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Abstract

Pay-as-you-go (PAYG) pension schemes are heavily affected by demographic risks.
To mitigate the financial burden, mixed pension schemes that combine elements of
funding and PAYG have been proposed. In this paper, we introduce a mixed scheme
framework designed for a shrinking working-age population given a specific level of
pension expenditure. We evaluate its performance using both the one-year ruin
probability and the Value at Risk of the accumulated deficits over time. We also
examine the implications of guaranteeing a return of zero on the investments within
the funding scheme. Furthermore, we explore the creation of a buffer fund that
invests part of the capital in the financial markets, thereby alleviating the financial
pressures of the PAYG part. Our findings indicate that, although the proposed
mixed framework does not hedge against demographic risk, it enhances the financial
health of the system, delaying the need for pension reforms as a result.
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1 Introduction

Public pension systems are usually financed on a Pay-As-You-Go (PAYG) basis, where
pensions for retirees are paid by the contributions of current workers. This scheme
requires an equilibrium between the benefits paid to retirees and the contributions made
by the working-age population. In practice, surplus funds generated during periods of
economic prosperity are often set aside to create a buffer fund, which is used to cover
potential future cash shortfalls.1

Population ageing is accelerating at an unprecedented rate. While the total popula-
tions in some countries are declining, the global population is experiencing a significant
increase in the proportion of older individuals. In 2020, for the very first time in history,
the number of people aged 60 and over surpassed the number of children younger than
five. By 2050, the world’s population of people aged 60 and over is expected to double
(United Nations, 2023).

Ageing is the result of demographic trends in life expectancy and fertility. In OECD
countries, life expectancy at age 65 is projected to increase by 3.9 years for women
and 4.5 for men by 2065 while current fertility rates of 1.67 are well below the level
that ensures population replacement.2 These demographic trends significantly impact
population structure, with an old-age to working-age ratio – defined as the number of
people over 65 per 100 working-age individuals (ages 20 to 64) – rising from 20 in 1990
to 30 in 2020 across OECD countries. This ratio is expected to reach a value of 53 in
the next 30 years (OECD Publishing, 2021).

The COVID-19 pandemic has caused by far the largest shock to European economies
since World War II, significantly impacting employment across many countries onwards.
Under a pre-pandemic scenario, approximately 5 million jobs were projected to be cre-
ated in Europe over the next decade; however, the pandemic has reduced this value by
up to one and a half million, see Ando et al. (2022).3 This situation worsens the financial
sustainability of the PAYG scheme with fewer contributors financing each retiree. While
the financial consequences of an increase in life expectancy on pension sustainability are
gradual and long-term, the decline in employment rates poses immediate risks to the
equilibrium of the scheme.

The decreasing ratio of workers to pensioners puts pressure on existing pension sys-
tems and demands new approaches to guarantee long-term sustainability in a changing
world. In Europe the common trend of the pension crisis is a wave of parametric ad-
justments such as increases in the retirement ages or a decrease in pension indexation,
amongst others (see Whitehouse (2009a,b) and OCDE (2011); OECD (2013, 2012, 2017).
Others, however, have implemented structural reforms and adopted non-financial defined

1See Stewart and Yermo (2009) for specific examples and pension fund governance.
2In developed countries, about 2.1 children per woman are needed to maintain a stable total

population (OECD Publishing, 2021).
3For further financial consequences of the lockdown on the economy see Boado-Penas et al.

(2022) and Caulkins et al. (2022).
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contribution schemes that reproduce the logic of a funded defined contribution plan but
under a PAYG framework. Examples of this approach include Italy, Latvia, Poland
and Sweden.4 Other countries such as Australia, Canada, Norway, Sweden, Latvia and
Poland, tackle these challenges by combining funded and PAYG elements within the
mandatory pension system. In particular, Sweden allocates 86.5% of the pension contri-
butions to PAYG whereas Latvia and Poland allocate 70% and 62.6% respectively. The
remaining part accrues funded pension rights and earns the market rate of return, which
is in general greater than the PAYG rate of return, particularly in countries where the
working population is not growing. Therefore, it could be argued that funded schemes
should be preferred on a mean return basis only (see Boado-Penas et al. (2020)).

However, when variability of returns is considered, the choice between PAYG and
funding less obvious and there might be advantages of mixing PAYG and funded schemes
(Persson, 2002; De Menil et al., 2006). Indeed, Dutta et al. (2000); Devolder and Melis
(2015), and Alonso-Garćıa and Devolder (2016) show that diversification benefits arise
under a mean-variance setting. Boado-Penas et al. (2021) propose an alternative solu-
tion where the deficit of the scheme is covered by the state (sponsor of the plan) but
in return the individuals have to invest an amount of money into a fund. This invest-
ment is designed to repay the deficit at a particular level of probability and provide, in
expectation, some gains to contributors.

While pension reforms involve an inescapable trade-off between sustainability and
adequacy, it is essential to address the challenges of demographic ageing by adopting
measures that ensure a decent income in retirement.

The aim of this paper is to assess whether a mixed pension scheme could achieve
financial equilibrium in the PAYG component - exposed to the demographic risk - while
also ensuring that retirees receive a level of pension benefits comparable to those of
a pure defined benefit PAYG scheme. Specifically, we analyse whether the expected
returns generated by the fund of the non-PAYG component could, in expectation, fulfill
the payment promises of the PAYG component. We present the ruin probability of the
mixed scheme in presence and absence of a buffer fund that allows to lock away potential
surpluses of the scheme. Then, we extend our analysis to incorporate both the timing
and severity of the ruin by considering the value at risk of the accumulated deficit.

Following this introduction, the next section describes the mathematical modelling
of a pure PAYG and our mixed pension framework. Section 3 presents the risk measures
used to evaluate the effectiveness of the mixed scheme compared to the pure PAYG.
Section 4 provides a numerical illustration for a stylized population, based on realistic
long-term European ageing trends. Finally, Section 5 concludes.

4See Holzmann et al. (2012).
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2 Mathematical modelling

Our model seeks to mitigate the impact of a declining working population by combin-
ing PAYG financing - where income from contributions finance pension expenditures -
with funding, where assets are invested in financial markets. In this paper, all random
variables and processes live on the probability space (Ω,A,P). For any process {Yt} we
write Ey[.] for E[.|Y0 = y] and Vary[.] for Var[.|Y0 = y].

2.1 Pure PAYG pension framework

In a balanced PAYG, the total income from contributions Ct must be sufficient to cover
the pension expenditures Pt within the same year, that is,

Ct = Pt. (2.1)

In particular, rewriting the total income from contribution with respect to the contribu-
tion rate and the aggregate wage,5 the following relationship needs to be satisfied:

πt · St = Pt, (2.2)

where πt is the contribution rate at time t and St the aggregate wage of the working
population at time t.
Mathematically, the total pension expenditures and aggregate wages are defined as fol-
lows:

Pt = p̄t · rt,
St = s̄t · wt,

where p̄t and s̄t represent the average pension and salary at time t, respectively, while
rt denotes the number of retirees and wt the number of workers at t.

Equation (2.2) shows that the contribution rate should satisfy

πt =
Pt

St
=
p̄t
s̄t

rt
wt

= BRt ·DRt, (2.3)

where BRt and DRt represent the benefit ratio and dependency ratio at time t, re-
spectively. The benefit ratio, BRt, represents the financial factor and, as defined in
the theory of aggregate accounting (Jimeno et al., 2008; Alonso-Garćıa and Rosado-
Cebrian, 2021), illustrates the relationship between the average pension and salary. The
dependency ratio, DRt, is the demographic factor influenced by factors such as fertility,
unemployment, and longevity.

As shown in Equation (2.3) when targeting a specific benefit ratio BR and maintain-
ing a fixed number of retirees, r, a decrease in the number of workers, wt, results in an

5In this paper, we use the terms wage, salary and contribution base interchangeably.
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increase in the dependency ratio, DRt. Consequently, the required contribution rate, πt
would need to rise to ensure the financial equilibrium of the scheme.

In this paper, we assume that the government aims to maintain a constant level
of total pension expenditures, denoted as Pt = P , and a target level of benefit ratio,
BR while St decreases over time as a result of a declining working population wt. In
our framework, the number of contributors is modelled through w = {wt}, following an
Ornstein-Uhlenbeck process. This means that the number of contributors at time t is
represented by

wt = w0 · e−at + b(1− e−at) + δ

∫ t

0
e−a(t−s) dWw

s , (2.4)

where Ww = {Ww
t } is a standard Brownian motion, a > 0 is reversion speed, δ > 0 is

the volatility and b denotes the so-called long-term mean.

Note that for every t the random variable wt is normally distributed with the mean

E[wt] = w0 · e−at + b(1− e−at) = (w0 − b)e−at + b , (2.5)

and the variance

Var[wt] =
δ2

2a
(1− e−2at) . (2.6)

Therefore, increase in the dependency ratio is driven by a decrease in the working pop-
ulation.

The average salary s̄, as well as the contribution rate π are assumed to remain
constant throughout the analysed period.6 From here onwards, c̄ = π · s̄ represents the
total individual contribution to the pension scheme based on the individual wage s̄.

2.2 A mixed pension framework

Under a mixed pension scheme the total contribution rate π is divided into two parts: a
portion θ, which is invested into a risky fund F (funded component), and the remaining
portion 1− θ which is allocated to the PAYG scheme.

To model the evolution of the fund, we use a geometric Brownian motion. The value
of the fund at time t is then given by

Ft = F0e
µt+σW f

t , F0 = 1 , (2.7)

6An alternative scenario where the working population remains stable while the retired pop-
ulation increases would produce similar results with respect to the dependency ratio. In the
mathematical model of this paper, this adjustment would involve relocating the random compo-
nent within the study of ruin probability, yet the interpretation would remain similar.
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where µ, σ > 0 and W f = {W f
t } a standard Brownian motion. Note that W f and Ww

are independent Brownian motions. Further, we let F = {Ft} be a filtration generated
by (w,F ).

At t = 0, the investment in the risky fund is represented by Υ0 = θ · c̄ · w0. The
notation Υ has been introduced to distinguish between the new investments and the
fund itself, F .

In this paper, we examine, as a baseline scenario, the impact of providing a nominal
guarantee on Υ, ensuring a 0% return, so that the financial risk is not transferred to the
individual, who would only benefit from positive returns.7 We also consider the scenario
without the guarantee to evaluate its impact on the financial equilibrium of the mixed
scheme.

At the end of each period, we calculate the balance of the scheme, denoted as
R = {Rt}, by comparing the income from contributions (both PAYG and funding)
plus the non-negative returns on investments of the funding component with the pen-
sion expenditure. If the balance at time t is positive,8 the surplus can either be placed
into a buffer fund B = {Bt} at a 0% return or reinvested into the risky fund F .

Mathematically, the discrete (yearly) balance process R = {Rt} without a buffer
fund is expressed as:

Rt := (1− θ) · c̄ · wt +Υt−1 ·max{Ft/Ft−1, 1} − P . (2.8)

Including a buffer fund, the balance process Rb = {Rb
t} is given by:

Rb
t := Rt +Bt−1 = (1− θ) · c̄ · wt +Υt−1 ·max{Ft/Ft−1, 1}+Bt−1 − P . (2.9)

Note that the balance process with buffer fund at time t depends on the buffer fund
Bt−1 since the buffer fund evolves at 0% interest rate.9 We assume that if either Rt or
Rb

t is negative, the deficit of the scheme is absorbed by the government’s general budget.

3 Risk measures for the pension system

This section introduces two risk measures to compare the two schemes: the 1-year ruin
probability and the Value at Risk (VaR) of the deficit at predefined intervals.

7This guarantee is significant, especially considering that the inherent return of the PAYG
scheme is tied to the growth of the total contribution base, which, in this instance, is negative
due to the shrinking working-age population, see Settergren and Mikula (2005).

8In practice, the surplus could also be fully absorbed by the government’s general budget;
however, this alternative is not considered in our analysis.

9If the buffer fund would earn a different (deterministic) rate we would write Equation (2.9)
as Rb

t := Rt +Bt−1(1 + ib) with ib the yearly return on the buffer fund.
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3.1 1-year ruin probability with and without buffer fund

Proposition 3.1
Let the amount invested in the risky fund F at time t be denoted by Υt, i.e. Υt = θ · c̄·wt.
The 1-year ruin probability under a mixed pension scheme in absence of a buffer fund
is given by:

P[R1 ≤ y|w0] = E
[
Φ
(P + y −Υ0e

max{µ+σW f
1 ,0} − Ew0 [w1]

(1− θ) · c̄ ·
√

Varw0 [w1]

)]
, (3.1)

whereas the 1-year ruin probability in presence of a buffer fund is given by

P[Rb
1 ≤ y|w0] = P[R1 +B0 ≤ y|w0,Υ0] (3.2)

= E
[
Φ
(P + y −Υ0e

max{µ+σW f
1 ,0} −B0 − Ew0 [w1]

(1− θ) · c̄ ·
√

Varw0 [w1]

)]
, (3.3)

where Φ denotes the distribution function of the standard normal distribution, R1 is
balance at t = 1 as given in (2.8) and W f = {W f

t } is a standard Brownian motion.

Proof : Starting at time t = 0, the random balance at time 1, without a buffer, R1, is
expressed as:

R1 := (1− θ) · c̄ · w1 +Υ0 ·max{F1/F0, 1} − P .

Since w1 and F1 are independent, the claim follows directly by the law of total proba-
bility:

P[R1 ≤ y|w0,Υ0]

=
1√
2π

∫ ∞

−∞
e−

z2

2 P
[
(1− θ) · c̄ · w1 +Υ0 · emax{µ+σz,0} ≤ P + y

]
dz

=
1√
2π

∫ ∞

−∞
e−

z2

2 Φ
(P + y −Υ0 · emax{µ+σz,0} − Ew0 [w1]

(1− θ) · c̄ ·
√
Varw0 [w1]

)
dz

= E
[
Φ
(P + y − F0 · emax{µ+σW f

1 ,0} − Ew0 [w1]

(1− θ) · c̄ ·
√

Varw0 [w1]

)]
. (3.4)

Including a buffer at t = 0, denoted as B0, which earns a 0% return, an applying the
same arguments as in (3.4), would result in the following:

P[R1 +B0 ≤ y|w0, F0] = E
[
Φ
(P + y − F0 · emax{µ+σW f

1 ,0} −B0 − Ew0 [w1]

(1− θ) · c̄ ·
√
Varw0 [w1]

)]
.

□

Thus, from Proposition 3.1 it is clear that P[Rb
1 ≤ y|w0] = P[R1 + B0 ≤ y|w0] is

strictly decreasing in B0. In other words, including the buffer reduces the probability of
a deficit occurring in the scheme.
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Remark 3.2
A natural question arises: “Is the buffer fund sufficiently large to cover what the govern-
ment might anticipate as expected future deficits within a pre-specific horizon, or, should
the scheme reinvest into F to achieve a risky higher average return?” For instance, one
might require that the minimal buffer should be the amount that ensures the risk of
having a deficit after 1 year at α · 100% probability:

Bmin
0 = inf

{
x > 0 : Pw0 [R1 < −x] ≤ α

}
. (3.5)

If B0 > Bmin
0 , the difference could either remain in the buffer fund earning 0% return or

be invested in the risky asset.

Remark 3.3
In our setting, the state guarantees a 0% interest rate to contributors. Such a guarantee
imposes a cost on the state when the financial returns are negative. By offering this
guarantee, it is reasonable for the pension scheme (state) to participate in the gains of
the funded part while maintaining a basic amount invested in the fund to ensure sufficient
money is available to cover expected losses. Let Smin

0 denote the annual investment by
the state in addition to the contribution to the funded element Υ0, ensuring that the
guaranteed 0% return can be provided at a α probability level:

Smin
0 : = inf

{
x > 0 : P

[
(x+Υ0) · eµ+σW1 < Υ0

∣∣µ+ σW1 < 0
]
≤ α

}
= inf

{
x > 0 : P

[
x · eµ+σW1 < Υ0 · (1− eµ+σW1)

∣∣µ+ σW1 < 0
]
≤ α

}
.

As for the participation in the gains, the state may require a percentage q, such that

E
[
q · (eµ+σW1 − 1)1I

[µ+σW f
1 >0]

+ (eµ+σW1 − 1)1I
[µ+σW f

1 ≤0]

]
= 0 .

In other words, the state would participate in the gains at the rate of q when the return
is strictly positive, to compensate the event where the returns are negative, aiming for
a mean global return of zero.

As we require that E[eµ+σW f
1 ] = eµ+

σ2

2 > 1, such a q exists and is strictly smaller
than 1.

■

The choice of the parameter θ, representing the portion of contributions paid by scheme
participants and invested in the funded part, should not solely depend on the expected
financial sustainability of the mixed scheme, but also on the “no loss” condition for the
state. For example, as noted in Remark 3.3, the amount invested by the state at time
0, Smin

0 , to guarantee a 0%-return can be given by:

Smin
0 := inf

{
x > 0 : P

[
x · eµ+σW1 < θ · c̄ · w0 · (1− eµ+σW1) |µ+ σW1 < 0

]
≤ 0.05

}
.

It is clear that increasing θ also increases Smin
0 .

8



Note that Bmin
0 and Smin

0 can be seen as financial indicators reflecting the probability
of an unfavourable event occurring. Translating ruin probabilities into monetary values
enables us to assess the scheme’s viability by comparing these values with the actual
buffer fund level B or total income from contributions Ct.

3.2 Minimising the 1-year ruin probability through buffer reinvest-
ment

In this section, we select the probability that the balance at time t Rp
t , including a buffer,

will be negative after one year as our risk measure.

Over the course of the first year, the ruin probability depends on the initial value
of the buffer B0, the initial number of the working population w0, and the percentage
of the buffer p ∈ [0, 1] that is invested in a risky fund with no guaranteed return. The
buffer process {Bt} at the end of the first year, with a constant investment proportion
p, is given by:

Bp
1 = (1− p) ·B0 + p ·B0 ·

F1

F0
. (3.6)

The balance at time 1, Rp
1, using Equation (2.8) for t = 1, (3.6) and F1

F0
= eµ+σW f

1 , is
expressed as follows:

Rp
1 : = R1 + (1− p) ·B0 + p ·B0 · eµ+σW f

1

= (1− θ) · c̄ · w1 + θ · c̄ · w0 ·max
(
eµ+σW f

1 , 1
)
− P (3.7)

+ (1− p) ·B0 + p ·B0 · eµ+σW f
1 .

Note that the portion of the buffer fund invested does not have a nominal guarantee
and could therefore incur losses. The following Proposition 3.4 aims to determine when
it is more beneficial to invest a part of the buffer into the fund rather than keeping the
money frozen at a 0% interest rate.

Proposition 3.4
The 1-year ruin probability linked to the balance level (3.7) is given by:

ψ(B0, w0, p) := Pw0,B0 [R
p
1 < 0]

= E
[
Φ

(
P −Υ0 max{eµ+σW f

1 , 1} −B0 −B0p(e
µ+σW f

1 − 1)

(1− θ) · c̄ ·
√
Varw0 [w1]

− Ew0 [w1]√
Varw0 [w1]

)]
,

(3.8)

where Φ denotes the standard normal distribution function.
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Proof : The 1-year ruin probability is denoted by ψ. For the distribution of Rp
1 we have

with y ∈ R:

ψ(B0, w0, p) := Pw0,B0,Υ0
[Rp

1 ≤ y]

= E
[
Pw0

[
(1− θ) · c̄ · w1 +Υ0 max{eµ+σW f

1 , 1}+ (1− p) ·B0 + p ·B0 · eµ+σW f
1 − P ≤ y|W f

1

]]
= E

[
Φ

(
P + y −Υ0 max{eµ+σW f

1 , 1} −B0 −B0p(e
µ+σW f

1 − 1)

(1− θ) · c̄ ·
√
Varw0

[w1]
− Ew0

[w1]√
Varw0

[w1]

)]
.

■

Remark 3.5
Given (3.8), how does the ruin probability depend on the investment proportion p? Note

that the expression multiplying p is given by B0

(
eµ+σW f

1 − 1
)
. Therefore:

ψp(B0, w0, p) : =
d

dp
ψ(B0, w0, p)

= E

[
−

B0

(
eµ+σW f

1 − 1
)

(1− θ) · c̄ ·
√
Varw0

[w1]

× φ

(
P − F0 max{eµ+σW f

1 , 1} −B0 −B0p(e
µ+σW f

1 − 1)

(1− θ) · c̄ ·
√
Varw0 [w1]

− Ew0 [w1]√
Varw0 [w1]

)]
,

where φ is the density of the standard normal distribution.

Unfortunately, representation (3.8) does not enable the derivation of an explicit ex-
pression for the optimal investment strategy. Nonetheless, it is clear how to obtain
the optimal proportion p numerically. This involves investigating the properties of the
derivative ψp and finding its minimum with respect to p ∈ [0, 1].

Indeed, the sign of ψp(B0, w0, p) =
d
dpψ(B0, w0, p) will heavily depend on the combi-

nation of the parameters. A possible scenario is discussed in the example below.

Example 3.6
For the parameters a = 0.055, b = 5.56 · 106, δ = 35000, w0 = 107, σ = 0.2, µ = 0.02
a possible behaviour of the 1-year ruin probability of the balance, is given in Figure 1.
Here, it is assumed B0 = 108.
We observe that the investment of the buffer is lucrative in terms of the ruin probability.
The lowest ruin probability is achieved when the entire buffer is invested in risky assets.
Indeed, our ruin probability is reduced by a third from around 1% to 0.3%.

3.3 VaR of the deficit

A one-year time horizon can be seen as insufficient since it does not take into account
changes in the number of contributors and/or potential market shocks. Furthermore,
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Figure 1: The behaviour of the ruin probability depending on the buffer investment
proportion p for B0 = 108.

using ruin probability fails to account for both the timing and severity of the ruin. To
address these limitations, we consider the value at risk (VaR) of the accumulated deficit

over a five-year period – that is
5∑

i=1
Di – compared to a one-year period. If the probability

that the sum of the deficits of the next 5 years does not exceed a pre-specified level with
a certain probability, the pension scheme is considered to be financially sustainable, and
no changes of the contribution rate, retirement age or similar need to be introduced.

The Value at Risk (VaR) of the accumulated deficit over a 5-year period at a confi-
dence level α ∈ (0, 1) can be expressed as follows:

VaRα = inf
{
x : P

[ 5∑
i=1

Di > x
]
≤ 1− α

}
, (3.9)

where Dn is the deficit at the end of the n-th year, i.e.,

Dn := max{−Rp
n, 0} for n ≥ 1; (3.10)

with Rp
n representing the balance of the scheme at time n, assuming that the percentage

p of the buffer to be invested into the fund is fixed at the beginning of the period and
cannot be changed thereafter. Mathematically, for n ≥ 2

Rp
n =(1− θ) · c̄ · wn +Υn−1 ·max

(
eµ+σ(W f

n−W f
n−1), 1

)
− P

+ (1− p) ·Bn−1 + p ·Bn−1 · eµ+σ(W f
n−W f

n−1) .
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We denote the new buffer at time n− 1 by:

Bn−1 = max{Rp
n−1, 0} , (3.11)

since we assume that the state covers any deficit whenever Rp
n becomes negative.

Similar to the case where ruin probability is the target functional, determining the
optimal proportion p explicitly is not possible. However, since the distributions of a
geometric Brownian motion and an Ornstein-Uhlenbeck process are well-known, the
numerical calculations are straightforward. For our analysis, we need to determine the

distribution of
5∑

i=1
Di. This is done in Proposition 3.7.

First, we introduce the following notation where we relate the multi-year deficit
distribution to the 1-year ruin probability GR presented in Proposition 3.4. Let

GR(y;w0,Υ0, B0, p) = ψ(B0, w0, p)

to explicitely bring forward the dependence on the investment Υ and the level of deficit
y. With GR given by ψ in (3.8) we let recursively for y ∈ R+:

H1(y;w0,Υ0, B0, p) : = 1−GR(−y;w0,Υ0, B0, p) ,

H2(y;w0,Υ0, B0, p) : = Ew0

[
1−GR(−y −Rp

1 ∧ 0;w1,Υ1, R
p
1 ∨ 0, p)

]
= Ew0

[
H1(y +Rp

1 ∧ 0;w1,Υ1, R
p
1 ∨ 0, p)

]
...

Hn(y;w0,Υ0, B0, p) : = Ew0

[
Hn−1(y +Rp

1 ∧ 0;w1,Υ1, R
p
1 ∨ 0, p)

]
.

(3.12)

Proposition 3.7
For n ≥ 1, Hn(y;w0,Υ0, B0, p), given in (3.12), is the distribution of the sum

n∑
i=1

Di.

Proof : For y ∈ R+ it holds that

P[D1 ≤ y] = P[max{−Rp
1, 0} ≤ y] = P

[
[Rp

1 ≥ 0] ∪ [0 < −Rp
1 ≤ y]

]
= P[Rp

1 ≥ 0] + P[0 > Rp
1 ≥ −y]

= 1−GR(0;w0,Υ0, B0, p) +GR(0;w0,Υ0, B0, p)−GR(−y;w0,Υ0, B0, p)

= 1−GR(−y;w0,Υ0, B0, p) = H1(y;w0,Υ0, B0, p) .

The process {wt} is a Markov process. Furthermore, the increment W f
2 −W f

1 is inde-

pendent of W f
1 . Therefore, the distribution of D2 given w1 and W f

1 for y ≥ 0 is:

P
[
D2 ≤ y|w1,W

f
1

]
= 1−GR(−y;w1,Υ1, B1, p) .
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Note that in our case Υ1 = θ · c̄ · w1, i.e., the additional variable Υ is not necessary.
However, to emphasise the dependence on the amount of the investment Υ1, we keep Υ1

as a separate variable.

By the law of total probability we get:

P
[
D1 +D2 ≤ y

]
= Ew0

[
P
[
D1 +D2 ≤ y

∣∣w1,W
f
1

]]
= Ew0

[
P
[
D2 ≤ y −D1

∣∣w1,W
f
1

]]
= Ew0

[
1−GR(−y +D1;w1,Υ1, B1, p)

]
= Ew0

[
1−GR(−y −Rp

1 ∧ 0;w1,Υ1, R
p
1 ∨ 0, p)

]
= H2(y;w0,Υ0, B0, p) .

Analogously, one can proceed for D3, D4 and D5 etc. and derive the distribution of
n∑

i=1
Di for any n ∈ N. Recursively, we obtain for n > 2:

P
[ n∑

i=1

Di ≤ y
]
= Ew0

[
Hn−1(y +Rp

1 ∧ 0;w1,Υ1, R
p
1 ∨ 0, p)

]
= Hn(y;w0,Υ0, B0, p) .

□

Using (3.8), the distribution can be easily tackled numerically, for example using Monte
Carlo method.

4 Numerical illustration

In this section, we generate several scenarios for the development of the risky fund and
of the working population and calculate the 1-year ruin probability and the VaR of the
deficit at predefined intervals. Additionally, we examine the impact of not guaranteeing
a 0% return on the funded component. Considering the worst-case scenario from the
generated evolution paths, we analyse potential consequences and actions that should
be taken.

4.1 Assumptions

1. The initial number of contributors at time 0, w0, is set arbitrarily at 107.

2. The number of pensioners remains constant over time at 3.48 · 106. This value is
derived by multiplying w0 by the dependency ratio in 2020 from Eurostat (2021a).

3. The average annual salary, s̄, is EUR 36 · 103, based on the gross mean annual
earnings for the European Union – 27 countries (Eurostat, 2021b). This value is
assumed to remain constant over time.
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4. The average annual pension that needs to be covered by contributions is EUR
21 · 103.

5. The contribution rate is set at a constant 20.88%.10

6. The total pension expenditure at time t = 0, which remains constant throughout
the entire period of analysis, is

P := 21 · 103 · 3.48 · 106 = 73.08 · 109 .

7. The total income from contributions at time t = 0 is

C0 := π · s̄ · w0 = 0.2088 · 36 · 103 · 107 = 75.168 · 109 ,

with c̄ = π · s̄ = 75.168 · 102 EUR being the average contribution.

8. We assume that 95% of the contributions are allocated the PAYG part, while 5%
are invested in the risky fund described below.

9. The scheme has access to one risky fund that follows a geometric Brownian motion
according to Equation (2.7) with parameters σ = 0.2, µ = 0.02, F0 = 1. The initial
investment corresponds to 5% of the total contribution C0:

Υ0 = 0.05 · C0 = 0.05 · 75.168 · 109 = 37.584 · 108 EUR.

10. The evolution of the working population over time is modeled by an OU process
as specified in Equation (2.4). By calibrating the number of contributors to the
dependency ratio of Eurostat (2021a), we obtain a = 0.055, b = 5.56 · 106, δ =
35000, w0 = 107. As shown in Figure 2 the number of workers decreases rapidly
over a period of 80 years. Given the constant number of retirees, this substantial
decrease results in a dependency ratio that almost doubles over the same time
horizon, closely mimicking the projections for the European Union (27 countries)
from Eurostat (2021a).

4.2 Ruin probability

4.2.1 1-year time horizon

We analyse the impact of offering a nominal guarantee in the investment Υ under the
worst-case scenario of our simulation on the scheme’s balance and the 1-year ruin proba-
bility. The consequences of including a buffer fund, B, that provides a 0% return are also

10This contribution rate is slightly higher than the balanced contribution rate at time t = 0
to ensure the pension scheme has a small initial surplus at the start of the analysis. This rate
corresponds to the balanced contribution rate that would provide a replacement rate of 60% of
the salaries.
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Figure 2: Simulated paths of the evolution of the working population and the depen-
dency ratio over a period of 80 years

(a) Working population.

(b) Dependency ratio.

analysed. According to (3.4) in Proposition 3.1, the ruin probability is strictly decreas-
ing in B0 because the buffer earns a 0% return and can lock away potential surpluses to
finance future deficit.

Under various rules of the scheme (with or without guarantees on the funded part
and/or with or without a buffer fund), determining whether the mixed scheme is superior
to the pure PAYG requires comparing the balance in each analysed case to the balance
of the pure PAYG denoted by RPAYG

t :

RPAYG
t := c̄ · wt − P. (4.1)

No guarantee on Υ and no buffer fund

The balance at time t in the absence of a buffer fund and without any guarantee on
the investment Υ can be expressed as:

Rng
t := (1− θ) · c̄ · wt +Υt−1 · Ft/Ft−1 − P. (4.2)
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Figure 3: Simulated paths of the evolution of the working population and the fund over
a period of 10 years

(a) Working population.

(b) GBM, with the initial value Υ0 = 3.7584 · 109.

Nominal guarantee on Υ without a buffer fund

In this case, the balance at time t, Rt as per (2.8) is expressed as:

Rt := (1− θ) · c̄ · wt +Υt−1 ·max{Ft/Ft−1, 1} − P .

With respect of the filtration Ft−1, the expressions above remain random variables as Ft

and wt are realizations of the stochastic working population and financial asset evolution.

Worst case scenario in our simulations (Figures 3a and 3b)

As shown in Figures 3a and 3b, the worst-case scenario yields w1 = 9.7 · 106 and
Υ0 · F1 = 3.1 · 109, where Υ0 = 3.7584 · 109 as given in Assumption 9, Section 4.1. We
initially assess whether the mixed system outperforms the pure PAYG in absence of a
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guarantee, that is whether Rng
1 (4.2) outperforms RPAYG

1 (4.1):

0.95 · 0.2088 · 36 · 103 · w1 +Υ0F1 = 0.95 · 0.2088 · 36 · 103 · 9.7 · 106 + 3.1 · 109

= 72.3673 · 109 < 73.08 · 109 = P ,

0.2088 · 36 · 103 · w1 = 72.9129 · 109 < 73.08 · 109 = P ,

where P is calculated in Assumption 6, Section 4.1. This indicates a deficit in both
the mixed scheme and the pure PAYG, as the scheme’s income is lower than its pension
expenditure. However, the deficit amounts to only 0.99% and 0.24% of pension spending
P for the mixed and PAYG schemes, respectively.

If the return on investment, Υ, is guaranteed to be at least 0%, then the balance, Rt

would exceed that of the pure PAYG scheme:

0.95 · 0.2088 · 36 · 103 · w1 +Υ0max{F1, 1} = 0.95 · 0.2088 · 36 · 103 · 9.7 · 106 + 37.584 · 108

= 73.0257 · 109 < P .

Nonetheless, it still remains below P for the worst-case scenario, with a deficit amounting
to 0.09% of pension expenditure.

Given this shortfall, the government might need to invest additional funds on top
of the regular investment Υ in other to avoid the deficit. The minimum amount at the
confidence level α = 0.05 invested by the state, as per Remark 3.3, equals

Smin
0 = 1.7322 · 109 .

This quantity corresponds to approx 2.37% of the total pension expenditure.

Ruin probability

Whilst informative, assessing the effectiveness of the proposed scheme under a worst-case
scenario ignores what occurs in all other less adverse situations. The ruin probability,
in this case, is a more suitable measure. Indeed, by doing so, the following results are
obtained:

P[0.2088 · 36 · 103 · w1 ≤ P ] = 0.1191 , pure PAYG,

P[0.95 · 0.2088 · 36 · 103 · w1 +Υ0F1 ≤ P ] = 0.2669 , mixed, no guarantee,

P[0.95 · 0.2088 · 36 · 103 · w1 +Υ0max{F1, 1} ≤ P ] = 0.0277 , mixed, with guarantee.

As observed in the worst-case scenario where the three cases result in a deficit, the over-
all probability of having a deficit after one year is strictly positive. Interestingly, the
mixed scheme without guarantees appears to underperform, with a higher ruin proba-
bility compared to the pure PAYG scheme. Introducing a guarantee on Υ significantly
reduces the probability of a deficit, now amounting to approximately one-fifth of the
ruin probability in the PAYG scheme. The probability under the mixed scheme with
guarantees is low; however, the state may aim to further decrease it by implementing a
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buffer fund. For α ≥ 2.77% the buffer fund (3.5) naturally equals 0, as the mixed scheme
with guarantees and no buffer fund has a ruin probability of 0.0277. However, aiming
for a confidence level of α = 1%, we obtain

Bmin
0 = 1.098 · 108.

In other words, by investing 0.15% of the pension expenditures P , we can reduce the
ruin probability to just 1% in presence of guarantees.

However, given the long-term nature of pension schemes, it could be argued that
assessing our proposed pension framework over a one-year period might be too short, as
investments cannot unfold its potential.

4.2.2 t-year time horizon

In this subsection, we consider that the initial investment Υ0 is left for t years to earn
a financial return.11 Under this assumption, the ruin probability of the mixed scheme
at time t, financed through 95% of the PAYG contributions at time t and the initial
investment Υ0 that earns financial return over the period of t years is:

P[0.95 · 0.2088 · 36 · 103 · wt +Υ0 ·max{Ft, 1} ≤ P ]. (4.3)

Firstly, let us compare the mixed scheme with the pure PAYG over a time horizon of
t = 10 years. Retrieving the worse-case scenario presented in Figures 3b and 3a, we
obtain w10 = 7.9·106 and Υ0F10 = 2.6·109, with Υ0 = 3.7584·109 as given in Assumption
9, Section 4.1. Then, this yields

0.95 · 0.2088 · 36 · 103 · w10 +Υ0F10 = 0.95 · 0.2088 · 36 · 103 · 7.9 · 106 + 2.6 · 109

= 59.0136 · 109 < 73.08 · 109 = P ,

0.2088 · 36 · 103 · w10 = 59.3827 · 109 < 73.08 · 109 = P .

Compared to the one-year time horizon, the deficit has increased over a ten-year period
due to a declining population. It now represents 19.26% and 18.75% of pension spending,
P , for the mixed scheme and PAYG, respectively. However, adding the guarantee, we
obtain

0.95 · 0.2088 · 36 · 103 · w10 +max{Υ0F10,Υ0} = 0.95 · 0.2088 · 36 · 103 · 7.9 · 106

+ 37.584 · 108

= 60.1720 · 109 < 73.08 · 109 = P .

11In practice, we work on a rolling window basis, that is, investments done at year s are left
every time to unfold over the fixed period of t years. In this case, the ruin probability of the
mixed scheme at time s+ t, is financed through 95% of the PAYG contributions in s+ t and the
initial investment Υs, that earns financial return over the t-year period.
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Figure 4: The ruin probability for PAYG (dashed line), with investments (no guarantees)
(dotted line) and with investments (with guarantees) in dependence on the
time t.

The scheme is still in deficit but at a much lower level than in the pure PAYG case.
From a ruin probability perspective, we obtain the following results

P[0.2088 · 36 · 103·w10 ≤ P ] = 1 , pure PAYG,

P[0.95 · 0.2088 · 36 · 103 · w10 +Υ0F10 ≤ P ]

= 0.9696512673 , mixed, no guarantee,

P[0.95 · 0.2088 · 36 · 103 · w10 +max{Υ0F10,Υ0} ≤ P ]

= 0.9696512669 , mixed with guarantee.

The probability of encountering a deficit at time t = 10 in the mixed scheme, when the
investment is held over a period of ten years, is approximately 97%. In contrast, the
probability of having a deficit under the PAYG scheme is 100%. Naturally, the severity
of the anticipated deficit must be taken into consideration. In Figure 4, we observe that
the ruin probability for the case of the PAYG scheme lies above the ruin probability
including investments (with and without guarantee) already for t > 1. This is due to the
pronounced downward trend of the number of contributors. As the investment duration
increases, the fund’s drift has the potential to partially counteract the negative impact of
the shrinking pool of contributors. We see that for longer time horizons, the guarantee
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almost does not have any impact on the ruin probability. The situation can be further
improved by adding a buffer. For the above parameters we get for the 10-year’s horizon
and confidence level α = 5%:

Bmin
0 = 1.2055 · 1010 ,

Smin
0 = 7.7037 · 109 .

Given the high ruin probabilities presented, a higher amount of capital is needed com-
pared to the one-year time horizon. However, an initial buffer fund Bmin

0 equivalent to
16.49% of pension expenditures reduces the ruin probability from 97% to 5%. Alterna-
tively, if we choose to invest in the financial markets through Smin

0 instead, we only need
to invest 10.54% of pension expenditures to decrease the ruin probability to 5%.

4.2.3 Probability of PAYG outperforming the mixed scheme

In previous sections, we observed that including a nominal guarantee substantially de-
creases the probability of incurring a deficit. Our simulation study revealed that, the
worst-case scenario of the mixed scheme in absence of guarantees underperforms a pure
PAYG scheme. Furthermore, it is worth analysing the financial return in relation to the
evolution of the income of contributions Ct over time. In this section, we analyse the
5% contribution allocated to the PAYG compared to investing the same amount in the
financial markets over 1-year and 10-year time horizons. In absence of buffer fund, we
obtain the following results for the 1-year and 10-year time horizon, respectively:

Pw0 [0.05 · w1 · 36 · 103 · 0.2088 > Υ0F1] = 41.28%

Pw0 [0.05 · w10 · 36 · 103 · 0.2088 > Υ0F10] = 25.94% ,

which clearly indicates that the mixed scheme with a longer time horizon of 10-years
outperforms the PAYG, with a probability of approximately 74%, even when no buffer
fund is considered.

If the investment fund performs well and the return is greater than zero, the excess
can be frozen in a buffer account. Figure 5, based on a set of simulated paths, shows the
probability that the 5% allocated to PAYG outperforms the 5% invested in funding (with
no guarantees) over 1-year and 10-year time horizons if a buffer was built. In particular,
when the initial buffer fund x is lower than 4.7423 ·108 we find that an investment in the
funding element outperforms the allocation of 5% into PAYG over a 10-year horizon.
On the other hand, as shown in Figure 5, for a buffer x > 4.7423 · 108, the one-year
mixed scheme outperforms the PAYG with a higher probability than the 10-year scheme.
Indeed, if x = 5 · 108, the probabilities that the 5% allocated to PAYG outperforms the
5% invested in the financial market over 1-year and 10-year time horizons are as follows:

Pw0 [0.05 · w1 · 36 · 103 · 0.2088 > 5 · 108 +Υ0F1] = 17.04% ,

Pw0 [0.05 · w10 · 36 · 103 · 0.2088 > 5 · 108 +Υ0F10] = 17.67% .
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Figure 5: The probabilities that the PAYG outperforms the mixed scheme with no guar-
antee in dependence on the available buffer x for 10- (dashed line) and 1-year
horizons.

Since the Brownian motions driving the number of contributors and the risky asset
are assumed to be independent, there is no possibility to hedge the risk of a shrinking
working population. For instance, in Cairns et al. (2014), the correlation between the
hedge and the value of the pension liability was crucial. The difference in probabilities
for the 1-year and 10-year horizons is rooted in the fact that, over the years, the working
population shrinks more significantly than the fund’s growth can compensate for.

4.3 VaR of the deficit: 5-year time horizon

Assuming the initial buffer fund is B0 = 109, or 1.37% of C0, Figure 6a shows the
probability of encountering a deficit in the scheme after a year, P[D1 > x], for p = 0
(an almost invisible dashed line) and for p = 1 (solid line). The function P[D1 > x] for
p = 0 is shown separately in Figure 6b. It is clear that the risk increases when opting to
invest the entire buffer (p = 1). For both cases p = 1 and p = 0, the probability of D1

exceeding 0 (deficit after one period) is extremely small, approximately 4 ·10−7 for p = 1
and 1.6 · 10−9 for p = 0. Therefore, a one-period VaR would not be a very informative
risk measure.
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Figure 6: Deficit probability for different time horizons (1 year versus 5-year period) and
portfolio allocations, p for B0 = 109

(a) P[D1 > x] for p = 0 (dashed line) and p =
1 (solid line).

(b) P[D1 > x] for p = 0 (dashed line).
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p = 1/3, p = 2/3 and p = 1 (from the
lowest to the highest curve).
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for

p = 1 and for p = 0.

Figure 6c illustrates P
[ 5∑
i=1

Di > x
]
for p = 0 (the lowest curve), p = 1/3, p = 2/3

and p = 1 (the highest curve). We observe that the probability of having a positive
deficit (> 0) with p = 1 is greater than p = 0. In other words, the probability of having
a deficit in our case increases with p. This implies that the smallest VaRα is achieved
for p = 0, indicating that the safest option is not to invest any part of the buffer.12

12The results have been obtained via Monte Carlo simulations involving 1,000,000 samples.
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Figure 7: The expectations E[Rp
n] for p = 1 (black dots), p = 0 (circles) and n = 1, .., 5.

(a) µ = 0.02 and σ = 0.2. (b) µ = 0.1 and σ = 0.5.

In Figure 6d, the difference between P
[ 5∑
i=1

Di > x
]
for p = 1 and for p = 0 is

depicted. This difference being positive indicates that investing the whole buffer fund
into the risky asset increases the 5-year cumulative deficit probability. In particular, for
x = 0 the difference is approximately 0.065 indicating a 6,5% excess ruin probability of
having a deficit. Choosing, for instance, a confidence level of α = 0.95, the difference in
the VaR between p = 1 and p = 0 amounts to approximately 5 · 108, which corresponds
to half of the initial buffer fund B0 or 0.68% of the total pension expenditures. In other
words, an additional 5 · 108 would have to be invested in the mixed system to achieve
the same level of ruin probability in the event that everything is fully invested in the
funding element.

However, it is important to consider the potential return on investment of the buffer
and its sensitivity. The expectations E[Rp

1], ..., E[R
p
5] are illustrated in Figure 7 for p = 1

(black dots) and p = 0 (circles). Note that for n = 3, 4, 5 the expectations for both p = 1
and p = 0 are negative, indicating a deficit in the scheme for the period analysed. Given
our assumptions, the downward trend in the number of contributors cannot be hedged
by an investment when µ = 0.02 and σ = 0.2. However, all other factors being equal,
assuming that the fund is driven by µ = 0.1 and σ = 0.5, the expectation E[R1

n] remains
positive for all n = 1, ..., 5, as shown Figure 7b, implying a surplus for the analysed
period. The financial performance of the buffer fund is therefore crucial to the success
of the mixed scheme.

Remark 4.1
One might choose to take on more risk in exchange for a greater expected income. The
difference between the expectations E[R0

1] and E[Rp
1], see Tables 1a and 1b, for p > 0,

can be easily calculated:

E[Rp
1]− E[R0

1] = pB0

(
eµ+

σ2

2 − 1
)
.
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Table 1: The difference between the expectations E[R1
n] and E[R0

n] for n = 1, ..., 5.

year n 1 2 3 4 5

E[R1
n] 1,820,747,252 969,244,793 -1,415,308,672 -3,815,749,607 -5,480,620,643

−
E[R0

n] 1,779,783,439 854,350,678 -1,618,404,588 -3,982,852,554 -5,509,376,935

= 40,963,813 114,894,115 203,095,916 167,102,947 28,756,292

(a) µ = 0.02 and σ = 0.2

year n 1 2 3 4 5

E[R1
n] 3,033,243,495 3,853,940,515 3,394,034,334 2,218,280,832 754,651,794

−
E[R0

n] 2,781,291,308 2,836,662,617 1,294,966,703 -1,087,694,686 -3,533,530,590

= 251,952,187 1,017,277,898 2,099,067,631 3,305,975,518 4,288,182,384

(b) µ = 0.1 and σ = 0.5

As long as µ + σ2

2 > 0 and B0 > 0, the expected balance with investment of the buffer
fund in the financial markets would exceed the expected balance with no investment –
even if the latter yields a 0% return.

In Figure 8a, µ = 0.02, σ = 0.2, we observe the distribution function of Rp
1 for

p = 0 (dashed line) and p = 1 (solid line). Figure 8b shows that the distribution
functions intersect at approximately 1.7 ·109. Specifically, for values lower than 1.7 ·109,
the distribution of R1

1 lies above that of R0
1, indicating that p = 1 represents a riskier

strategy. However,

P[R0
1 ≤ 0] = 2.56 · 10−9 and P[R1

1 ≤ 0] = 5.59 · 10−7

given that these probabilities are very small, it suggests that investing the entire buffer
would likely be more beneficial in increasing the expected balance. For the chosen
parameters, B0 = 109, µ = 0.02 and σ = 0.2, the difference is

E[R1
1]− E[R0

1] = B0

(
eµ+

σ2

2 − 1
)
= 109(e0.04 − 1) = 4.081 · 107 .

For values higher than 1.7 · 109 the contrary is true, as the distribution of R1
1 lies below

that of R0
1 indicating that not investing anything (p = 0) is a riskier strategy. Recall

that Equation (3.7) is given by

Rp
1 = (1− θ) · w1 · c̄+Υ0max

(
eµ+σW f

1 , 1
)
− P +Bp

1 .
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Figure 8: The distribution function of Rp
1.

(a) The distributions P[R0
1 ≤ x] (dashed line)

and P[R1
1 ≤ x] (solid line).

(b) The difference P[R1
1 ≤ x]− P[R0

1 ≤ x].

In this case, not investing implies earning a 0% return on the buffer fund, which is a less
risky strategy but increases the probability of encountering a shortfall.

5 Conclusion

State pensions are normally financed on a PAYG basis, where current contributions
are used to fund current pension expenditure. This financing method requires an annual
balance between contributions and payouts. However, the forecasted demographic trends
of an aging population and declining fertility rates jeopardize the sustainability of PAYG
systems. Mixed schemes can be seen as an alternative to alleviate the demographic risks
inherent in pure PAYG schemes by combining PAYG and funding schemes and investing
a portion of the contributions in financial markets. The PAYG rate of return can be lower
than the rate of return of funding schemes, especially in countries where the working
population is not growing. Advocated by the World Bank, mixed systems are seen as a
practical way to reconcile the higher returns from financial markets – compared to GDP
growth – thus incorporating a greater funded element to enhance sustainability.

In this paper, we assess how a mixed scheme can temporarily alleviate the financial
burden caused by an increase in the dependency ratio due to a decline in the number
of contributors. We use ruin probability, i.e. the probability of a deficit, and Value-
at-Risk (VaR) as risk measures to determine the financial imbalance and compare both
schemes: pure PAYG versus a mixed scheme. Our findings indicate that, under the
analysed scenarios, the probability to get ruined in one-year’s time – to have a negative
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balance in the scheme – is higher for the mixed scheme. However, if a guarantee of a
0% return is provided on the invested part, the probability of a deficit is substantially
reduced, becoming approximately one-fifth of the ruin probability in the PAYG scheme.
Additionally, our analysis shows that over a longer time horizon, the ruin probability is
lower for a mixed scheme, without a guarantee, compared to the PAYG scheme.

We consider ruin probability and VaR of the accumulated deficit over a period of
several years. If the VaR at a particular confidence level is too big, it indicates that
the system is too risky from the standpoint of financial sustainability in the near future.
In the base case scenario, we show that the smallest VaR is achieved if the buffer fund
is not invested in the financial markets. However, from an expected value perspective,
investing a part of the fund is beneficial, given a reasonable choice of the return and
volatility. Partial investment in the financial markets becomes more lucrative for higher
return-to-volatility ratios. Special attention is given to the use of a buffer fund, whose
returns could supplement contribution income and improve the financial health of the
scheme. This approach would not completely hedge against demographic risk but would
enhance the scheme’s financial stability, thereby delaying the need for pension reforms.
This measure could be a viable strategy for some governments when considering pension
reforms.

Future research can be focused on optimising the percentage of contributions invested
in financial markets to maximise expected returns while minimising risk. Additionally,
the scheme should be analysed over a longer time horizon to fully understand its long-
term financial sustainability.
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