I −Kt ×H)× P̂−t .

Under the assumptions of the state-space model, where all the prediction errors are
Gaussian, the Kalman filter maximizes a multi-variate normal likelihood. The likelihood
is computed for each recursion step of the filter with

l(θ) = −1

2

N∑
t=1

[
nln(2π) + ln|St|+ ε

′

tSt
−1εt

]
.

Since we require the optimal set of parameters, θ̂, that maximizes the likelihood, this is
computed from

θ̂ = argmaxθl(θ).

The Kalman filter is used to compute the likelihood for a given parameter set. To find
the optimal parameter set, a non-linear optimiser recursively calls the Kalman filter to
solve for parameter estimates.

6.2 Estimation Method

The complete state-space formulation of the survival curve model, in matrix form, is
given by

Mt = B′Zt − C + εt εt ∼ N(0, R)

dZt = K [µ− Zt] dt+ ΣdW

For the Kalman filter, the system is implemented in a discrete form as

∆Zt =
(
I− e−K

)
(µ− Zt) + ηt

ηt ∼ N(0, Q)

Q =

∫ 1

0

e−Ksσσ′e−Ksds
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Details for Q are given in Christensen et al. (2009).
The estimation of the parameters is computed using

Mt = B′Zt − C + εt ε ∼ N(0, R)

Zt =
(
I − e−K

)
µ+ e−KZt−1 + ηt ε ∼ N(0, Q)

The structure of the measurement covariance matrix, R, is diagonal and allows for
the measurement error variance to increase for older ages. A constant measurement error
is assumed up to a specific age. After this age the measurement error variance is assumed
to increase exponentially with age based on the data. This models the measurement error
variance across all ages with three parameters. We could use a separate measurement
error for each age, but this would require 50 parameters for our data set. This is simplified
with the measurement error as a parametric curve. We reduce the number of parameters
to estimate from 50 down to 3. We specify the measurement error of the average force
of mortality as

εt ∼ N(0, R)

With the covariance matrix, R, constant over time and independent between ages. The
parametric form used for the diagonal of the covariance matrix, with all other entries
zero, is,

R(τ) =
1

τ

τ∑
i=1

[
rc + r1e

r2×i
]

(25)

where the values of rc, r1 and r2 are estimated as part of the parameter set, θ̂. This
specification enables the maximum likelihood and mean squared error to converge at the
optimal parameter set.

6.3 Bootstrapping State-Space models

The parameter estimates of the real-world drift terms are found to have wide confidence
intervals. Because of the flat likelihood at the optimal parameter estimate values and
the potential non-linearities in the model a bootstrap method is used to re-sample the
observed data with the standardised residuals from the optimal Kalman filter parameter
estimates. This produces a distribution of parameter estimates that is asymptotically
Gaussian.

The re-sample method is detailed in Stoffer and Wall (2004). The process used
is as follows:

1. Determine the standardized residuals from the optimal parameter set

et =
εt√
St

(26)

2. Re-sample the standardized residuals with replacement to generate a bootstrap set
of residuals, e∗t excluding the first four residuals because of Kalman filter start up
irregularities.
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3. Recompute the transition and measurement equations given the bootstrap residu-
als, e∗t .

Z∗t =
(
I − e−K

)
µ+ e−KZ∗t−1 +

e∗t√
St

M∗
t = B′Z∗t − C +Kt

e∗t√
St

4. Use the bootstrap data set, M∗
t , to estimate a new set of parameters that maximize

the likelihood,

θ̂∗ = argmax∗θl(θ
∗)

where θ∗ is the parameter set determined from the bootstrapped data set M∗
t .

5. Repeat steps 2-4 300 times to obtain a sample distribution for each of the parameter
estimates.

7 Estimation Results

7.1 Model Goodness of Fit

Results from the estimation and assessment of the five models are presented and discussed
in this section. Table (1) shows the maximum Log Likelihood and the Root Mean Squared
Error (RMSE) for each of the models. The 2- and 3-factor models all have similar log
Likelihood and RMSE. The 3-factor dependent model estimates 20 parameters and 294
latent factors (3 factor estimates for each of the 98 years of data we tested).

Models were compared with a standard Likelihood Ratio (LR) test, since all models
are a subset of the 3-factor dependent model. The null hypothesis is that an increase
in the number of parameters does not significantly improve the fit. For all the 3-factor
models the null hypothesis is not rejected. Extra parameters do not improve the fit of
the 3-factor models. The 2-factor models are rejected in favour of the 3-factor models.

3-Factor 3-Factor 3-Factor 2-Factor 2-Factor
Dependent Independent Nelson-Siegel Dependent Independent

Log Likelihood 31672 31805 31707 29222 29276
RMSE 0.00088 0.00090 0.00094 0.00195 0.00221

No. of Model Parameters 20 15 13 15 11
No. of Factors Estimated 294 294 294 196 196
Parameter Restrictions - 5 7 203 207
Likelihood Ratio Test - <0 <0 4900 4792

∆AICb - <0 <0 5355 4983

Table 1: Comparison of Log Likelihood, RMSE and the number of parameters estimated for

each model. A Likelihood Ratio test and AICb is also performed.

A modified Akaike Information Criteria (AIC) test for state-space models is also
performed, Cavanaugh and Shumway (1997). The AICb test uses the bootstrapped
Log Likelihood results to estimate the penalty term. There is no improvement in using
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ML 2-Factor 95% Confidence 2-Factor 95% Confidence
Estimates Dependent Lower Upper Independent Lower Upper

δ11 -0.09224 -0.09686 -0.09180 -0.09072 -0.09577 -0.08920
δ21 0.23533 0.21922 0.27258 - - -
δ22 0.01208 -0.00242 0.01893 0.04031 0.03612 0.05131
ρ1 0.02938 0.02552 0.03470 - - -
ρ2 0.56477 0.49948 0.58019 - - -
κ11 0.04766 0.05600 0.38681 0.00180 0.00010 0.00210
κ22 0.01092 0.00011 0.01103 0.01266 0.00014 0.01622
µ1 0.39532 0.13192 0.26123 0.01197 -0.04011 0.09040
µ2 -0.01392 -0.06527 0.03513 -0.19773 -0.19999 0.34400
σ11 6.347e-03 3.074e-03 7.371e-03 4.851e-04 2.810e-04 5.519e-04
σ21 1.231e-02 9.373e-03 1.258e-02 - - -
σ22 1.790e-03 8.286e-04 1.901e-03 1.131e-02 7.682e-03 1.163e-02
r1 2.237e-09 6.352e-10 7.569e-09 7.555e-10 2.316e-10 1.427e-09
r2 0.21817 0.19642 0.26022 0.25390 0.23649 0.29648
rc 4.323e-08 1.950e-08 1.338e-07 3.407e-08 1.769e-08 6.595e-08

Table 2: 2-Factor Dependent and Independent Model Parameter Estimates.

the 3-factor dependent model over the other 3-factor models, although the 2-factor models
were rejected. The LR and AICb tests are calculated as

LR = 2
[
log L(θ̂)3f − log L(θ̂)nest

]
∼ χ2(q) (27)

AICb = −2log L(θ̂) + 2

[
1

N

N∑
i=1

−2log L(θ̂i
∗
)− (−2log L(θ̂))

]
(28)

where q is the number of parameter restrictions, N is the number of bootstrap distribu-
tions and L(θ̂i

∗
) is the maximum likelihood for ith bootstrap distribution. The number

of bootstrap distributions used in all the model is 300.

7.2 Parameter Estimates

Table (2) gives the estimated parameters for the 2-factor dependent and independent
models along with 95% confidence intervals from the state-space bootstrapping method
described in section (6.3). All the δ parameters of the independent model are significant.
The confidence interval for the δ22 parameter of the dependent model includes zero,
indicating this parameter is not significant and this drift of the second factor, Z2, is
dependent on Z1 under the Q-measure.

The parameters ρ1 and ρ2, that scale B1(τ) and B2(τ) in equation (9) are significant
and different from 1. The larger value of ρ2 compared to ρ1 implies that B2 has more
impact for younger ages.

The κ parameters for the real-world drift process have wide bootstrap confidence
intervals, with lower bounds close to zero, indicating a random walk, and their corre-
sponding µ parameter estimates are unreliable. κ11 has a wide confidence interval, with
the MLE estimate outside this range, this parameter is also unreliable.
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(a) δ11 Estimation (b) ρ1 Estimation

(c) κ11 Estimation (d) µ1 Estimation

Figure 3: 3-Factor Dependent Model Bootstrap Distribution

The volatility matrix, Σ and the measurement variance parameters r1, r2 and rc for
both models are significant. The σ21 parameter estimate suggests correlation between
the Brownian motions of the unobserved stochastic process.

Table (3) shows the estimated parameters of the 3-factor dependent, independent
and the 3-factor Nelson-Siegel models. Results are similar to the 2-factor models. Factor
loading parameters are significant except for δ33 in the dependent model.

None of the real-world drift parameters for the 3-factor independent and Nelson-Siegel
model’s parameters are identifiable, they all have very wide confidence intervals. The 3-
factor dependent model has significant drift parameters, although the distribution of these
parameters are skewed and have a very high kurtosis due to a number of outliers. The
scale parameters, ρ, are significantly different from 1. There are 5 more parameters being
estimated in the dependent model over the independent model, and these parameters
are significant, although there is not a significant improvement in model fit in terms of
maximum likelihood or RMSE. Again, the Σ and measurement error variance parameters
were able to be identified.

Figure (3) displays the bootstrap distributions and table (4) shows the metrics for four
parameters from the 3-factor dependent model. We can see some problems in assuming
Gaussian distribution for all the parameters. The factor loading and scaling parameters
are approximately Gaussian, given the 300 bootstrap simulation that were performed.
We can see that δ11 is skewed and ρ1 has a number of outliers. The real-world drift
parameter κ11 is highly skewed (and high kurtosis) due to a small number of outliers
close to zero.
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δ11 ρ1 κ11 µ1

Kalman MLE -0.1406 0.0331 0.0154 -0.0665
Mean -0.1385 0.0356 0.0149 -0.0482

Median -0.1386 0.0356 0.0151 -0.0606
Standard Deviation 0.0028 0.0038 0.0015 0.0289

Skewness 0.7795 0.5735 -9.0787 1.7826
Excess Kurtosis 1.5687 4.8238 84.9490 2.8314

Table 4: Metrics of Bootstrap Distributions (3-Factor Dependent Model).

7.3 In-Sample Analysis

Figure (4) shows the percentage error of the survival curve estimates for each of the
models. The percentage errors are shown for years 1910, 1940, 1970 and 2000. The scale
of each error plot is different for above and below the age of 85, allowing more detail to
be shown below 85 where the percentage errors are lower. For the early years, 1910 and
1940, there are little differences between the models below the age of 85. In the years
1970 and 2000 the 3-factor models are significantly better. The 2-factor models do not
fit the survivor curve well over the age of 85, and this becomes worse in later observation
years.

Figure (5) shows the Mean Absolute Relative Error (MARE) of the fitted survivor
curve for all time periods. The 3-factor models provide a better fit, but the percentage
error of all models is low under age 85. Over age 85 the 3-factor models are required
to capture the variation in the survival curve. There are limited differences between the
3-factor models.

7.4 Residual Analysis

Figure (6) shows the standardised force of mortality residuals, m̂, for the 2-factor depen-
dent and independent models. These residuals are re-constructed from the fitted average
force of mortality residuals, ê. The relationship is given in equation (29)

êx,t(τ) =
1

τ

τ−1∑
i=0

m̂x+i,t (29)

Figure (6) shows the positive and negative residuals for the models. They show a
good fit before 1960. After 1960 the 2-factor models residuals are less random than the
3-factor models. It is of interest to note that the 1960’s was the period when the reporting
of the Swedish population estimates changed.

Figure (7) show the standardised residuals for the 3-factor dependent, independent
and Nelson-Siegel models. The additional factor captures the structural change in mor-
tality rates after 1960. All the 3-factor model residual patterns are similar, but there
some noticeable ‘cohort effects’ that cannot be captured by the model.

7.5 Estimated Factor and Factor Loadings

The latent factors and the factor loadings for the 2-factor dependent model and inde-
pendent models are shown in Figures (8) and (9). The first factor, Z1, is similar in both
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(a) Percentage Error year 1910 (b) Percentage Error year 1940

(c) Percentage Error year 1970 (d) Percentage Error year 2000

Figure 4: 2 and 3-Factor Survival Curve Percentage Errors

Figure 5: 2 and 3-Factor Survival Curve MARE
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(a) Dependent Model Residuals (b) Independent Model Residuals

Figure 6: 2-Factor Model Residuals

(a) Dependent Model Residuals (b) Independent Model Residuals

(c) Nelson-Siegel Model Residuals

Figure 7: 3-Factor Model Residuals
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(a) Factors (b) Factor Loadings

Figure 8: 2-Factor Dependent Model

(a) Factors (b) Factor Loadings

Figure 9: 2-Factor Independent Model

models and shows the general mortality trend. This factor, and mortality rates, were
slowly improving between 1910 and 1970 with a fairly large variation between years. Since
the 1970’s the improvement trend has increased with a lower volatility between years.
The second factor, Z2, also similar in both models, decreases between 1910 and 1960.
Since 1960, the volatility is lower and the downward trend has stopped. The 2-factor
models do not fit the change in mortality rates after this period, as seen in the residuals.
This change in trend from the 1960’s has had more of an effect on the population over
85. This is seen in figures (4) and (5) where the 2-factor model fit becomes substantially
worse in observation years 1970 and 2000 for people over the age of 85.

The first factor loading, B1, for both models shows the general shape of the average
force of mortality curve. The different shape of factor loading B2 in the dependent and
independent models is due to different risk-neutral drift specifications of the models.
The dependent model allows for a negative but increasing exponential curve. This has
a definite benefit in the fitting performance over the independent model for people over
the age of 85, as shown in figure (5).

The factors and factor loadings for the 3-factor dependent model are shown in figure
(10). The factors Z2 and Z3 are very similar to the 2-factor results. Z3 has the same
downward slope as Z2 in the 2-factor models. This trend also stops around 1960. The
slope of Z2 is greater then Z1 in the 2-factor models after 1970. The general trend of
mortality rates has been improving faster than can be fitted with the 2-factor models.
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(a) Factors (b) Factor Loadings

Figure 10: 3-Factor Dependent Model

(a) Factors (b) Factor Loadings

Figure 11: 3-Factor Independent Model

The additional factor, in this case Z1, captures the mortality trend after 1960. This
factor is level until the 1960s, with some volatility between periods, then increasing at a
constant rate.

The 3-factor dependent model also allows for a negative but increasing factor loading,
B3. Z3 represents the trend before 1970 and Z1 after, so that the effect of these trends
on mortality is given by the factor loadings B3 and B1 respectively. Mortality rates in
the older population (over 85) have been improving faster than the rest of the population
until 1970, but since then the rate of improvement has been decreasing compared to
the rest of the population. A similar interpretation based on figure (11) applies for the
3-factor independent model.

Although there are fewer parameters, the Nelson-Siegel model does not perform sig-
nificantly worse then the consistent models. The Nelson-Siegel factors and factor loadings
are shown in figure (12). The factor load B1 is constant forcing the factor Z1 to weight
all ages the same. This loss of flexibility gives a worse fit in the older ages. The factors
Z2 and Z3 appear very similar with each factor having opposite effects on the mortality
rate, as indicated by their factor loadings.
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(a) Factors (b) Factor Loadings

Figure 12: 3-Factor Nelson-Siegel Model

(a) Factor Z1 (b) Factor Z2 (c) Factor Z3

Figure 13: 3-factor Independent Model Robustness - Factors

7.6 Model Robustness

Figures (13) and (14) show the robustness of the estimated factors and factor loadings
to starting year in the data set. The 3-factor independent model was re-run a number of
times with different starting years. Every 10 years from 1910 to 1980 was assessed. The
data set finishes in the year 2007. We can see very similar results for all the factors and
factor loadings for each starting year.

The factor loadings B1 and B3 estimates are both very stable for each starting year.
The factor loading B2 shows some variation, although the only deviation is in the 1910
and 1920 starting years. For the two identified periods of different trends, pre- and
post-1970, this demonstrates the robustness of the consistent models across time.

8 Conclusion

This paper has developed and assessed a range of models for survival curves based on the
Affine Term Structure Models used in interest rate modelling. We have derived closed-
form expressions for the risk-adjusted survival curve and estimated model parameters
under an “essentially affine” model. Models have included 2- and 3-factor models in the
consistent framework. The goal of this framework is to produce consistent forecasts that
can be used in pricing and risk management applications.
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(a) Factor B1 (b) Factor B2 (c) Factor B3

Figure 14: 3-factor Independent Model Robustness - Factor Loadings

The data set used to estimate and compare the models was Swedish male mortality
for ages from 50 to 99 over the years 1910 to 2007. The 3-factor models performed better
than 2-factor models. Of the 3-factor models, an independent model is recommended
that is both parsimonious and consistent. The models are robust to the starting year
used for estimation and the Mean Absolute Relative Error (MARE) of the fitted survival
curves for all the 3-factor models are very low.

The approach assessed here has ready applications to risk management and pricing of
longevity risk. Traded instruments can be used to calibrate the price of risk in the model.
The consistent framework shows that across time the models do not require re-calibration
and can be effectively used for assessing capital requirements for risk management as well
as pricing and hedging longevity risk for insurers and pension funds.

9 Acknowledgement

The authors acknowledge the financial support of ARC Linkage Grant Project LP0883398
Managing Risk with Insurance and Superannuation as Individuals Age with industry
partners PwC and APRA.

31



References

Andersen, T., and J. Lund, 1997 Estimating continuous-time stochastic volatility
models of the short-term interest rate. Journal of Econometrics 77: 343–377.

Babbs, S. H., and K. B. Nowman, 1999 Kalman Filtering of Generalized Vasicek
Term Structure Models. The Journal of Financial and Quantitative Analysis 34: 115.

Bjork, T., and B. J. Christensen, 1999 Interest Rate Dynamics and Consistent
Forward Rate Curves. Mathematical Finance 9: 323–348.

Cavanaugh, J. E., and R. H. Shumway, 1997 A Bootstrap Variant Of AIC For
Staet-Space Model Selection. Statistica Sinica 7: 473–496.

Christensen, J. H. E., F. X. Diebold, and G. D. Rudebusch, 2009 An arbitrage-
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