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Abstract We provide a simple survey of the literature on weak instruments, aimed
at giving practical advice to applied researchers. It is well-known that 2SLS has poor
properties if instruments are exogenous but “weak.” We clarify these properties, explain
weak instrument tests, and examine how behavior of 2SLS depends on instrument
strength. A common standard for “strong” instruments is a first-stage F -statistic of at
least 10. But 2SLS has some poor properties in that context: It has low power, and the
2SLS standard error estimate tends to be artificially small in samples where the 2SLS
parameter estimate is most contaminated by the OLS bias. This causes t-tests to give
very misleading results. Surprisingly, this problem persists even if the first-stage F is
in the thousands. Robust tests like Anderson-Rubin greatly alleviate these problems,
and should be used in lieu of the t-test even with strong instruments. In many realistic
settings a first-stage F well above 10 may be necessary to give high confidence that
2SLS will outperform OLS. For example, in the archetypal application of estimating
returns to education, we argue one needs F of at least 50.

JEL: C12, C26, C36

Keywords: Instrumental variables, weak instruments, 2SLS, endogeneity, F-test, size
distortion, Anderson-Rubin test, conditional t-test, conditional LR test, Fuller, JIVE

1. INTRODUCTION

The past 30 years have seen an explosion of applied work using instrumental variable
(IV) methods to deal with endogeneity problems. But since Bound et al. (1995), applied
economists have become acutely aware that 2SLS estimators have poor properties when
instruments are exogenous but “weak” – meaning they are weakly correlated with the
endogenous variable. In particular, if instruments are only marginally significant in the
first stage of 2SLS, it is now well understood that both the estimates and their standard
errors can be very misleading – even in very large samples.

The first goal of this paper is to explain the complex literature on weak instruments in a
way accessible to applied researchers. We explain weak instrument tests, weak instrument
robust inference and alternatives to 2SLS. Our main contribution is to highlight some
important problems with 2SLS that weak instrument tests gloss over. The behavior of
2SLS t-tests is especially problematic, even in large samples with instruments considered
“strong” by conventional standards. This leads us to advocate a higher standard of
instrument strength, and wider use of robust tests, in applications of IV. We argue the
Anderson and Rubin (1949) test should be widely adopted in lieu of the t-test.

Concern with the poor properties of 2SLS in the weak instrument context led Staiger
and Stock (1997) to advocate a higher standard of instrument relevance in the first
stage of 2SLS. That is, to be confident the estimator is well-behaved, we should require
instrument significance at a level higher than 5% in the first stage. They find if the
first-stage F is greater than 10 – corresponding to a t of 3.16 (p = .0008), in the one
endogenous variable, one instrument case – then 2SLS two-tailed t-tests of the hypothesis
H0 : β = 0 will reject the null at a rate that is not “too far” from the correct 5% rate.
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This F > 10 advice has been widely adopted in practice and presented in textbooks.
For example, Stock and Watson (2015, p.490) say: “One simple rule of thumb is that you
do need not to worry about weak instruments if the first stage F -statistic exceeds 10.”

Later, Stock and Yogo (2005) proposed critical values for F based on the maximal
size distortions in 2SLS hypothesis tests one is willing to tolerate. They find F > 16.4
ensures (with 95% confidence) that a two-tailed 5% t-test will reject at a 10% rate or
less. A recent paper by Lee et al. (2020) shows one needs F > 104.7 for two-tailed 2SLS
t-tests to have correct rejection rates – a much higher standard than F > 10.

Unfortunately, these results are not well understood by applied researchers. They are
derived using non-standard asymptotic theory, or complex small sample approximations,
that are unfamiliar to most applied economists. This makes sorting through the diverse
advice on acceptable first stage F levels a daunting task. We seek to explain weak instru-
ment tests in a way that is accessible to applied researchers familiar with basic statistics.
To make this possible, we focus primarily on the case of a single endogenous variable and
a single instrument, as is very common in applied practice – see Andrews et al. (2019).

Since Stock and Yogo (2005), the weak instrument literature has been heavily focused
on assessing size distortions in 2SLS t-tests.1 We argue this has caused the literature
to gloss over other important problematic properties of 2SLS that persist even when
instruments are “strong” according to Stock-Yogo tests, and even in large samples.

In particular, our analysis shows that the behavior of the 2SLS estimator in environ-
ments characterized by first-stage F thresholds of 10 or 16.4 (or even higher) is extremely
poor. The maximal size distortion of two-tailed 2SLS t-tests is modest, just as Stock-
Yogo predict, but this masks far more fundamental problems: 2SLS has very low power,
combined with a very unfortunate tendency to generate artificially low standard errors
precisely when it generates estimates most contaminated by endogeneity.

This association between 2SLS estimates and their standard errors, which persists even
if instruments are quite “strong” and samples are large, has two important consequences:
First, 2SLS t-tests are much more likely to reject the null H0 : β = 0 in samples where
the 2SLS estimate is shifted in the direction of the OLS bias. Second, 2SLS t-tests have
little power to reject the null if the true β is opposite in sign to the OLS bias.

The practical import of these two facts is serious: In an archetypal application of IV,
one seeks to test if a policy intervention has a positive effect on an outcome, but a con-
found arises because those who receive the intervention tend to be positively selected on
unobservables. In such a context, even if instruments are moderately strong by conven-
tional standards, 2SLS will have spuriously inflated power to find false positive effects,
and little power to detect true negative effects.

If the first-stage F meets the 105 threshold suggested by Lee et al. (2020) then 2SLS
does exhibit nice properties in terms of both two-tailed t-test size and power. But the
association between 2SLS estimates and their standard errors still has an important
influence that distorts t-test results. 2SLS t-tests are much more likely to reject the null
in samples where the 2SLS estimate is shifted in the direction of the OLS bias, and this
problem persists unless until the first-stage F is in the thousands.

We go on to examine whether the use of “weak instrument robust” tests like Anderson-
Rubin or the “conditional t-tests” of Mills et al. (2014) result in more reliable inferences.
We find that these approaches greatly alleviate the problems we identify provided the

1Stock and Yogo (2005) also considered bias relative to OLS. But this criterion can only be assessed
given over-identification of degree 2, which is less common in practice than exact identification.
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instruments are strong enough that 2SLS has acceptable power in the first place, which
in practice requires a first-stage F threshold well above the conventional level of 10.

We also provide an empirical application to estimating the effect of anticipated income
changes on consumption. This clearly shows the superiority of the AR test over the t-test.
It seems clear the AR test should be widely adopted in applied work.

We then examine performance of the main alternative estimators to 2SLS: the Fuller
(1977) estimator, JIVE and the unbiased estimator of Andrews and Armstrong (2017).
We find the Fuller and unbiased estimators do offer improvements, but their performance
cannot be judged adequate unless the first-stage F threshold is well above 10.

Applied researchers face a choice between 2SLS and OLS, so it is interesting to assess
their relative performance. Our simulations suggest first-stage F must be well above 10
to have high confidence 2SLS will outperform OLS, unless endogeneity is quite severe.
So unless a higher standard can be met, OLS combined with a serious attempt to control
for sources of endogeneity may be a superior research strategy to reliance on IV.

Finally, we examine the over-identified case. More instruments increase efficiency but
make 2SLS t-tests more misleading, as the covariance between 2SLS estimates and their
standard errors gets stronger. This makes robust inference even more important.

In summary, we find 2SLS performs very poorly when the first-stage F is toward the
low end of the 10+ range deemed acceptable by current practice. We argue that a higher
threshold should be adopted. Even then, it is essential to use robust tests, like AR or the
“conditional t-tests” of Mills et al. (2014) unless first-stage F is in the thousands.

2. SOME BACKGROUND ON THE WEAK INSTRUMENT PROBLEM

To clarify the weak instrument problem, and explain weak instrument tests, we focus on
a simple case: A single endogenous variable and a single instrument. This is by far the
most common case in practice. We also focus on the case of no exogenous covariates, as
their inclusion complicates notation without changing anything of substance. Consider a
structural equation where outcome y for person i is regressed on endogenous variable x :

yi = xiβ + ui, where cov(xi, ui) 6= 0

The first-stage regression of x on the exogenous instrument z is:

xi = ziπ + ei, where cov(z, u) = 0, cov(z, e) = 0, π 6= 0.

The regressor x is endogenous if cov(e, u) 6= 0, and the instrument z is valid if cov(z, u) =
0 and π 6= 0. It will often be convenient to assume π > 0, which can always be achieved
by normalizing z. It is useful to decompose the error term e in the first stage into parts
that are correlated and uncorrelated with the error u in the structural equation:

ei = ρui + ηi where cov (η, u) = 0, cov (z, η) = 0 (2.1)

Here ρ controls the severity of the endogeneity problem, and x is exogenous if ρ=0.
The 2SLS estimator of β takes the following form, whereˆdenotes a sample value:

β̂2SLS =

∑n
i=1 ziyi∑n
i=1 zixi

= β +

∑n
i=1 ziui∑n
i=1 zixi

= β +
ĉov (z, u)

ĉov (z, x)
(2.2)

Clearly 2SLS is consistent: As N → ∞ the sample covariance ĉov(z, u) converges to its

true value cov(z, u) = 0, and ĉov(z, x) converges to πσ2
z > 0. So β̂2SLS converges to the
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true β. But this is not useful in practice: We are interested in properties of 2SLS in finite
samples – including, as we will see, very large finite samples.

We can substitute (2.1) into (2.2), and write β̂2SLS − β in the instructive form:

β̂2SLS − β =
ĉov (z, u)

πv̂ar (z) + ĉov (z, e)
=

ĉov (z, u)

πv̂ar (z) + ĉov (z, η) + ρĉov (z, u)
(2.3)

As a point of comparison, recall that the analogous expression for OLS is simply β̂OLS−
β = ĉov (x, u) /v̂ar(x), where the denominator only depends on observed covariates. This
renders it far easier to analyze. In particular, under standard assumptions, the bias in
OLS is simply ρvar(u)/var(x), so OLS is unbiased in finite samples if ρ = 0.

In contrast to the simple OLS world, the presence of the ĉov (z, η) and ρĉov (z, u) terms
in the denominator of (2.3) make the finite sample properties of 2SLS very difficult to
analyze. In fact, they cause 2SLS to have very odd properties in finite samples.

In this section we explain what these oddities are, why they are serious problems if
instruments are “weak,” but only academic curiosities when instruments are “strong.” We
avoid mathematical formalism throughout, in order to give simple intuitive explanations.

We focus exclusively on the case of a perfectly exogenous instrument z with population
covariance cov(z, u) = 0. We want to concentrate on problems created by weak instru-
ments, abstracting from problems created by departures from instrument exogeneity.

The crucial point to remember is that in finite samples even a perfect instrument has
some sample covariance with the error in the structural equation. That means ĉov(z, u)
will be always be non-zero, even if our instrument is in fact exogenous. Similarly, ĉov(z, η)
will depart from zero in finite samples. As a result, the strength of the relationship be-
tween the instrument z and the endogenous variable x fluctuates from sample to sample,
being stronger in samples where ĉov(z, u) and ĉov(z, η) are the same sign as π.

The fact that ĉov(z, u) and ĉov(z, η) appear in the denominator of (2.3) has unpleasant
consequences for the finite sample behavior of the 2SLS estimator - even in large samples.
We can learn a lot about these properties of 2SLS just by carefully studying equation
(2.3).2 Now we list some key properties:

First, the mean and variance of the 2SLS estimator do not exist: As ĉov(z, u) and
ĉov(z, η) are both random variables, there is nothing to prevent finite sample realizations

where ĉov(z, x) = πv̂ar(z) + ĉov(z, η) + ρĉov(z, u) ≈ 0, causing β̂2SlS to explode. Of

course, this means the variance of β̂2SLS − β doesn’t exist either.
Second, the distribution of β̂2SLS − β will exhibit skewness and fat tails, rendering

conventional t-tests unreliable. To see why, assume ρ > 0, so the endogeneity bias is
positive, and that π > 0, so z has a positive population covariance with x. And to keep
things simple, let us assume ĉov(z, x) > 0 so at least the sample covariance of z and x is
the same sign as the population covariance - although this is not guaranteed.3

Given these assumptions, the denominator of (2.3) is positive, so the sign of β̂2SLS−β
is determined by the sign of ĉov(z, u) in the numerator. But the magnitude of β̂2SLS−β is

2Research on finite sample properties of 2SLS with weak instruments relies on non-standard asymptotics
– the local-to-zero asymptotics of Staiger-Stock (1997) or many-instrument asymptotics of Bekker (1994)
– or on complex small sample theory; see Phillips (1983) or Rothenberg (1984). But it is surprising how
much can be learned just by studying equation (2.3) using basic statistics. That is our approach here.
3We may also draw samples with ĉov (z, x) ≈ 0. This generates extreme positive or negative outliers

for β̂2SLS , depending on the sign of ĉov (z, u). Also, if ĉov (z, u) and/or ĉov (z, η) go negative enough to

drive ĉov (z, x) negative, the sign of β̂2SLS − β flips, so the distribution of β̂2SLS − β can be bi-modal.
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amplified (attenuated) when ĉov(z, u) < 0 (>0), which shrinks (inflates) the denominator.
Thus, positive estimates of β are reined in while negative estimates are inflated, and the
distribution of β̂2SLS − β is skewed to the left. [We’ll see this clearly in Section 4.]

Third, a large positive ρĉov(z, u) generates both an estimate shifted towards OLS
and a low standard error - as it causes a large ĉov(z, x). So 2SLS has the unfortunate

property that it gives artificially low standard errors in samples where β̂2SLS is most
shifted towards OLS. As we’ll see below, this association between 2SLS estimates and
their standard errors has very important consequences that appear to have been largely
neglected, or at least not adequately explored, in the prior literature.

Fourth, the median of β̂2SLS is biased in the direction of OLS if the instrument is
“weak.” Recall that OLS is biased in a positive direction if ρ > 0. To see that 2SLS is bi-
ased in the same direction, consider the extreme case where the instrument is completely
irrelevant, π = 0, so that xi = ηi + ρui. Then from (3) we have:

β̂2SLS − β =
ĉov(z, u)

ĉov(z, x)
=

ĉov(z, u)

ρĉov(z, u) + ĉov(z, η)
(2.4)

Note that if ρ > 0 then β̂2SLS − β is the ratio of two mean zero random variables that
are positively correlated. The positive correlation causes the median of this ratio to be
positive, simply because the numerator and denominator are more likely than not to have
the same sign. Thus, the median of β̂2SLS is biased in the same direction as OLS.

Furthermore, the two random variables that determine β̂2SLS − β in (2.4) both have
normal distributions in large samples. Marsaglia (2006) shows such a ratio has a Cauchy
distribution shifted right by ρV ar(u)/V ar(x), which is exactly the OLS endogeneity bias.
Thus, when π = 0, we see that the median bias of 2SLS is exactly equal to the OLS bias.4

Among these four properties, the bias of the median 2SLS estimate toward OLS has
received substantial attention in the applied literature; see Bound et al. (1995). The

non-existence of moments and non-normal shape of the β̂2SLS distribution have received
substantial attention from theorists (see Phillips 1983, Rothenberg 1984), and Nelson
and Startz (1990) and Mikusheva (2013) provide nice expositions. But, we argue, the
problems created by the association between 2SLS estimates and their standard errors
have received too little attention. We will explore that issue in detail below.

As we will now explain, the four problematic finite-sample properties of 2SLS remain
relevant even in large samples if instruments are weak, but they vanish if instruments
are sufficiently strong. All four properties arise from the perverse influence of the sample
covariance ĉov(z, e) = ĉov(z, η) + ρĉov(z, u) on the denominator of (2.3), so a natural
reaction is to assume they will vanish in a sample that is large enough so that ĉov(z, e) ≈
0. In fact, this describes the view of applied researchers prior to Bound et al. (1995).

The error in this logic is that, in a huge sample, it is also true that z may appear to be
a significant predictor of x (at the 5% level) even if the true value of π is very small. In
fact, as the sample size gets larger, the value of π that is likely to render z significant at
the 5% level in the first-stage of 2SLS gets small exactly as fast as ĉov(z, e) gets small.
As a result, if z is only significant at the 5% level (and not better), then ĉov(z, e) remains
non-negligible relative to πv̂ar(z). Hence the perverse influence of the ĉov(z, e) term on
the denominator πv̂ar(z) + ĉov(z, e) remains important regardless of sample size.

4The Cauchy has fat tails, and its mean and variance do not exist. The 2SLS estimator inherits these

properties, so the distribution of β̂2SLS−β departs seriously from normality, rendering t-tests misleading.
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Thus, having an instrument that is significant at only the 5% level in a large sample is
not good enough to make the problems with 2SLS vanish. With a “weak” instrument the
problematic finite sample properties of 2SLS remain relevant even in very large samples.
For 2SLS to have nice properties, large samples alone are not adequate. What we need
is an instrument that is “strong,” which is a higher standard of instrument relevance –
see Stock et al. (2002). To explain intuitively what is meant by “strong,” we start by
comparing the population and sample correlations between z and x :

corr(z, x) = πV ar(z)+cov(z,e)
σzσx

= πV ar(z)
σzσx

, ĉorr(z, x) = πv̂ar(z)+ĉov(z,e)
σ̂zσ̂x

Notice how the sample correlation between z and x is driven both by πv̂ar(z), which
reflects a true relationship between z and x, and also by ĉov(z, e), which reflects spurious
correlation between z and x in finite samples. An intuitive notion of a “strong” instrument
is that πvar(z) should be large enough that we are confident the sample correlation
between x and z mostly reflects their true relationship, not spurious correlation that
arises because ĉorr(z, e) 6= 0 in finite samples. That is, we want πvar(z) to be large
enough that we can be confident that |πv̂ar(z)| � |ĉov(z, e)|.

It is simple to see why the strange finite sample properties of 2SLS that we discussed
earlier vanish if |πv̂ar(z)| � |ĉov(z, e)|. In that case, the πv̂ar(z) term in the denominator
of (3) dominates the ĉov(z, e) term, so realizations of ĉov(z, x) that are near zero become
extremely unlikely. This renders non-existence of the 2SLS estimator’s mean and variance
a mere academic curiosity. Furthermore, if the ĉov(z, e) term is negligible, (3) reduces to

just β̂2SLS − β ≈ ĉov(z, u)/πv̂ar(z), which is much simpler to deal with (as it resembles
the expression for OLS). Under a fixed instrument assumption, the asymptotic distribu-

tion of β̂2SLS is approximately normal and centered on β. So 2SLS is “approximately”
unbiased, and normality is a decent approximation to its sampling distribution.

But how can we be confident that |πv̂ar(z)| � |ĉov(z, e)| when π and ĉov(z, e) are
unobserved? First, note that we can rewrite this expression as:

|π| · v̂ar(z)� σ̂zσ̂e · |ĉorr(z, e)| → |π|σ̂z

σ̂e
� |ĉorr(z, e)|

If the instrument z is valid, corr(z, e) = 0, so ĉorr(z, e) converges to zero at a
√
N rate,

and |ĉorr(z, e)| is bounded in probability by k√
N

for a positive constant k>0. Thus:

|π|σ̂z

σ̂e
� k√

N

Finally, substituting our consistent first-stage estimate π̂ for the unobserved π, and squar-
ing both sides, we obtain:

√
N |π̂|σ̂z

σ̂e
� k → N

π̂2σ̂2
z

σ̂2
e
� k2

Recall that the sample F statistic for significance of z in the first stage is F̂ = Nπ̂2σ̂2
z/σ̂

2
e .

Thus our intuitive notion of wanting confidence that |πv̂ar(z)| � |ĉov(z, e)| corresponds
to a desire to have a first-stage F -statistic that is “big” in some sense. The weak instru-
ment test literature asks just how “big” the first-stage F needs to be for 2SLS to have
nice properties. We explore this literature in the next section.

Finally, recall that F = NR2/(1 − R2). A key insight is that properties of 2SLS do
not depend on N or first-stage R2 per se, but only how they combine to form F . So
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a large sample size alone is not sufficient to ensure 2SLS has an approximately normal
sampling distribution. As Mikusheva (2013) explains, the convergence of

√
N(β̂2SLS−β)

to a normal distribution as N →∞ is very slow when the first-stage R2 is small.

3. A SIMPLE GUIDE TO WEAK INSTRUMENT TESTS

Having explained the intuition behind weak instrument tests, we now examine them in
more detail. Consider a model with a single endogenous variable x and a single exogenous
instrument z. We focus on this simple case as it clarifies the key ideas, and it is the most
common in applied practice. We let π determine the strength of the instrument, while
ρ ∈ [0, 1] controls the extent of the endogeneity problem:

yi = βxi + ui

xi = πzi + ei where ei = ρui +
√

1− ρ2ηi
ui ∼ N(0, 1), ηi ∼ N(0, 1), zi ∼ N(0, 1)

(3.5)

This iid normal setup is not as restrictive as it appears, as Andrews et al. (2019) show
that for any heteroskedastic DGP, there exists a homoskedastic DGP yielding equivalent
behavior of 2SLS estimates and test statistics. Furthermore, any exogenous covariates
can be partialed out of y and x without changing anything of substance.

Now, suppose we estimate the first-stage equation for x by OLS, and obtain π̂ and
σ̂2
e . We can test if z is a significant predictor of x using a standard F -test, given by
F̂ = Nπ̂2σ̂2

z/σ̂
2
e . For example, if N =1000 we conclude z is significant at the 5% level if

F̂ > 3.85. This corresponds to a t-test of t > 1.96 (as F is the square of t in this case).
Prior to Bound et al. (1995), passing such an F -test would have been considered suffi-

cient evidence to conclude one’s instrument was relevant, and to proceed with 2SLS. But
Bound et al. drew attention to situations where instruments are significant at conven-
tional levels in the first stage of 2SLS, despite having a small or “weak” correlation with
the endogenous variable. For instance, a quantitatively small correlation may be highly
statistically significant in very large samples. In such cases median 2SLS estimates are
likely to be severely biased towards OLS.

In an important paper, Staiger and Stock (1997) show that for an instrument to be
“strong” enough for 2SLS to have acceptable finite sample properties it must meet a
higher standard than 5% significance in the first stage. They formalize our statement in
Section 2 that we want the first-stage F statistic to be large enough that we are confident
that |πV̂ ar(z)| � |ĉov(z, e)|, which in turn implies 2SLS will have nice properties.

To understand the Staiger-Stock approach, we define the “concentration parameter”
C, which measures strength of the instrument in first stage. It is closely related to the
sample F -statistic, that we have denoted by F̂ . In particular, C is the true value of the F
statistic that we could construct if we observed the unknown π and σ2

e that we estimate
in the first stage. The finite sample properties of 2SLS only depend on N through C:

C = “true”F = N V ar(zπ)
σ2
e

= N
π2σ2

z

σ2
e

= Nπ2 and F̂ = Nπ̂2σ̂2
z/σ̂

2
e

The sample F -statistic is an estimate of C. Just as we showed for F, if C gets large we
can be confident that |πV̂ ar(z)| � |ĉov(z, e)|, and the problems with the 2SLS estimator
vanish. So if C is “large” in some sense the instruments are “strong.” But how large does
C need to be so that weak instruments are not a concern?

© 2021
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Formally, Stock and Yogo (2005) derived how C determines the maximum rejection
rate (size) of a 2SLS 5% level two-tailed t-test, compared to the correct 5% rejection rate
– where the maximum is over all values of ρ. They argued that this is a natural way to
assess how well-behaved the 2SLS estimates are in a finite sample.

For example, suppose you find it acceptable that the 2SLS two-tailed t-test will reject
the null H0: β = 0 at the 5% level no more than 15% of the time. In other words, you are
willing to tolerate a size distortion of 10%. They derive that you need C of 1.82. Suppose
instead that you want to bring the size distortion down to just 5% (i.e., your 5% t-test
should reject H0: β = 0 no more than 10% of the time). Then you need C =5.78. Finally,
Lee et al. (2020) ask how big C needs to be so that your 5% level two-tailed t-test rejects
the null at a rate no higher than 5%. They derive C = 73.75.

Thus, by requiring C to be large enough we can render maximal size distortions of
two-tailed 2SLS t-tests as small as desired. But we can’t observe C, so we must rely on
the sample F̂ as an estimate of C. Unfortunately, because C is equal to V ar(zπ)/σ2

e

times a factor of N, the sample F̂ is not a very accurate estimate of C, and it doesn’t get
more accurate as sample size increases.

In particular, regardless of sample size, the sample F̂ is a draw from a non-central F
with non-centrality parameter C. Hence, to be confident (at the 95% level) that C is
at least 1.82, we need F̂ to be at least 8.96. If we want to be confident (at 95%) that
C is at least 5.78, we need to have F̂ of at least 16.38. In general, to be confident the
concentration parameter C is at least c, we need a first-stage F̂ well above c.

Table 1 lists several different levels of C, the levels of π required to achieve them when
N = 1000, and the first-stage F -test critical value for a 5% test that C attains the desired
level. For example, as we show in the last row of Table 11, to be confident (at the 95%
level) that C is at least 73.75, we need a first-stage F̂ of at least 104.7.

Table 1. First Stage F Critical Values Required to Achieve Different Objectives

Concentration Parameter
Value of π

F critical value to Rejection rate for a 5%

(“True First-Stage F”) reject C<c at 5% t-test of H0 : β = 0

1.82 0.0427 8.96 15%

2.30 0.0480 10.00 SS Rule of Thumb

3.84 0.0620 13.00 –

5.78 0.0760 16.38 10%

10.00 0.1000 23.10 –

73.75 0.2716 104.70 5%
Note: The instrument z is significant at the 5% level in the first stage if F>3.84.

Table 1 also shows, in some key cases, the (maximal) 5% two-sided t-test size achieved
by that level of C. For example, Stock-Yogo show that if C =5.78 (F.05=16.38) a 2SLS
5% two-tailed t-test rejects a true null hypothesis at no more than a 10% rate. Table
1 also includes C =2.3, which corresponds to the Staiger-Stock rule of thumb F̂ > 10.5

5We include C = 10 because both Staiger and Stock (1997) and Angrist and Pischke (2008) derive
formulas indicating that, when the first moment exists, the bias of 2SLS relative to OLS is roughly
1/[1 + C]. So C = 10 renders the relative bias only 10%. This result is only useful with 3 or more
instruments, so the moments of the 2SLS estimator exist. But we felt it was interesting to examine
behavior of the 2SLS median in the C = 10 case.
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A Practical Guide to Weak Instruments 9

Note that size distortion depends only on C, not on N and π per se, so how we set N
and π in Table 1 is somewhat arbitrary (i.e., the π levels are specific to N=1000).

Next, to gain a better understanding of how weak instrument tests work in practice, we
implemented a simple simulation experiment to assess how well 2SLS estimates perform
under each scenario in Table 1. We simulate data from the model in equation (3.5),
assuming β = 0, varying the degree of endogeneity as captured by ρ in small increments
from 0 to 1. We set the parameter π to each alternative level listed in Table 1, in order to
vary the strength of the instrument. We generate artificial data sets of size N =1,000 for
each combination of (π, ρ). As we’ve noted, it is the level of C, not N or π per se, that
drives the properties of 2SLS. We report results from 10,000 Monte Carlo replications.

Figure 1 reports the rejection rate of a two-tailed t-test test of H0: β = 0 at the 5%
level, based on the 2SLS parameter and standard error estimates, for each combination
of C and ρ. The label shows both C and the associated F -test 5% critical level.

Figure 1. Rejection rate of H0 : β = 0 using a 5% Two-tailed t-test
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C = 10.00 (F5% = 23.10)
C = 73.75 (F5% = 104.7)

Note: The rejection rate should be 5% if 2SLS test statistics are well-behaved.

To understand Figure 1, it is important to emphasize that Stock and Yogo (2005)
calculate worst-case (defined as maximal) rejection rates over all values of ρ. This is not
innocuous, as rejection rates vary substantially with ρ. As we see in Figure 1, the worst
case corresponds to ρ near 1, so the endogeneity problem is very severe. The agreement
between the results in Figure 1 and the Stock-Yogo analysis is striking. For C =1.82
(F .05=8.96) they predict a worst-case rejection rate of 15%, and our simulations show
14.5%. Similarly, for C =5.78 (F.05=16.38) Stock-Yogo predict a worst-case rejection rate
of 10%, and our simulations show 9.7%. And when C =73.75 (F.05=104.7) the worst-case
rejected rate is almost exactly 5%, just as Lee et al. (2020) calculate.
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10 Keane & Neal

4. PROBLEMS WITH 2SLS HIDDEN BY WEAK INSTRUMENT TESTS

An obvious limitation of the Stock-Yogo analysis is that the worst-case rejection rates
tell us little about rejection rates at lower levels of ρ. As we see in Figure 1, rejection
rates are increasing in ρ, and this effect is stronger the weaker is the instrument. In fact,
the results in Figure 1 raise serious concerns about the behavior of 2SLS, even in cases
that easily pass standard tests to rule out weak instruments. To see why, we need to
understand why rejection rates are increasing in ρ. There are two reasons:

First, if ρ is close to 0 then 2SLS estimates are roughly centered at zero, 2SLS standard
errors are very large, and the estimator has very little power. This is why the rejection
rate is very small for small values of ρ in Figure 1 (except when F.05=104.7).

Second, if ρ > 0, then, in samples where ĉov(z, u) happens to be high, 2SLS will tend
to generate both high estimates of β and artificially low standard errors. This is a very
unfortunate property, as it means the 2SLS estimates appear to be spuriously more
precise in samples where they are most shifted upward in the direction of the
OLS endogeneity bias. This is what causes 2SLS to over-reject the null hypothesis
H0: β = 0 when ρ is large, as we see clearly in Figure 1.

Now we examine these two phenomena in more detail: First, we examine the power of
the 2SLS estimator by simulating the probability of rejecting H0: β = 0 when it is false.6

We consider two alternative models with β = 0.30 or β = −0.30. These are quantitatively
large values, as they imply a one standard deviation change in x induces an 0.25 standard
deviation change in y. The results are reported in Table 2.

Table 2. Power of 2SLS – Frequency of Rejecting H0: β = 0 (%)

Concentration
F5%

β = 0.3 β = −0.3

Parameter ρ = 0 ρ = 0.5 ρ = 1 ρ = 0 ρ = 0.5 ρ = 1

1.82 8.96 1.8 11.7 25.5 1.7 0.1 4.2

2.30 10.00 2.4 13.0 25.1 2.2 0.2 3.2

3.84 13.00 4.4 15.9 25.1 4.2 0.3 1.7

5.78 16.38 7.2 18.8 26.3 7.2 0.5 0.8

10.00 23.10 13.4 23.7 28.9 13.3 2.3 0.2

73.75 104.7 71.4 67.8 65.1 71.9 78.0 89.1
Note: The table reports the probability of rejecting the false null hypothesis H0: β = 0.

Focusing on the results for the F.05 = 8.96 through F.05 = 23.10 cases, three features
are notable: First, the power of 2SLS is very low. Second, power is clearly increasing in
ρ if the true β is positive. Third, power is much greater when the true β is positive than
when it is negative. For example, in the F.05 = 10 case widely considered an acceptable
threshold for a strong instrument, the probability of rejecting the false null H0: β = 0 is
only 2.4% when the true β is 0.3 and ρ = 0. Power increases with ρ, as the rejection rate
increases to 13% when ρ = 0.5 and to 25% when ρ=1. Strikingly, if the true β is −0.3

6We can also see the low power of the 2SLS estimator by examining its standard error. Table A1 reports

the median (over simulation runs) of the asymptotic standard error of β̂2SLS , for each level of instrument
strength. The median standard error is not very sensitive to ρ, so we only report the overall median. To
take one example, when C = 5.78 (F.05 = 16.38) the median 2SLS standard error is roughly 0.429. To
get a sense of just how large that is, recall that the worst-case endogeneity bias in OLS, which occurs
when x is perfectly correlated with the error in the outcome equation (i.e., ρ = 1 and π = 0), is 1.0.
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A Practical Guide to Weak Instruments 11

and ρ = 0.5 then power is essential zero. This is very concerning, as it means 2SLS has
almost no power to detect a (substantial) true negative effect.

The fundamental reason that 2SLS power increases with the degree of endogeneity ρ
is the third finite sample property of 2SLS we stressed in Section 2: A positive sample
realization of ρĉov(z, u) tends to generate both a 2SLS estimate shifted towards OLS
and a low 2SLS standard error. Larger positive realizations of ρĉov(z, u) reduce the 2SLS
standard error by increasing ĉov(z, x). The larger is ρ, the stronger is the tendency for
2SLS standard errors to be artificially small in samples where the 2SLS estimates are
most shifted in the direction of the OLS bias.

In the present case ρ > 0, so the OLS bias is positive, and hence 2SLS estimates β̂2SLS
and their standard errors have a negative association. This is why the rate that 2SLS
rejects H0 increases with ρ in Figure 1. This pattern is unfortunate, as it means the 2SLS
estimates appear more informative precisely when β̂2SLS is most shifted in the direction
of the OLS bias. The negative association between 2SLS estimates and their standard
errors also explains why 2SLS has almost no power to detect true negative effects when
instrument strength is in the F.05 = 8.96 through F.05 = 23.10 range.

Figure 2 shows the association between 2SLS estimates and their estimated standard
errors is very strong when ρ is large. It plots se(β̂2SLS) against β̂2SLS . The left panel
shows the case where ρ=0.8 and C =2.30 (F .05=10). A strong negative association be-
tween 2SLS estimates and their standard errors is very evident. In fact the Spearman rs
is -0.576 and Kendall’s τ is -0.511. As a result, the 2SLS estimates that are most shifted
toward the OLS bias appear to be spuriously more precise.

Figure 2. Standard Error of β̂2SLS plotted against β̂2SLS itself (ρ = 0.80)
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C = 73.75 (F.05 = 104.7)

Note: Runs with standard error > 1.5 not shown. Red dots indicate H0 : β = 0 rejected at 5% level.

The red dots in Figure 2 indicate cases where β̂2SLS differs significantly from zero
according to a two-tailed 5% t-test. In the C =2.30 (F .05=10) case, the hypothesis H0: β =
0 is rejected at a 10% rate. Due to the negative covariance between the 2SLS estimates
and their standard errors, all rejections occur when β̂2SLS>0, and none when β̂2SLS<0.
Only the estimates most shifted towards the OLS bias are ever judged significant.

Lee et al. (2020) argue that if F > 10 is used as a threshold, the critical value of the t-
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12 Keane & Neal

test can be replaced by 3.43 to achieve a true 5% test. But this correction does not fix the
fundamental problem revealed in Figures 1-2. In fact, if we use 3.43 as the threshold, the
rejection rate is 1.75% rather than 5%, and all rejections occur when β̂2SLS is positive.

The right panel of Figure 2 shows the case of ρ=0.8 and C =74 (F .05=105). When the

instrument is this strong the negative association between se(β̂2SLS) and β̂2SLS persists.
In fact, Spearman’s rs is -0.92 and Kendall’s τ is -0.75, showing this is not just a weak
instrument phenomenon. 2SLS now has a rejection rate near the correct 5% rate (4.87%).

But 93% of those rejections occur when β̂2SLS > 0. A one-tailed 2.5% test of H0: β ≤ 0
rejects at a 4.54% rate. The asymmetry in positive vs. negative rejections is a direct
consequence of the negative association between 2SLS estimates and standard errors.

Table 3 gives a broader view of this phenomenon by showing Spearman’s rs between
se(β̂2SLS) and β̂2SLS for different levels of C and ρ. Clearly, the negative association is
not specific to the examples in Figure 2. Table 3 shows how this relationship gets stronger
as ρ increases. This drives the pattern of rejection rates increasing with ρ in Figure 1.
Appendix Figure A3 illustrates this phenomenon graphically for the C =2.30 (F .05=10)
case. One can clearly see how, as ρ increases, 2SLS generates more and more rejections
when β̂2SLS > 0. In Section 12 we show this pattern is even stronger with multiple IVs.

Table 3. Spearman Rank Correlations (rs) between se(β2SLS) and β̂2SLS

Concentration
F5%

Spearman Correlations (rs)

Parameter ρ = 0.2 ρ = 0.5 ρ = 0.8

1.82 8.9 -0.113 -0.291 -0.492

2.3 10 -0.133 -0.359 -0.576

5.78 16.38 -0.267 -0.612 -0.875

73.75 104.7 -0.350 -0.720 -0.917

An obvious alternative explanation for the pattern in Figure 1, which we can rule
out, is that bias in the median 2SLS estimate increases as the degree of endogeneity (ρ)
increases. In principle, this could cause the rejection rate of H0: β = 0 to increase with ρ.
However, for all values of C we consider, the instruments are strong enough that median
bias in 2SLS is negligible, or at least modest, regardless of the degree of endogeneity.

Figure A4 illustrates this point. If C =10 or better, 2SLS estimates are essentially
median unbiased. Figure A4 plots the median 2SLS bias relative to the OLS bias. Relative
bias is modest in all cases. For example, when C =2.30 (F .05=10) the 2SLS median bias
is less than 15% of the OLS bias unless ρ is very small. Thus, if median bias were one’s
only concern, a first stage F of 10 would be quite sufficient.

In summary, Stock-Yogo weak instrument tests focus on worst-case (over ρ) behavior
of two-tailed 2SLS t-tests. This conceals problems with 2SLS that become apparent if we
look over the whole range of ρ, as in Figure 1. 2SLS rejection rates are steeply increasing
in ρ (unless F .05=105) because 2SLS has very low power when ρ is small, but as ρ in-
creases the 2SLS standard errors become artificially too small in samples where the 2SLS
estimates are too high. It is an unfortunate property of the 2SLS estimator that it tends
to generate standard errors that are too low precisely when it also generates estimates
shifted in the direction of the OLS bias (positive in this case). 2SLS is approximately
median unbiased, but that is not so useful if only estimates shifted in the direction of
the OLS bias are likely to be significant, and they are significant far too often.
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A Practical Guide to Weak Instruments 13

5. INSIGHTS FROM FINITE SAMPLE THEORY

Results from finite sample theory can help us understand the strong dependence bewteen
2SLS estimates and their standard errors. Phillips (1989) derives two key properties of
2SLS in the unidentified case where the instrument is irrelevant. First, the 2SLS estimator
converges in distribution to a scale mixture of normals centered on E(β̂OLS). Second, the

2SLS variance estimator (σ̂2) converges in distribution to a quadratic function of β̂2SLS ,

with a minimum at E(β̂OLS)=ρV ar(u)/V ar(x).
These properties are shown in Figure 5, obtained by applying 2SLS to 1000 datasets

of size N=1000 from the DGP in eqn. (3.5). We set β=0 and ρ=0.50 so E(β̂OLS)=0.50.
The left panel shows results in a completely unidentified model (C=0,π=0). As we see

in the upper left, the standard error of regression (σ̂) is indeed minimized at β̂2SLS=0.5.

Of course, σ̂ is a key driver of the standard error of β̂2SLS . This causes β̂2SLS to appear
(spuriously) more precise in the vicinity of the OLS bias, as we see in the lower left panel

that plots se(β2SLS) against β̂2SLS . Note how this looks similar to Figure 2.

Figure 3. The Dependence Between 2SLS Estimates and Standard Errors
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Note: Runs with standard error > 2 not shown. Red dots indicate H0 : β = 0 rejected at 5% level.

A point that is little appreciated (at least by applied researchers) is that this property
of 2SLS in the unidentified case has a major influence on the behavior of 2SLS estimates
and standard errors in strongly identified models. For this reason, Phillips (1989) calls
this the “leading case.” To illustrate, the middle and right panels of Figure report results
for identified models where C= 2.3 or 5.78. As the strength of identification increases,
the 2SLS estimates shift left; they move away from the OLS bias and start to become
median unbiased. Strikingly however, the quadratic relationship between σ̂2 and β̂2SLS
is unaffected. Stronger identification merely shifts most of the 2SLS estimates into the
left side of the quadratic curve, but it does not affect the curve itself.
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14 Keane & Neal

Thus, even in strongly identified models, there exists a strong association between the
2SLS standard error of regression (σ̂) and the 2SLS estimate, such that (σ̂) is minimized
when estimates are in the vicinity of the OLS bias. This causes 2SLS estimates that are
shifted towards the OLS bias to appear spuriously precise.

6. ONE-TAILED TESTS AND ANDERSON-RUBIN TESTS

An important consequence of the association between 2SLS estimates and their standard
errors is that distortions in one-tailed tests are much greater than distortions in two-
tailed tests. This is shown in Figure 4. The red lines show rejection rates of two-tailed
5% t-tests of H0 : β = 0 for different levels of C and ρ. The black/blue lines show how

frequently these rejections occur at positive/negative values of β̂2SLS . This is equivalent
to plotting rejection rates of one-tailed 2.5% t-tests of H0: β ≤ 0 and H0: β ≥ 0.

In the case of C =2.30 (F .05=10) that corresponds to the Staiger-Stock rule of thumb
for acceptably strong instruments, the reject rate of both the 5% two-tailed test and the
2.5% one-tailed test against H0: β ≤ 0 increase from 0% to to 14.5% as ρ increases from
0 to 1. But the one-tailed test against the null of H0: β ≥ 0 never rejects.

Figure 4. Rejection Rates of One and Two-Tailed Tests
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In the case of C =74 (F.05=105) that Lee et al. (2020) show is sufficient to eliminate
maximal size distortion, the reject rate of a 5% two-tailed t-test increases only modestly
from 4.1% if ρ = 0 to 5% when ρ = 1. But size distortions in one-tailed t-tests are much
greater. The reject rate of a 2.5% one-tailed test against H0: β ≤ 0 increases from 2.2%
to 5% as ρ increases from 0 to 1. Conversely, the reject rate of a 2.5% one-tailed test
against H0: β ≥ 0 declines from 1.9% when ρ = 0 down to essentially zero when ρ = 1.
This asymmetry is a direct consequence of the negative association between se(β̂2SLS)

and β̂2SLS , which imparts positive β̂2SLS estimates with spuriously high precision.
How strong do instruments need to be for rejection rates to be invariant to the level

of endogeneity, and for both one and two-tailed tests to have correct size? If the concen-
tration parameter C is increased to 336.3, which corresponds to a first-stage F.05=400,
the reject rate of two-tailed 5% level t-tests is roughly constant regardless of ρ. But the
asymmetry in rejection rates for one-tailed tests is still substantial. Strikingly, we find
C must be increased to roughly 10,000 to eliminate size distortions in one-tailed 2SLS
t-tests. Only then are rejection rates of one-tailed tests insensitive to the level of ρ.

The asymmetry in rejection rates of one-tailed t-tests is of great practical importance.
Applied researchers almost always use two-tailed tests because symmetry makes one-
tailed tests redundant (e.g., a 5% two tailed-test is equivalent to a 2.5% one-tailed test).
But as we see, this is false for 2SLS, even with very strong instruments.

A common suggestion in the weak IV literature is to use tests that are robust to
weak instruments. In the one endogenous variable, one instrument case the unambiguous
suggestion is the Anderson and Rubin (1949) test, which is uniformly most powerful. The

AR test is simply the F -test from a regression of y on z. Then, β̂2SLS is judged to be
significant at the 5% level if that F -test is significant at the 5% level. This test obviously
has a “correct” 5% size, as it is simply an F -test from an OLS regression.

However, if instruments are weak, the AR test is more likely to call 2SLS estimates
significant if they are shifted in the direction of the OLS bias. The problem is again the
strong positive association between ρĉov(z, u) and β̂2SLS . A large value of ρĉov(z, u) also

generates a large value of the AR test. Thus, if ρ > 0 the AR test and β̂2SLS have a
positive association. Hence, the AR test is more likely to reject H0: β = 0 if β̂2SLS > 0.

Figure 5 compares results from t-tests vs. AR tests, focusing on the case of ρ=0.80.
In the case of F .05=10 the 5% two-tailed t-test rejects H0: β = 0 at a 10% rate, and
all rejections involve β̂2SLS > 0. The AR test rejects H0: β = 0 at a 4.8% rate, which
only differs from the correct 5% rate due to sampling variation. However, in the top right
of Figure 5, we see that 85% of those rejections occur when β̂2SLS > 0. So using AR
does not avoid the asymmetry that most rejections occur at positive values, which is the
direction of the OLS bias.

The size distortion in the two-tailed t-test is mostly eliminated if F.05=105. But, as
we see in the bottom panel of Figure 5, 93% of those rejections occur when β̂2SLS > 0.
In contrast, the AR test exhibits a fairly even balance of positive (54%) vs. negative
rejections. Thus, the AR test achieves this balance at a first-stage F vastly smaller than
required for the t-test.

In summary, to avoid over-rejecting the null when β̂2SLS is shifted in the
direction of the OLS bias, one should rely on the AR test rather than the
t-test even when the first-stage F-statistic is in the thousands. While both the
t-test and AR test cause 2SLS estimates to appear spuriously more precise when they are
shifted in the direction of the OLS bias, the AR test is far less sensitive to this problem.
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Figure 5. T-test vs. AR test rejections: SE(β̂2SLS) plotted against β̂2SLS itself (ρ = 0.80)
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Note: Runs with standard error > 4 are not shown. Red dots indicate H0 : β = 0 is rejected at the
5% level. Results are for the 2SLS t-test (left panel) or the Anderson-Rubin test (right panel).

7. EMPIRICAL EXAMPLE: THE “EXCESS” SENSITIVITY OF CONSUMPTION
TO CURRENT INCOME

Here we explore the behavior of 2SLS hypothesis tests in a case where the concentration
parameter C is just above 10 using a concrete application: Estimating the elasticity of
consumption with respect to anticipated income changes. Simple versions of the per-
manent income hypothesis (PIH) imply this should be zero. A positive value is often
referred to as “excess sensitivity,” which may be evidence of liquidity constraints. Note,
however, that elaborations of the PIH to account for consumption/leisure substitution
and/or consumer prudence (i.e., reluctance to borrow against uncertain future income)
may also help to explain “excess sensitivity.” Regardless, the elasticity of consumption
with respect to anticipated income changes is of considerable interest.

To estimate the elasticity we run the regression:

∆lnCit = α+ β∆lnYit + γVit + εit (7.6)

where Cit is consumption of household i in period t, Yit is household income, and Vit is a
vector of control variables. This includes year dummies (to capture business cycle effects).
Attanasio and Browning (1995) emphasize the importance of controlling for effects of
household demographics on consumption, so we also include age of the household head,
the change in age squared, and the change in number of children at home.
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To estimate the effect of anticipated income changes we need to instrument for ∆lnYit
using a variable that is both known to consumers at time t and predicts income growth.
As Altonji and Siow (1987) pointed out, the instrument must also be uncorrelated with
measurement error in income, ruling out using income at t−1. Fortunately, income is well
approximated by an IMA(1,1) process, so ∆lnYit is MA(2). Following Mork and Smith
(1989), this means lnYi,t−2 can be used as the instrument for ∆lnYit, as it is known
at t-1, predicts income growth, and is uncorrelated with error in measuring ∆lnYit (if
measurement error is serially uncorrelated). Following Mariger and Shaw (1993) we test
if the MA income process is stable over our sample period, and cannot reject that it is.

We use data from the Panel Study of Income Dynamics (PSID), which has followed
a nationally representative sample of over 5,000 U.S. households and their descendants
since 1968. The PSID became biannual in 1999. We use the most comprehensive consump-
tion measure,7 which is only available from 2005 to 2019, giving us eight observations
per household. The consumption and income variables refer to the survey year, so in es-
timating (7.6) we use changes in annual consumption and income over two year intervals.
For income, we use total family income, which includes all taxable and transfer income
for the head of household, spouse, and any other adults. The use of changes in log con-
sumption and income accentuates measurement error, so as is typical in this literature
we introduce a number of data screens to remove outliers.8 This process left us with 643
households and seven observations per household, for a total sample size of 4, 501.

We report the results in Table 4. If we estimate (7.6) by OLS we obtain a coefficient
of 0.140 with a standard error of 0.017, so there is clearly a positive covariance bewteen
consumption and income changes. But OLS does not estimate the elasticity with respect
to anticipated income changes for two key reasons: First, observed income changes include
both anticipated and unanticipated components, and the PIH predicts that unanticipated
increases in income will increase consumption via an income effect, biasing the coefficient
upward. Second, measurement error in income changes is likely to be substantial, biasing
the coefficient downward. So the direction of bias is theoretically ambiguous.

We report the first stage 2SLS results in the second column of Table 4. As expected
lnYi,t−2 is a highly significant predictor of ∆lnYit. A higher level of income at t − 2
predicts an income decline from t − 1 to t, as we expect given the MA(2) structure of
∆lnYit. As we are now using actual data, rather than the iid normal data of our sampling
experiments, we need to consider robust statistics. The heteroskedasticity robust partial
F statistic is 10.28, so it is slightly above the commonly recommended threshold of 10.

The second stage 2SLS result is reported in the third column of Table 4. The estimated
elasticity is 0.552, implying that the OLS estimate is downward biased, and that current
consumption is very sensitive to anticipated changes in current income. However, the
heteroskedasticity robust standard error is 0.292, so the 2SLS t-test is not significant
at the 5% level. In contrast, the last column presents reduced form results. The hetero-
skedasticity robust partial F statistic is 4.31, so the AR test indicates our elasticity
estimate is significant at the 3.8% level. Thus, the t-test and AR test disagree. This
highlights the question of whether the t-test or AR test is more reliable.

7Total observed consumption is comprised of all food, housing, utilities, transport, education, childcare,
healthcare, clothes, vacation, and recreation expenditure.
8We restrict the sample to households whose income was between $3, 000 and $1, 000, 000 in every year.

We also dropped households that report income or consumption changes of less than −70% or more than
300% between any two survey years. We impose a balanced panel by removing households with missing
data in any survey year from 2005 to 2019 in an attempt to reduce noise.
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Table 4. Elasticity Estimates - PSID

OLS
2SLS 2SLS Reduced

1st Stage 2nd Stage Form

Dependent Variable ∆Cit ∆Yit ∆Cit ∆Cit

∆Yit 0.1398 0.5524
(0.0166) (0.2920)
[0.0185] [0.2024]

∆lnYt−2 -0.0321 -0.0177
(0.0100) (0.0085)
[0.0078] [0.0062]

F-Stat (Hetero-σ Robust) 10.283 4.312
p-value 0.0014 0.0379

F-Stat (Cluster Robust) 16.965 8.182

R2 0.0414 0.0256 0.0224

Note: Heteroskedasticity robust standard errors are in parentheses while standard er-
rors clustered by individual are in square brackets. All regressions control for year
effects, age, change in age2 and change in number of children. N = 4, 501

We now investigate the behavior of the AR test and the t-test in this data environment.
We conduct the following experiment: Using our PSID sample of N=4,501 observations we
can “bootstrap” a new artificial dataset by sampling 4,501 observations with replacement.
We do this 10,000 times to form 10,000 artificial datasets. We then repeat the analysis
of Table 4 on all 10,000 datasets, and summarize the results in Table 5.

Our method of constructing samples means the point estimates in Table 4 are the true
values of the data generating process, and the concentration parameter C (or “true F”)
of the DGP is 10.28. Thus, we are comfortably above the conventional threshold for an
acceptably strong instrument. We begin by noting two features of Table 5:

First, the median OLS, 2SLS and reduced form estimates all agree closely with the
point estimates reported in Table 4. The mean OLS and reduced form estimates also
agree, while of course the mean of the 2SLS estimates does not (as the mean of the 2SLS
estimator does not exist in the exactly identified case).

Second, the heteroskedasticity robust standard errors of the OLS and reduced form
estimates agree with the empirical standard deviations of those estimates across the
10,000 datasets, and also with the heteroskedasticity robust standard errors reported in
Table 4. Thus, the asymptotic standard errors are a good guide to the actual sampling
variation of the OLS and reduced from estimates.9 In contrast, the empirical standard
deviation of the 2SLS estimates bears no resemblance to the 2SLS standard error, because
the variance of 2SLS does not exist in the exactly identified case.

9Table 4 also reports cluster-robust statistics that account for serial correlation. Given the negative
serial correlation in residuals induced by the MA structure of consumption changes, this reduces the
estimated standard errors. As a result, the cluster-robust 2SLS t-test indicates the elasticity estimate is
significant. The cluster-robust standard error is appropriate for applied work in this case, given the panel
structure of the data. However, in our simulation experiment we create artificial data by iid sampling
with replacement from the 4,501 observations. This breaks the panel structure of the data, so the data
structure in our sampling experiment is cross-sectional. Hence we focus on the heteroskedasticity robust
statistics that ignore serial correlation, as these are what the sampling experiment will mimic.
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Table 5. Results from Monte Carlo Bootstrap Samples

OLS 2SLS F Stat. Reduced Form
β̂ S.E. β̂ S.E. First Stage β̂ S.E.

Median 0.1395 0.0165 0.5502 0.2971 10.3122 -0.0177 0.0085

Mean 0.1395 0.0166 0.6135 2.7765 11.3651 -0.0177 0.0085

Std. Dev. 0.0164 0.0006 1.6630 156.3519 6.6763 0.0085 0.0003

Now we evaluate the power and size of 2SLS t-tests. In Figure 6 we plot se(β̂2SLS)

against β̂2SLS across the 10,000 samples. The association between 2SLS estimates and
their standard errors is very evident. In this DGP the correlation ρ between the errors in
the structural and reduced form equations is -0.40.10 This is why the mean OLS estimate
of 0.14 is less than the true elasticity of β = 0.55. As we see in Figure 6, the 2SLS standard
errors imply that the 2SLS estimates are much more precise when they are in the vicinity
of the OLS bias than when they are near the true value of β = 0.55.

In the top left panel of Figure 6 we shade in red cases where β̂2SLS is significant at the
5% level, which occurs 39.7% of the time. In the right panel we consider two-tailed 2SLS
t-tests of the null hypothesis that β = 0.55. The red dots indicate rejections at the 5%
level. This occurs in 3.58% of cases, so the size of the test is too small. This is what we
expect based on the case of C=10 (F.05=23) and ρ = 0.4 in Figure 1. More importantly,

almost all rejections occur when β̂2SLS is near zero, because the 2SLS standard errors
are (spuriously) smaller when the estimate is shifted in the direction of the OLS bias.

The bottom panel of Figure 6 reports the same results except now we use the AR test
to evaluate significance of the 2SLS estimates. In the bottom left panel we shade in red
cases where β̂2SLS is significant at the 5% level, which occurs 54.8% of the time. Thus
the AR test exhibits substantially better power than the t-test. In the right panel we
consider AR tests of the null hypothesis that β = 0.55. This is simply the partial F -test
from a regression of y − xβ on the instrument and other exogenous variables. The red
region again highlights rejections at the 5% level. This occurs in 4.69% of cases, so the
size of the test is quite accurate. Moreover, those rejections are almost evenly distributed
between cases where β̂2SLS is above vs. below the true value of 0.55. Thus, the AR test
largely solves the problem of asymmetry in test results that affects the 2SLS t-test.11

These results show that the AR test exhibits both substantially better power and more
accurate size than the t-test in this data environment. Moreover, it does not suffer from
the problem that estimates shifted in the direction of the OLS bias appear to be more
precise. This illustrates that the problems with 2SLS t-tests and advantages of the AR
test that we illustrated in Sections 4–6 are not limited to the iid normal environment
but are also evident in a realistic environment constructed from actual data. In Keane
and Neal (2021) we present another application to estimating labor supply elasticities.
In that case ρ = 0.70, and the advantages of the AR test are much greater.

The AR test is widely recommended by econometric theorists as superior to the t-test
when instruments are weak, and no worse when instruments are strong. For example,
Andrews et al. (2019) argue the AR test should be widely adopted by applied researchers,

10A negative ρ generates a positive association between 2SLS estimates and standard errors.
11We also shade the 10% and 20% level rejections in blue and green. The AR test rejects at 9.85% and
19.9% rates, so size is accurate, and rejections are evenly distributed above/below the true value. The
t-test, in contrast, only rejects at 7.1% and 13.9% rates, with 6.9% and 11.7% in the negative direction.
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Figure 6. Standard Error of β̂2SLS plotted against β̂2SLS itself
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Note: Runs with standard error > 1 are not shown. In the left panel, red dots indicate H0 : β = 0
is rejected at the 5% level, while in the right panel red dots indicate H0 : β = 0.55 is rejected at
the 5% level. Blue and green indicate rejections at the 10% and 20% levels.

stating: “In just-identified models ... Moreira (2009) shows that the AR test is uniformly
most powerful unbiased.... Thus, the AR test has (weakly) higher power than any other
size-α unbiased test... In the strongly identified case, the AR test is asymptotically effi-
cient... and so does not sacrifice power relative to the conventional t-test. ... Since AR
confidence sets are robust to weak identification and are efficient in the just-identified
case, there is a strong case for using these procedures in just-identified settings.”

Despite its clear advantages, the AR test has been largely neglected by applied re-
searchers. In fact, as far as we know, it has never been adopted in the large literature on
estimating the elasticity of consumption with respect to anticipated income changes. In
our application, given that the first-stage F statistic is only slightly above 10, conven-
tional wisdom says we are in a borderline case where weak instruments may or may not
be a concern. Clearly the AR test should be viewed as more reliable than the t-test in
this context. Our experiment illustrates just how superior the AR test is in practice.

A limitation of the AR test is that it loses power in over-identified settings, where
Moreira (2003)’s conditional likelihood ratio (CLR) test may be preferable. We compare
them in Section 11. But the the AR and CLR tests are equivalent in the just-identified
case considered here. In the next section we discuss the ideas behind “conditional” tests,
and focus on the conditional t-test, which can be useful in the just-identified case.
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8. THE CONDITIONAL T-TEST APPROACH

As we have seen, 2SLS t-tests can give misleading results due to the association between
2SLS estimates and standard errors, even when instruments are strong by conventional
standards. This same basic problem affects the AR test, but much less severely, making
it clearly preferable to the t-test in the single instrument case. Moreira (2003) and Mills
et al. (2014) have proposed a different approach to 2SLS hypothesis testing known as the
“conditional t-test” approach. It provides another useful way to address this problem.

Due to the association between 2SLS estimates and standard errors, the distribution
of 2SLS t-tests under the null is not well approximated by a N(0, 1). In fact, it is highly
asymmetric, even when instruments are strong. The idea of a conditional t-test is to
adjust the critical values of the 2SLS t-test to take this non-normality and asymmetry
into account. This is achieved by using critical values that are conditional on the first-
stage F and the covariance matrix of the errors in the reduced form regressions of y and
x on z. These are y = zβπ + (βe+ u) and x = zπ + e. Under H0 : β = 0 we have y = u
so the covariance of the reduced form errors provides an estimate of ρ = cov(e, u).

As we saw in Figure 1, the size of 2SLS t-tests using standard critical values depends on
F and ρ. Not surprisingly then, it is possible to invert this relationship to find appropriate
critical values conditional on F and ρ such that the t-test has the correct size. As Mills
et al. (2014) note however, there is no known closed form solution for this inversion, so
it must be calculated by simulating the distribution of the 2SLS t-test conditional on
estimates of F and ρ. Fortunately this is a simple process.12

Table 6 reports summary statistics for critical values simulated using the DGP in
(3.5) assuming a true ρ = 0.80. For each level of C(F.05) we report the median and
standard deviation of the calculated critical values. Given each dataset drawn from our
DGP, we get estimates of F and ρ, and then simulate the distribution of the t-statistic
conditional on (F̂ , ρ̂). Thus the construction of Table 6 requires running a simulation
within a simulation. Hence, below each median critical value, we report in parenthesis
the standard deviation of the critical values constructed under each true C(F.05) scenario.

For example, in the case of C =2.30 (F .05=10) that corresponds to the Staiger-Stock
rule of thumb, the median critical values for 2.5% left-tailed and right tailed t-tests are
-0.445 and 3.152, respectively. Using these critical values, one-tailed tests have the correct
2.5% size. The large deviation of these values from ±1.96 shows the extreme asymmetry
generated by the negative association bewteen 2SLS estimates and standard errors in
this case. As Mills et al. (2014) note, the left and right tail conditional critical values can
be used in conjunction to form a two-tailed 5% conditional t-test with correct size.

Figure 7 presents a graphical illustration of how the asymmetric two-tailed condi-
tional t-test (henceforth “ACT”) works. The left panel shows results for 10,000 simulated

datasets with C =2.30 (F .05=10) and ρ = 0.80. As before, we plot SE(β̂2SLS) against

β̂2SLS . The red dots indicate cases where we reject the null H0:β = 0 because the ratio of
β̂2SLS to the conditional critical value exceeds one. The ACT achieves a correct overall
5% rejection rate, as well as symmetry with 2.5% negative and 2.5% positive rejections.

We have observed that standard 2SLS t-tests have little power to detect true negative
effects when the OLS bias is positive, even when instruments are “strong” by conventional

12Draw many datasets with the same (F̂ , ρ̂) but with different structural errors, using a construction
in Moreira (2003). Then run 2SLS on each dataset, and form the distribution of the t-statistics. Then,
for example, use the 95th percentile of the distribution as the conditional critical value for a 5% test.
Marcelo Moreira provided us with his Matlab code which does this calculation efficiently.
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Table 6. Median Critical Values for the Mills et al. (2014) One-Tailed t-tests

1% 2.5% 5% 95% 97.5% 99%
C = 2.3 -0.446 -0.445 -0.441 2.606 3.152 3.745

(0.176) (0.176) (0.175) (0.132) (0.126) (0.118)

C = 10 -0.928 -0.921 -0.899 2.253 2.760 3.338
(0.173) (0.161) (0.141) (0.093) (0.114) (0.133)

C = 73.75 -1.774 -1.561 -1.377 1.908 2.306 2.760
(0.039) (0.027) (0.020) (0.017) (0.023) (0.031)

C = 336.3 -2.048 -1.754 -1.516 1.781 2.132 2.526
(0.009) (0.007) (0.005) (0.005) (0.006) (0.009)

C = 1, 000 -2.147 -1.823 -1.567 1.732 2.064 2.434
(0.004) (0.003) (0.002) (0.002) (0.003) (0.004)

C = 10, 000 -2.239 -1.888 -1.613 1.685 1.998 2.344
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Note: The standard deviations in parentheses are across 10,000 simulations.

standards (e.g., F=10). This is of great practical importance, as it means there is little
chance of detecting negative program effects given positive selection on unobservables.
We see here that the ACT solves this problem by using a very “lenient” critical value
in the left tail (in this case approximately -0.445 instead of -1.96).13 Applied researchers
may find it odd to adopt such a “weak” standard, but, given that association between
2SLS estimates and standard errors is an intrinsic property of the estimator, it is essential
if one desires a “first do no harm” approach to policy evaluation. Conversely, the ACT
adopts a very “strict” critical value of 3.152 for assessing positive effects.

The right panel of Figure 7 presents results for the relatively strong instrument case of
C =74 (F.05=105). Here the median left and right tail critical values used to form the 5%
two-tailed ACT are -1.561 and 2.306. Notice that substantial asymmetry remains even
at this level of instrument strength. This is consistent with our observation in Section 6
that one-tailed t-tests using standard critical values only achieve approximate symmetry
between left-tail and right tail rejection rates if first-stage F is in the tens of thousands.
The ACT achieves a correct overall 5% rejection rate, as well as symmetry with 2.5%
negative and 2.5% positive rejections. Recall that for a conventional two-tailed t-test these
figures were 0.3% and 4.5%, and for the AR test they were 2.3% and 2.7%, respectively.

In Table 7 we examine power of the ACT test. We again consider two alternative true
values, β = 0.30 or β = −0.30. These are quantitatively large values, as they imply a one
standard deviation change in x induces an 0.25 standard deviation change in y.

Consider first the strong instrument case of C =74 (F.05=105). Here the power of
the ACT test is very good, with a roughly 73% rejection rate in both the β = −0.3 and
β = 0.3 cases. It is interesting to compare this to the AR test, which exhibits a tremendous
power asymmetry: a 91% rejection rate when β = −0.3 but only a 53.4% rejection rate
when β = 0.3. This asymmetry is not specific to this example: It is a general 2SLS
property that follows directly from the positive association between ρĉov(z, u), β̂2SLS
and the value of the AR test (as we discussed in Section 6).

Thus, the AR test has more power to detect true effects that are opposite in direction
to the OLS bias, while the ACT test has more power to detect true effects in the same

13We emphasize that the conditional critical values differ across the 10,000 datsets, as each dataset has

its own realization of (F̂ , ρ̂), but the median critical values are -0.445 and 3.152.
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Figure 7. The Mills et al. (2014) Asymmetric Conditional t-test (ρ = 0.80)
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Note: Colors signify the ratio of the t-statistic to its critical value. Runs with s.e.> 4 not shown.

direction as the OLS bias. Given that both tests have correct size by construction, the
choice between them depends only on power. Suppose the researcher has a strong prior
that the OLS bias is positive (i.e., positive selection into treatment). Adopting a “first
do no harm” approach to policy evaluation, one would want to use the AR test, as it
has more power to detect true negative effects in that context. But we would advise also
implementing the ACT test, as it is more likely to detect true positive effects.

Given negative selection (ρ < 0) this advice is reversed, as the ACT test has more
power than AR to detect a true negative effect. This may seem surprising, given the
unanimous advice of the theory literature to use the AR test in the single endogenous
variable just-identified case, as it is the uniformly most powerful test.14 But that result
only holds within the class of two-tailed tests with symmetric critical values.15

Next, we examine power of the ACT test in the case of C =2.30 (F .05=10), often
considered the standard for a “strong” instrument. In this case, power is very low. The
probability of rejecting H0 : β = 0 is only 8% when true β = 0.3, and only 4.8% when
true β = −0.3. In the β = −0.3 case power is no greater than size, meaning the test
is not informative. Moreover, these figures are inflated by the fact that roughly 1/6 of

these rejections occur when β̂2SLS has the “wrong” sign. The AR test doesn’t do any
better. It has even lower power (only 6.6%) when true β = 0.3, and while it superficially
seems to do a bit better (9%) when true β = −0.3, this is spuriously inflated by the fact

that more than 1/3 of these rejections happen when β̂2SLS > 0. The obvious conclusion
is that in the C =2.30 (F .05=10) case there is simply not much information in the data,
and no choice of testing procedure will change that.

14In the single endogenous variable exactly-identified case, the AR test is equivalent to the conditional
likelihood ratio (CLR) test (Moreira 2003) and the Langrange multiplier (LM) test (Kleibergen 2002). In
more general settings these tests differ, and the choice among them is ambiguous. Moreira (2003) argues
that the power of the AR and LM tests deteriorates relative to CLR when there are many instruments.
15Andrews et al. (2007) found that two-tailed conditional t-tests have very poor power. In particular,
when instruments are weak and ρ > 0, they have little power to detect a true negative β. This is
because they constrain the critical values to be symmetric around zero, which fails to deal with the
negative association between 2SLS estimates and standard errors that arises in the ρ > 0 case. The same
criticism applies to the tF test proposed by Lee et al. (2020).
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Table 7. Power of the ACT and AR tests (ρ = 0.8) (%)

C F5%
Conditional t-test (ACT) AR Test

H0:β = 0 β > 0 β < 0 H0:β = 0 β > 0 β < 0

β = 0.3

2.30 10 8.0 6.6 1.4 6.6 6.5 0.1

5.78 16.38 12.1 11.3 0.9 8.4 8.3 0.2

29.44 50 37.6 37.6 0.0 25.2 25.2 0.0

73.75 104.7 73.3 73.3 0.0 53.4 53.4 0.0

β = −0.3

2.30 10 4.8 0.7 4.2 9.0 3.2 5.9

5.78 16.38 7.3 0.4 7.0 15.0 0.8 14.2

29.44 50 38.3 0.0 38.3 54.7 0.0 54.7

73.75 104.7 73.6 0.0 73.6 91.0 0.0 91.0
Note: The table reports the frequency of rejecting the false null hypothesis H0: β = 0.

Moving to the case of C =5.780 (F .05=16.38) we see some improvement for both tests,
as power attains levels of 7.3% to 15%, which clearly exceeds the 5% size level, and
“wrong sign” rejections become rare. But these power levels still seem uninspiring. As
in the strong instrument case, and for the same reason, the AR test has more power to
detect a true negative β, while the ACT test has more power to detect true positives, so
there is no unambiguous ranking of the tests.

Finally, we consider a moderately strong instrument case of C =29.4 (F .05=50). At
this level of instrument strength, the ACT test attains a power level of roughly 38%
regardless of whether the true β is positive or negative. But the AR test still has a strong
asymmetry (55% vs. 25%): It has much more power to detect a true negative β.

9. PERFORMANCE OF 2SLS RELATIVE TO OLS

Conventional weak instrument tests ask if instruments are strong enough for 2SLS to
have “nice” properties, such as a maximal (over all possible ρ) size distortion in two-
tailed 2SLS t-tests below some acceptable level. But in practice applied researchers face
a choice between using 2SLS and OLS. So it is also interesting to ask: “How strong do
instruments need to be for 2SLS to generate more reliable results than OLS?”

We start to explore this question by asking how often 2SLS estimation errors exceed the
worst-case OLS bias. This occurs if x is perfectly correlated with the error in the outcome
equation (ρ = 1 and π=0). The bias is then 1.0. In Figure 8 we report the frequency of

|β̂2SLS | > 1 for the DGP in (3.5). We see 2SLS estimation errors of this magnitude are
common if the first-stage F is toward the low end of conventional “strong” instrument
thresholds. For example, if C =2.30 (F .05=10), which corresponds to the Staiger-Stock
rule of thumb, the risk of such extraordinary large outliers is a rather remarkable 22%
to 25%. Interestingly, however, if we consider a moderately strong instrument case of
C =29.4 (F .05=50) such large outliers are virtually impossible.

Next in Figure 9, we report the fraction of simulated datasets where 2SLS performs
worse than OLS, meaning the 2SLS estimate of β is further from the truth than the OLS
estimate. As expected, at low levels of endogeneity (ρ ≈ 0) OLS is almost always better
than 2SLS, as there is little bias and OLS is more efficient. What is surprising is the high
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Figure 8. Probability of 2SLS Estimation Error Exceeding Worst-case OLS Bias.
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Note: We plot the proportion of times that |β̂2SLS | > 1, which is the worst-case bias of OLS.

frequency with which OLS outperforms 2SLS at much higher values of ρ. Take the case
of C =2.30 (F.05=10), which corresponds to the Staiger-Stock rule of thumb. The value
of ρ has to approach 0.50 before the probability that 2SLS outperforms OLS passes 50%.

Figure 9. Probability of 2SLS Performing Worse than OLS
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Note: We plot the proportion of Monte Carlo replications where |β̂2SLS−β| > |β̂OLS−β|.
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The results in Figure 9 are hard to assess without a prior on reasonable values of the
unknown parameter ρ, which determines the extent of the endogeneity problem. This is
not exceptional, as Stock-Yogo weak instrument tests also require an assumption on ρ.
As we discussed in Section 4, those tests evaluate the worst-case performance of 2SLS
hypothesis tests. As we saw in Figure 1, this occurs when ρ is near one, so the endogeneity
problem is very severe, so those tests are implicitly assuming this to be the case.

In many applications one can put a reasonable prior on ρ, and assess the performance
of 2SLS relative to OLS for different levels of instrument strength in that scenario. For
example, consider the archetypal application of IV to estimating a regression of log wages
on education. Using PSID data from 2015 we calculate a correlation between education
and log earnings of 0.45.16 Thus, if education has no true effect on earnings, and the only
reason it is correlated with earnings is endogeneity - i.e., it is perfectly correlated with
the latent ability endowment - then the highest possible value of ρ is 0.45. So in such an
application a uniform prior on ρ ∈ [0, 0.45] may be reasonable.

Applied researchers may find a prior on ρ unfamiliar, so it is worth noting that plausible
values of ρ can be backed out empirically given any hypothesized value of β. For β = βp,
the implied value of ρ is simply the correlation of the residuals from (i) the regression
of y − xβp on z and (ii) the first stage regression of x on z.17 For example, if βp = 0
this is the correlation of the reduced form errors, and if βp = βOLS this is zero. Thus, a
prior that β ∈ (0, βOLS), which may be natural in many applications where one suspects
positive selection into treatment, would correspond to a prior that ρ lies between zero
and the correlation of the reduced form residuals. This is how we motivate the uniform
prior on ρ ∈ [0, 0.45] in the example of wages and education.

Table 8 shows the probability that 2SLS will outperform OLS under different scenarios
for the concentration parameter C (and the associated first-stage F ), and different priors
on ρ. For example, if C =2.30 (F .05=10), which corresponds to the Staiger-Stock rule of
thumb for strong instruments, and given a uniform prior ρ ∈ [0, 0.45], the probability that
2SLS outperforms OLS is only 26%. Alternatively, a researcher who thinks education is
highly (but not completely) endogenous, might have a uniform prior of ρ ∈ [0.35, 0.45].
Even in that case, the probability that 2SLS outperforms OLS is only 41%.

Clearly then, in an application to estimating the effect of education on earnings,
one should require a substantially higher level of instrument strength than the F̂=10
threshold suggests. For instance, in the case of C =29.4 (F .05=50), a uniform prior on
ρ ∈ [0, 0.45] implies a 65% chance that 2SLS will outperform OLS. Given a uniform
prior on ρ ∈ [0.35, 0.45] this increases 95%. Thus, in the archetypal application of IV to
estimating the return to education, if one believes ability bias is severe, one needs an F̂
in the vicinity of at least 50 to have high confidence that 2SLS will outperform OLS.

Of course in other contexts the endogeneity problem is plausibly more severe. For ex-
ample, consider a case where a uniform prior of ρ ∈ [0.5, 1.0] is plausible. Even then,
if C =2.30 (F .05=10), which corresponds to the Staiger-Stock rule of thumb for strong
instruments, the probability that 2SLS outperforms OLS is only 69%. But in the moder-
ately strong instrument case of C =10.0 (F .05=23.1) the chance of 2SLS outperforming
OLS is 91%. One may contrast this with the case of a uniform prior ρ ∈ [0, 0.45], where

16We use data on 30-54 year old household heads, and we partial out effects of age and age2. The
wage is constructed as labor income/hours. We screen on hours ∈ [400, 4160], income ∈ [$3000, $235884],
wage>$2.70 per hour, and valid data on education and labor income. This gives N=3,634.
17Of course also including any exogenous control variables present in the application.
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this level of instrument strength only gives a 47% chance that 2SLS will outperform OLS.
Thus, an “acceptable” level of instrument strength such that 2SLS is likely to outperform
OLS clearly depends heavily on one’s prior about ρ.

Overall, the results of this section show instruments need to be much stronger than
standard thresholds, like the popular F̂ > 10, in order to (i) assure 2SLS does not
suffer from a high probability of extreme outliers, and (ii) give confidence that 2SLS

results are superior to OLS, in the sense that |β̂2SLS − β| < |β̂OLS − β|. It is difficult to
give any general rule of thumb for acceptable instrument strength by the latter metric,
as the probability that 2SLS will outperform OLS is strongly increasing in the degree
of endogeneity (ρ). We suggest that researchers assess the level of instrument strength
required to have reasonable confidence that 2SLS will outperform OLS in any particular
application, based on reasonable priors on the severity of the endogeneity problem (ρ).

Nevertheless, a strong case can be made that applied researchers should adopt a higher
threshold of instrument strength in the vicinity of F̂ > 50. As we have seen, this thresh-
old renders extreme outlier 2SLS estimates very unlikely, and it makes 2SLS likely to
outperform OLS even at moderate levels of ρ. And, as we saw in Section 8, the power
of robust tests (AR and ACT) is quite poor if instrument strength falls much below this
level. If such a threshold cannot be met, then OLS combined with a serious attempt to
control for sources of endogeneity may be a superior strategy in many cases. We reiterate
that robust tests should be used in lieu of 2SLS t-tests regardless of F̂ .

Table 8. Probability of 2SLS Outperforming OLS (%)

Concentration
F5%Crit

Uniform Prior for ρ:

Parameter 0 to 1 0 to 0.45 0.35 to 0.45 0.5 to 1

1.82 8.96 45 24 41 65

2.30 10 48 26 45 69

3.84 13 56 32 55 77

5.78 16.38 62 38 64 84

10.00 23.1 70 47 77 91

29.44 50 83 65 95 99

73.75 104.7 89 76 100 100
Note: We report the frequency of |β̂2SLS − β| < |β̂OLS − β| across Monte Carlo replications,
averaged across all possible values of ρ under a uniform prior that ρ falls in the indicated range.

Finally, we note that our whole discussion of properties of 2SLS has been centered
on the iid normal case, in order to focus on key issues. This is not as restrictive as it
may appear, as for any heteroskedastic DGP, there exists a homoskedastic DGP yielding
equivalent behavior for 2SLS estimates and test statistics - see Andrews et al. (2019).
But in assessing acceptable first-stage F statistics in practice it is important to consider
the impact of heteroskedasticity. In the general case of multiple instruments, as Andrews
et al. (2019) note, it is inappropriate to use either a conventional or heteroskedasticity
robust F -test to gauge instrument strength in non-homoskedastic settings. They suggest
using the Olea and Pflueger (2013) effective first-stage F -statistic. However, as they point
out, in the single instrument just-identified case, this reduces to the conventional robust
F , and also coincides with the Kleibergen and Paap (2006) Wald statistic.
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10. IS THERE A BETTER ALTERNATIVE TO 2SLS?

We have found that 2SLS performs very poorly in the F.05=10 case often viewed as a
benchmark for acceptably strong instruments. It not only exhibits poor size and power
properties, but in many plausible cases it is likely to underperform OLS, in that β̂2SLS
is likely to be further from the true value than β̂OLS . In this Section we consider three
alternatives to 2SLS and ask whether they perform better when instruments are weak.

2SLS can be interpreted as IV using ziπ̂ as the instrument for xi, where π̂ is obtained
from OLS regression of x on z. Obviously π̂ tends to be greater in samples where ĉov(z, e)
is greater, and this has an unfortunate consequence: For an individual observation i we
have that cov(ziπ̂, ei) > 0, because a ceteris paribus increase in ziei drives up π̂. If ρ > 0
this means cov(ziπ̂, ui) > 0, so the instrument is positively correlated with the structural
error, which biases the 2SLS median towards OLS.18

Phillips and Hale (1977) noted this phenomenon, and suggested an alternative IV
estimator using ziπ̂−i as the instrument for xi, where π̂−i is obtained from OLS regression
of x on z excluding observation i. This approach, later called “jackknife IV” (JIVE),
breaks the correlation between ziπ̂ and ui. We report results using JIVE in Figure 10.

Figure 10. Standard Error of β̂JIV E plotted against β̂JIV E itself (ρ = 0.80)
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Note: Runs with standard error > 1.5 not shown. Red dots indicate H0 : β = 0 rejected at 5% level.

In the case of C =2.30 (F .05=10) the JIVE estimator causes us to reject H0: β = 0
via a two-tailed 5% t-test a striking 29% of the time, and all the rejections are positive.
In Sections 4-6 we emphasized the problem that 2SLS is much more likely to judge
estimates significant if they are shifted in the direct of the OLS bias. Here we see that
JIVE makes this problem much worse. The negative association between se(β̂JIV E) and

β̂JIV E imparts positive β̂JIV E estimates with spuriously high precision.

18The covariance of ziπ̂ and ui is of order 1/N , as the influence of observation i on π̂ vanishes as N
grows large, but in finite samples it contributes to bias in the 2SLS median. Similarly, if instruments are

strong in the sense discussed in Section 2, so we can be confident that |πV̂ ar(z)| � |ĉov(z, e)|, then the
influence of any particular ei on π̂ becomes negligible.
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JIVE performs worse than 2SLS because the alternative instrument ziπ̂−i has a smaller
correlation with x than ziπ̂, making the weak instrument problem worse. This has espe-
cially dire consequences if the instrument z is weak to begin with.19 In the right panel of
Figure 10 we see that in the relatively strong instrument case of C =73.75 (F .05=104.7)
JIVE does somewhat better (i.e, 3.84% rejections of which 83% are positive), but this is
not comforting for an estimator designed for use with weak instruments.

The “k-class” estimators modify 2SLS by implementing IV using kziπ̂ + (1− k)xi as
the instrument for xi. Obviously 2SLS uses k = 1. One important alternative to 2SLS
is the Fuller (1977) estimator that uses k = 1 − 1/N (in the one instrument case), thus
leaving in a small part of xi. This “stabilizes” the estimator. Hence, in contrast to 2SLS,
the mean and variance of Fuller’s estimator exist.

We report results using the Fuller estimator in Figure 11. First, consider the case of
ρ = 0.80 and C =2.30 (F .05=10). Comparison with Figure 2 shows that Fuller estimates
and standard errors are substantially less dispersed than 2SLS. Fuller causes us to reject
H0: β = 0 via a two-tailed 5% t-test 15.4% of the time, compared to 10% for 2SLS, so
its size distortion is greater. Just as with 2SLS, all the rejections occur when β̂Full is
positive: the negative covariance between se(β̂Full) and β̂Full imparts spuriously high
precision to Fuller estimates that are most shifted in the direction of the OLS bias.

Figure 11. Standard Error of β̂Full plotted against β̂Full itself (ρ = 0.80)
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Note: Runs with standard error > 1.5 not shown. Red dots indicate H0 : β = 0 rejected at 5% level.

In the right panel Figure 11 we report results for the relatively strong instrument case
of C =73.75 (F .05=104.7). Comparison with the right panel of Figure 2 reveals that 2SLS
and Fuller estimates are very similar in this case.20

The third and final alternative we consider is the unbiased estimator of β proposed
in Andrews and Armstrong (2017). To understand their approach, consider the reduced
form regression of y on z, y = zβπ+(βe+u) = zξ+v where ξ = βπ. Obviously β = ξ/π.

19In fact, in the runs in the left panel of Figure 10, ĉov(z, x) is always positive, as we would hope given
that cov(z, x) > 0 in the population. But ĉov(zπ̂−i, x) has an incorrect negative sign 30% of the time!
20The Fuller estimator rejects at a 5.43% rate, but 96% of the rejections are when β̂Full > 0. So just as
with 2SLS, severe one-tailed t-test size distortions persist even with quite strong instruments.
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By analogy, the 2SLS estimator can be calculated by taking the ratio β̂2SLS = ξ̂/π̂ where
π̂ is the first-stage estimate of π. The problematic properties of 2SLS that arise when
instruments are weak (see Section 2) may be understood as arising because π̂ appears in
the denominator of this ratio. Estimates of ratios have poor properties if the denominator
is noisy, including the fact that 1/π̂ is not an unbiased estimator of 1/π.

The Andrews-Armstrong idea is that an unbiased estimator of β can be obtained if one
can construct an unbiased estimator of 1/π. Their approach requires the researcher to
be certain that π > 0, which is plausible in many applications. In that case, an unbiased
estimate of 1/π can be constructed by taking 1/π̂∗, where π̂∗ = σ2φ(π̂/σ2)/(1−Φ(π̂/σ2)).
Here σ2 is the standard deviation of π̂, and φ and Φ are the standard normal density
and cdf. Given π̂∗ it is simple to construct an unbiased estimator that we denote β̂U .21

Figure 12. Andrews-Armstrong β̂U plotted against β̂2SLS (ρ = 0.80)
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Note: Runs where β̂U < −6 were censored to −6. Red dots indicate H0 : β = 0 is rejected at the
5% level using the Anderson-Rubin statistic.

It is important to understand how the first-stage estimate π̂ is modified by this transfor-
mation. Note φ/(1−Φ) is the inverse Mills ratio, so π̂∗ = E(x|x > π̂) where x ∼ N(0, σ2

2).
Thus π̂∗ is positive by construction, and always larger than π̂. If π̂ is negative, then π̂∗

is a small positive number. As π̂ grows large π̂∗ approaches π̂ from above.
We report results using β̂U in Figure 12, where we plot the β̂U against β̂2SLS . The red

dots indicate estimates that are significant at the 5% level according to the Anderson-
Rubin test. In the strong instrument case in the right panel, β̂U and β̂2SLS are nearly
identical. The AR test rejects H0: β = 0 at close to the correct 5% rate, and there is an
fairly even balance between rejections at positive vs. negative estimates of β.

The weak instrument case in the left panel is more interesting. Of course the AR test
rejects H0: β = 0 at close to the correct 5% rate. But for 2SLS the rejections are highly
asymmetric, as 85% occur when β̂2SLS > 0. So using AR does not avoid the asymmetry

21The unbiased estimator of β is simply β̂U = (δ̂/π̂∗)+(σ12/σ2
2), where δ̂ is defined as ξ̂−(σ12/σ2

2)π̂. This

works because E(ξ̂|π̂) = βπ + (σ12/σ2
2)(π̂ − π) where σ12 is the covariance between π̂ and ξ̂. Therefore

E(δ̂|π̂) = βπ− (σ12/σ2
2)π, which is independent of π̂. Hence we can write E(δ̂/π̂∗) = β− (σ12/σ2

2), from

which it follows that Eβ̂U = β. To obtain a feasible estimator replace σ12 and σ2 with their estimates.
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that most rejections occur at positive values, which is the direction of the OLS bias. As
we see in the left panel of Figure 12, the unbiased estimator solves this problem, as it
generates only 54% positive rejections. It achieves this in an interesting way: Specifically,
it flips a large fraction of the significant 2SLS estimates from positive to negative. This
occurs in cases where π̂ is negative, so that π̂∗ is positive (consistent with the prior).

Finally, Table 9 repeats the analysis of Section 9, by asking how often the alternative
estimators outperform OLS, in the sense that |β̂ − β| < |β̂OLS − β|. In the F.05 = 50
case the Fuller and Unbiased estimators perform about the same as 2SLS, with JIVE
slightly worse, so at this level of instrument strength there is little to be gained by
using alternatives to 2SLS. When instruments are weaker (F.05 = 10 or 23) a clear
ranking is evident with Fuller doing best, followed by Unbiased, then 2SLS and then
JIVE. For instance, given a uniform prior ρ ∈ [0, 0.45], which we have argued is plausible
in the classic application of estimating returns to education, the probability that 2SLS
outperforms OLS is only 26% when F.05 = 10. For Fuller the figure is 40% and for
Unbiased it is 32%. So while these alternatives outperform 2SLS, their performance can
hardly be considered acceptable in any absolute sense when instruments are weak.

Table 9. Probability of Estimators Outperforming OLS (%)

Estimator
Prior Expectation of ρ:

0 to 1 0 to 0.45 0.35 to 0.45 0.5 to 1
C = 2.30, F5%Crit = 10.00

2SLS 48 26 45 69
JIVE 32 22 33 41
Fuller 65 40 65 87
Unbiased 60 32 56 84

C = 10.00, F5%Crit = 23.10
2SLS 70 47 77 91
JIVE 57 38 62 74
Fuller 76 51 84 98
Unbiased 75 50 82 96

C = 29.44, F5%Crit = 50.00
2SLS 80 60 92 98
JIVE 76 56 86 93
Fuller 82 62 94 99
Unbiased 82 62 94 99

Note: We report the frequency of |β̂−β| < |β̂OLS −β| across Monte Carlo replications, averaged
across all possible values of ρ under a uniform prior that ρ falls in the indicated range.

The story changes, however, if the endogeneity problem is more severe. Given a uniform
prior ρ ∈ [0.5, 1.0] the probability that 2SLS outperforms OLS is only 69% when F.05 =
10. For Fuller the figure is 87% and for Unbiased it is 84%. So these alternatives do offer
substantially improved performance over 2SLS when endogeneity is severe.

In summary, these results reinforce our earlier conclusion that a first-stage F of at least
50 is required to give reasonable confidence that any of the IV estimators will outperform
OLS at moderate levels of ρ. But these estimators do offer improvements in cases where
instruments are weaker and endogeneity is severe. All of these alternative estimators
should be used in conjunction with the AR and ACT tests.

We have focused on the one instrument case, but the performance of 2SLS tends to
deteriorate with multiple instruments – see Section 11. The absolute performance of the
alternatives (LIML, Fuller, JIVE, Unbiased) will also deteriorate, but less so. Hence, an
even higher threshold of instrument relevance is desirable with multiple instruments.
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11. THE CASE OF MULTIPLE INSTRUMENTS

Finally, we consider the over-identified case with one endogenous variable and multiple
instruments. In the interest of space we focus on the case of three instruments, the number
required for the mean and variance of the 2SLS estimator to exist.

Given K instruments the definition of the concentration parameter C is unchanged.
But “true F” is now C/K and the first-stage sample F̂ is (N/K) ˆV ar(zπ)/σ̂2

e which has
an F (K,N−1) distribution. Table 10 lists, in the K = 3 case, several different levels of C,
the associated true F , and the associated 5% critical values of the F (3,∞) distribution.

We continue to work with the model in equation (3.5), and we focus on the simple case
where the three instruments are independently distributed N(0, 1), and the π coefficients
on the three instruments are equal (so each is equally strong). Table 10 then lists the
value of π required to attain each level of the concentration parameter when N=1000.

Table 10. First Stage F Critical Values Required to Achieve Different Objectives

Concentration True First-Stage
Value of π F5% Goal Achieved

Parameter F Statistic

6.90 2.30 0.0480 6.93 Matching π

13.01 4.34 0.0659 10.00 SS Rule of Thumb

40.91 13.64 0.1168 22.30 Size = 10%

110.55 36.85 0.1920 50.00

360.26 120.09 0.3465 142.50 Size = 5%
Note: The instrument vector z is significant at the 5% level in the first stage if F>2.60.

Recall from Table 1 that setting π=0.048 in the one instrument case generates a
concentration parameter and “true F” of 2.3, and an associated 5% critical value of 10
for the F (1,∞) distribution. Suppose now we have three equally strong instruments. As
we see in Table 10 this triples C to 6.9, leaves “true F” unchanged at 2.3, and now the
associated 5% critical value of the F (3,∞) distribution is 6.93.

One might think that three equally strong independent instruments are better than
one, but it is actually a mixed bag. Recall 2SLS is IV using zπ̂ as the instrument for x,
where π̂ is obtained from OLS regression of x on z. Many problematic properties of 2SLS
arise because the sample covariance of the feasible instrument zπ̂ with the structural
error u tends to be greater than that of the optimal instrument zπ, by virtue of how
OLS forms π̂. And, unfortunately, the use of multiple instruments in the first stage of
2SLS tends to worsen the problem. This is because an instrument that happens to have
a high sample covariance ˆcov(z, e) with the first-stage error e will get a larger coefficient
π̂ in the first stage. This drives up the sample covariance ˆcov(zπ̂, e). And if e and u are
correlated (i.e., if we have endogeneity) this also drives up the magnitude of ˆcov(zπ̂, u).

Figure 13 illustrates this problem. We first define the “covariance gap” as the difference
ˆcov(zπ̂, u)− ˆcov(zπ, u). Using 10,000 artificial data sets generated from model (3.5) with
ρ = 0.5 and N=1000, we calculate this covariance gap for the cases of 3 vs. 1 instrument.
The left panel of Figure 13 shows how the covariance gap almost always increases, and
often substantially, in the three instrument case. The right panel shows that the density
of the covariance gap shifts sharply to the right. Thus, using three instruments greatly
increases the problem of sample covariance between the instruments and the structural
error, which will tend to bias the 2SLS estimate towards OLS.
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Figure 13. Instrument Endogeneity in Samples with One vs. Three Instruments
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Note: We construct the “covariance gap” ˆcov(zπ̂, u)− ˆcov(zπ, u) for cases of 1 and 3 instruments
with π = 0.048. We plot their joint distribution (left), and their marginal densities (right).

As a consequence of increased sample covariance ˆcov(zπ̂, u), the association between
2SLS estimates and their standard errors gets even stronger in the multiple instrument
case. This is shown in Figure 14. The left panel is comparable in all respects to the left
panel of Figure 2, except now we add two equally strong independent instruments so
K=3. This causes the Spearman rs to increase in magnitude from -.576 to -.781. As the
variance of the 2SLS estimator now exists, we can report a Pearson correlation of -0.547.

Figure 14. se(β̂2SLS) plotted against β̂2SLS with Three Instruments (ρ = 0.80)
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Note: Runs with std. error > 1.5 not shown. Red dots indicate H0 : β = 0 rejected at 5% level.

By comparing the left panels of Figures 2 and 14 we can see how adding two instruments
affects size of the 2SLS t-test. The red dots again indicate cases where β̂2SLS differs
significantly from zero according to a two-tailed 5% t-test. With one instrument the size
of the test was 10%, but now it is 19.9%, so the size distortion increases dramatically. As

© 2021



34 Keane & Neal

before, all rejections occur when β̂2SLS > 0. Due to covariance between 2SLS estimates
and standard errors, only estimates shifted towards the OLS bias are ever significant.

The right panel of Figure 14 reports results for a strong instrument case of C=110.6
(F.05=50). Here the the Spearman rs between the 2SLS estimates and their standard
errors is -.906, while the Pearson correlation is -.915. This illustrates our point from
Section 5 that this strong association persists in strongly identified models. This, in
turn, explains why 2SLS t-tests are unreliable even with strong identification. The 5%
rejection rate of the two-tailed t-test is now 6%, so the size distortion is mostly eliminated.
But fully 92% of those rejections occur when β̂2SLS >0, so the asymmetry is still severe.

Figure 15 plots how size of two-tailed 5% t-tests of H0:β = 0 depend on C and ρ. It
is interesting to compare the case of C=2.3 in Figure 1 with C=6.9 in Figure 15. This
corresponds to adding two new independent instruments of equal strength. Notice how
in the 3 instrument case the rejection rate rises much more steeply with ρ, and it peaks
at almost 30%, compared to only 13% in the one instrument case. Adding instruments
worsens t-test size distortions by increasing the sample covariance between zπ̂ and u.

Figure 15. Rejection rate of H0 : β = 0 using a 5% Two-tailed t-test (3 Instruments)
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To achieve the Staiger-Stock rule of thumb (F.05=10) in the three instrument case
we need to increase π from 0.0480 to 0.0659, so we need three independent instruments
that are each individually stronger than what we would require of a single instrument to
achieve the same goal. Even then, as we see in Figure 15, the maximum rejection rate
increases to almost 20%, compared to 13% in the single instrument case.

Stock and Yogo (2005) show that C=40.9 (F.05=22.3) achieves a maximum rejection
rate of 10% in the three instrument case. Figure 15 shows this is accurate. This corre-
sponds to a π of 0.1168 on each of the three instruments in the first stage (see Table 10).
But as we saw in Table 1, the same objective could be achieved using a single instrument
with π=0.0760. Thus, if size distortion in two-tailed t-tests is one’s primary concern, it
is hard to justify using multiple instruments. This is consistent with Angrist and Pischke
(2008)’s advice that applied researchers should choose their one best instrument.
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A similar point emerges if we look at median bias. The left panel of Figure 16 shows
how median bias varies with C and ρ in the three instrument case. For comparison, the
red line shows the case of one instrument with C = 2.3 (F.05=10). This can be compared
to the blue line, which is the case where we add two additional equally strong independent
instruments. Clearly this makes the median bias unambiguously worse.

Figure 16. Performance of 2SLS Relative to OLS
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Note: We plot median bias and proportion of Monte Carlo runs where |β̂2SLS −β| > |β̂OLS −β|.

It would be a mistake, however, to focus exclusively on median bias and size distortions
of t-tests in assessing the performance of 2SLS. Efficiency and power considerations are
also important, and robust tests are available. To explore efficiency, the right panel of
Figure 16 shows how the probability of 2SLS performing worse than OLS varies with C
(F.05) and ρ in the three instrument case. We plot the proportion of simulated datasets

where |β̂2SLS − β| > |β̂OLS − β|. For comparison, we also show (in red) the case of one
instrument with C = 2.3(F.05=10). This may be usefully compared to the blue line,
which is the case where we add two more equally strong independent instruments.

The addition of two equally strong independent instruments tremendously increases
the probability that 2SLS will out-perform OLS. There is obviously a large efficiency
gain from using the additional information. This gives a very different perspective on the
potential efficacy of using multiple instruments.

These results naturally lead us to assess whether robust tests outperform the t-test
in the multiple instrument case. Table 11 compares the t-test, the Anderson and Rubin
(1949) test and Moreira (2003)’s conditional likelihood ratio test (CLR) in the three
instrument case. We focus on the case of ρ=0.80, and let the true β be 0, -0.3 or +0.3.
As we noted in Section 4, β = ±0.3 correspond to fairly large effects, as they imply a
one standard deviation change in x induces an 0.25 standard deviation change in y.

First consider the t-test. The top panel of Table 11 reports results when β=0. Clearly,
the two-tailed t-test rejects the true null at far too high a rate in cases with C=6.9
(F.05=6.93) or C=13 (F.05=10). The size distortion in one-tailed t-tests is even greater,

as all rejections occur when β̂2SLS > 0. In the middle panel, when β=-0.30, we see the
t-test has essentially no power to detect a substantial true negative effect in these cases.
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Stunningly, if C=6.9, the t-test rejects H0:β=0 only 2.5% of the time, and all of those
rejections happen when β̂2SLS > 0 – i.e., we conclude β is positive when it is actually
negative! Lastly, consider the bottom panel, where β=0.30. In the C=6.9 case the t-test
rejects H0:β=0 at a 46% rate. But this high value is not a good sign – it arises because
the 2SLS standard errors are spuriously precise when β̂2SLS > 0.

Table 11. Rejection Rates and Power With Three Instruments (ρ = 0.8) (%)

C 6.90 13.01 40.91 110.55 360.26
F5%Crit 6.93 10.00 22.30 50.00 142.50

β = 0

T-Statistic
Total Rejection Rate 0.198 0.134 0.082 0.060 0.054

When β̂ > 0 0.198 0.134 0.082 0.055 0.040
AR Test

Total Rejection Rate 0.051 0.051 0.051 0.051 0.051

When β̂ > 0 0.048 0.042 0.036 0.032 0.029
CLR Test

Total Rejection Rate 0.050 0.049 0.049 0.048 0.049

When β̂ > 0 0.036 0.028 0.023 0.023 0.024
β = −0.3

T-Statistic
Total Rejection Rate 0.025 0.007 0.354 0.949 1.000

When β̂ < 0 0.000 0.001 0.354 0.949 1.000
AR Test

Total Rejection Rate 0.120 0.189 0.521 0.936 1.000

When β̂ < 0 0.074 0.166 0.519 0.936 1.000
CLR Test

Total Rejection Rate 0.162 0.268 0.683 0.980 1.000

When β̂ < 0 0.140 0.263 0.683 0.980 1.000
β = 0.3

T-Statistic
Total Rejection Rate 0.460 0.453 0.583 0.838 0.997

AR Test
Total Rejection Rate 0.075 0.097 0.221 0.540 0.977

CLR Test
Total Rejection Rate 0.097 0.138 0.327 0.708 0.993

Note: The table reports the frequency of rejecting the null hypothesis H0: β = 0.

Next we consider the AR test. It performs much better than the t-test, but it still
exhibits serious problems. When the true β=0 (top panel) the AR test of course rejects
H0:β=0 at approximately the correct 5% rate (deviating only due to sampling variation).
But in the C=6.9 (F.05=6.93) and C=13 (F.05=10) cases nearly all of those rejections

occur when β̂2SLS > 0. With one instrument we found this power asymmetry vanished
very quickly as instrument strength increased, but in the three instrument case it vanishes
more slowly. For instance, even in the strong instrument case of C=111 (F.05=50) we see

that 61% of the AR test rejections occur when β̂2SLS > 0.
The AR test assigns spurious precision to 2SLS estimates shifted in the direction of the

OLS bias, and in the multiple instrument case this problem is much worse. This problem
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arises due to the strong positive covariance between ρĉov(z, u) and β̂2SLS . A large value
of ρĉov(z, u) also generates a large value of the AR test. Thus, if ρ > 0, the AR test and

β̂2SLS have a positive covariance. Adding instruments increases this covariance.
The problem with the AR test is even more apparent if we look at the case where

the true β=-0.3 (middle panel). In the case of C=6.9 (F.05=6.93) the AR test rejects
the false null H0:β=0 at a 12% rate, but a substantial fraction of those rejections (39%)

occur when β̂2SLS > 0. So we often conclude β is positive when it is actually negative.
As we discussed in Section 6, the AR test has more power to detect true negative effects

than true positive effects. This is another manifestation of the covariance phenomenon.
In the strong instrument case of C=111 (F.05=50) the AR test rejects H0:β=0 at a
93.6% rate when the true β is negative, but only a 54% rate when the true β is positive.
Geometrically, when the true beta is positive, β̂2SLS values that lie between zero and the
true β (against the direction of the OLS bias) will correspond to spuriously low AR test
values, so they are less likely to be judged significantly greater than zero.

Next we consider the CLR test. Its performance is clearly superior to AR. When the
true β=0 (top panel) the CLR test of course rejects H0:β=0 at approximately the correct

5% rate. In the C=6.9 (F.05=6.93) case 73% of those rejections occur when β̂2SLS > 0,
so the CLR test does exhibit power asymmetry. But this vanishes rather quickly as
instrument strength increases. In the C=13 (F.05=10) case the proportion of positive
rejections is already down to 57%. Like AR, the CLR test has more power to detect true
negative effects than true positive effects, but the asymmetry is less severe. For example,
In the case of C=41 (F.05=22.3) the CLR test rejects H0:β=0 at a 68.3% rate when the
true β is negative, and a 32.7% rate when the true β is positive. These compare to rates
of 52.1% and 22.1% for the AR test. Thus, the CLR test exhibits better power to detect
both positive and negative departures from the null.

Finally, consider the ACT test; see Table 12. In contrast to the other tests, if β=0 the
ACT test has correct 5% size and symmetric rejections on both sides of 0. Moreover,
the ACT test has roughly symmetric power when the true β = ±0.30. Interestingly, the
ACT test has better power to detect a true positive β (when the OLS bias is positive)
than the CLR test. Conversely, CLR has better power to detect a true negative effect.
This is consistent with results in Table 7 for the exactly identified case (where AR and
CLR are equivalent). We conclude that no case can be made for using 2SLS t-tests. The
CLR and ACT tests should be adopted instead, and used in conjunction.

Table 12. ACT Test Rejection Rates and Power with Three Instruments (ρ = 0.8) (%)

C 6.90 13.01 40.91 110.55 360.26
F5%Crit 6.93 10.00 22.30 50.00 142.50

β = 0:
Total Rejection Rate 0.050 0.050 0.049 0.051 0.051

When β̂ > 0 0.026 0.026 0.025 0.026 0.025
β = −0.3:

Total Rejection Rate 0.083 0.150 0.458 0.873 1.000

When β̂ < 0 0.078 0.148 0.458 0.873 1.000
β = 0.3:

Total Rejection Rate 0.109 0.172 0.465 0.881 1.000

Note: The table reports the frequency of rejecting the null hypothesis H0: β = 0 using
the conditional t-test.
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12. CONCLUSION

We have examined the behavior of 2SLS given different levels of instrument strength,
focusing primarily on the a basic iid normal environment. In that context, Staiger-Stock
suggested the popular rule of thumb that the first-stage F should be at least 10 for 2SLS
to give reliable results. And, in the case of a single instrument, Stock-Yogo showed that a
first-stage F of 16.4 ensures maximal size distortion in two-tailed 2SLS t-tests is no more
than 5%. However, we find 2SLS is very poorly behaved in environments characterized
by first-stage F -statistics in the 10 to 16.4 range.

The problem is not the Stock-Yogo analysis itself, which is perfectly correct, but rather
that their focus on maximal size distortions of two-tailed t-tests masks other problems
with 2SLS. First, 2SLS has very low power if the first-stage F is in the 10 to 16.4
range. Second, the 2SLS estimator has the unfortunate property that it tends to generate
standard errors that are artificially too low precisely when it generates estimates that are
shifted most strongly in the direction of the OLS bias. Consequently, nearly all significant
2SLS estimates are severely shifted towards OLS when instruments are weak.

In fact, we find standard 2SLS t-tests have little power to detect true negative effects
when the OLS bias is positive, even when instruments are “strong” by conventional
standards (e.g., F=10). This is of great practical importance, as it means there is little
chance of detecting negative program effects given positive selection on unobservables.

A general consequence of the association between 2SLS estimates and their standard
errors is that size distortions in one-tailed t-tests are far greater than size distortions in
two-tailed tests. We find very high levels of instrument strength are needed to reduce
those size distortions to modest levels. For example, if the first-stage F meets the 104.7
threshold suggested by Lee et al. (2020), then 2SLS has reasonable power properties, and
size distortions in two-tailed t-tests are modest. But size distortions in one-tailed t-tests
are still enormous. In fact, we find a first-stage F -threshold of about 10,000 is needed to
eliminate size distortions in one-tailed 2SLS t-tests.

The literature on 2SLS seems to have overlooked the problem of size distortions in
one-tailed tests. Applied researchers rarely use one-tailed tests as they expect two-tailed
tests to be symmetric (so a two-tailed 5% test is equivalent to a one-tailed 2.5% test).
But that is completely false with 2SLS: Even with moderately strong instruments almost
all estimates judged significant by two-tailed 2SLS t-tests are shifted in the direction of
the OLS bias, rather then symmetrically distributed around the true value.

The asymmetry in 2SLS t-tests is highly relevant for applied work. Consider the classic
problem of estimating the effect of education on wages. The usual concern is that un-
measured ability biases the OLS education coefficient upward. Our results imply that if
the OLS bias is indeed positive, then larger positive 2SLS estimates of the effect of edu-
cation on wages will spuriously appear more precise. This will naturally bias researchers
towards exaggerating the effect of education.

We find the Anderson-Rubin (AR) test suffers from the same problem but to a much
lesser degree: That is, when instruments are weak the AR statistic tends to be greater
when β̂2SLS is shifted in the direction of the OLS bias. So AR over-rejects H0: β = 0
when β̂2SLS is shifted towards E(β̂OLS). Fortunately, however, the problem with the AR
test becomes negligible at a much lower first-stage F threshold than for the t-test. Thus,
we advise using the AR test even if the first-stage F is in the thousands.

We present an application to estimating “excess sensitivity” of consumption to income
using PSID data to assess relative performance of AR and t-tests in a realistic setting. In
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this example the first-stage F -statistic is modestly above the threshold of 10. We show
that in this context the AR test is clearly superior to the t-test in terms of both power and
size. As Andrews et al. (2019) note, the AR test is robust to weak instrument problems
and has (weakly) greater power than any alternative test in just-identified models. Given
the weight of the empirical and theoretical evidence, it is clear the AR test should be
widely adopted in lieu of the t-test even when instruments are strong.

The asymmetric conditional t-test (ACT) of Mills et al. (2014) corrects the asymmetry
in standard t-tests, so we advise it should also be widely adopted in applied work. When
the OLS bias is positive the ACT test has greater power to detect true positive effects
than the AR test, and vice versa, so we advise using both tests in conjunction.

Going beyond the focus on test statistics, we argue that a limitation of most prior
work on weak instruments is that the quality of 2SLS estimates is evaluated in isolation,
asking how strong instruments ought to be for 2SLS itself to exhibit acceptable statistical
properties. In practice applied researchers face a choice between using 2SLS and OLS. So
an alternative is to ask “How strong must instruments be for 2SLS to give more reliable
results than OLS?” Given commonly used thresholds for testing weak instruments, we
find probabilities that 2SLS will perform worse than OLS are substantial. For example,
given a first stage F of 10, and given a uniform prior on the degree of the endogeneity
problem, we calculate a 52% probability that 2SLS will generate an estimate of β further
from the truth than OLS. But if the first-stage F is 50 this figure drops to only 17%.

Given these results, we advise applied researchers to think seriously about reasonable
priors on the extent of endogeneity before assessing first-stage F thresholds. We give
practical guidance on how to do this. For example, in the classic example of estimating
the effect of education on wages, we show that a first-stage F threshold of 50 or better
is required to have high confidence that 2SLS will outperform OLS. In cases where such
a threshold cannot be met, the use of OLS combined with a serious attempt to control
for sources of endogeneity may be a superior research strategy to reliance on IV.

We also evaluate alternatives to 2SLS, including the Fuller and JIVE estimators and
the Unbiased estimator of Andrews and Armstrong (2017). If first stage F is 50 then
2SLS, Fuller and Unbiased behave very similarly, while JIVE is inferior. If the first stage
F is lower and the level of endogeneity is moderate then none of these estimators is likely
to outperform OLS. The Fuller and Unbiased estimators offer significant improvements
over 2SLS (and OLS) when endogeneity is severe and instruments are weak.

Finally, we consider the over-identified case with a single endogenous variable. General
conclusions carry over from the exactly identified case. In fact, the use of multiple instru-
ments increases the covariance between 2SLS estimates and their standard errors. This
makes it more essential to use robust test statistics like AR, ACT and the conditional
likelihood ratio (CLR) test in lieu of the t-test, even when instruments are strong.

Interestingly, if the OLS bias is positive, the ACT test has better power to detect a
true positive effect than the CLR test, and vice versa. As both tests have correct size even
when instruments are weak, we conclude they can advantageously be used in conjunction
(recalling that CLR and AR are equivalent in the single instrument case). No case can
be made for using 2SLS t-tests in either exact or over-identified models.

In conclusion, we note that recent papers by Andrews et al. (2019) and Young (2020)
have emphasized that 2SLS can suffer from low power and size distortions in environ-
ments with heteroskedastic and/or clustered errors, even if conventional F tests appear
acceptable. We complement that work by showing how similar problems may arise even
in iid normal settings when instruments are acceptably strong by conventional standards.
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A. APPENDIX TABLES AND FIGURES

Table A1. Median Standard Error for β̂2SLS

Concentration Parameter F critical value to Standard Error

(“True First-Stage F”) reject C<c at 5% 2SLS

1.82 8.96 0.799

2.30 10.00 0.705

3.84 13.00 0.533

5.78 16.38 0.429

10.00 23.10 0.322

73.75 104.70 0.117
Note: The worst-case OLS bias is 1.0 when ρ = 1 and π = 0.

Figure A1. 2SLS Power Function, t-test of H0 : β = 0 when true β = 0.3
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Figure A2. The Standard Error of Optimal IV Plotted Against β̂OPT (ρ = 0.80)
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Figure A3. The Covariance of 2SLS Estimates and their Standard Errors
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Note: This figure plots the Standard Error of β̂2SLS against β̂2SLS itself (C = 2.3, F.05 = 10). Red
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is presented in blue and excludes standard errors > 2, while the Spearman correlations rs do not.
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Figure A4. Median Bias of 2SLS by Instrument Strength and ρ
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Note: We plot the median of the β̂2SLS estimates. The worst-case OLS bias is 1.0 when ρ = 1
and π = 0.

Figure A5. Median Bias of 2SLS Relative to OLS Bias (%)
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