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Summary It is well-understood that 2SLS has poor properties if instruments are
exogenous but weak. We clarify these properties, explain weak instrument tests, and
study how behavior of 2SLS depends on instrument strength. A common standard for
acceptable instruments is a first-stage F -statistic of at least 10. But we show 2SLS
has poor properties in that context: Besides having little power, 2SLS generates artifi-
cially low standard errors precisely in those samples where it generates estimates most
contaminated by endogeneity. This problem persists even when instruments are very
strong, causing one-tailed 2SLS t-tests to suffer from severe size distortions unless F
approaches 10,000. The Anderson-Rubin test alleviates this problem, and should be
used even with strong instruments. A first-stage F of 50 or more is necessary to give
reasonable confidence that 2SLS will outperform OLS. Otherwise, OLS combined with
controls for sources of endogeneity may be a superior research strategy to IV.
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1. INTRODUCTION

The past 30 years have seen an explosion of applied work using instrumental variable
(IV) methods to deal with endogeneity problems. But since Bound et al. (1995), applied
economists have become acutely aware that 2SLS estimators have poor properties when
instruments are exogenous but “weak” – meaning they are weakly correlated with the
endogenous variable. In particular, if instruments are only marginally significant in the
first stage of 2SLS, it is now well understood that both the estimates and their standard
errors can be very misleading – even in very large samples.

The first goal of this paper is to explain the complex literature on weak instruments in
a way accessible to applied researchers. We explain weak instrument testing, as well as
weak instrument robust inference and alternatives to 2SLS. Our main contribution is to
highlight some important problems with 2SLS that weak instrument tests gloss over, and
to show that these problems persist even in large samples with instruments that would
be considered “strong” by conventional standards. This leads us to advocate a higher
standard of instrument strength in applications of instrumental variables.

Concern with the poor properties of 2SLS in the weak instrument context led Staiger
and Stock (1997) to advocate a higher standard of instrument relevance in the first
stage of 2SLS. That is, to be confident the estimator is well-behaved, we should require
instrument significance at a level higher than 5% in the first stage. They find if the
first-stage F is greater than 10 – corresponding to a t of 3.16 (p = .0008), in the one
endogenous variable, one instrument case – then 2SLS tests of the hypothesis H0 : β = 0
are likely to reject the null at a rate not “too far” from the correct 5% rate.
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This F > 10 advice has been widely adopted in practice and presented in textbooks.
For example, Stock and Watson (2015, p.490) say: “One simple rule of thumb is that you
do need not to worry about weak instruments if the first stage F -statistic exceeds 10.”

Later, Stock and Yogo (2005) proposed critical values for F based on the maximal size
distortions in 2SLS hypothesis tests one is willing to tolerate. They find F > 16.4 ensures
that a two-tailed 5% t-test will reject at a 10% rate or less. A recent paper by Lee et al.
(2020) shows one needs F > 104.7 for two-tailed 2SLS t-tests to have correct rejection
rates – a much higher standard than F > 10.

Unfortunately, these results are not well understood by applied researchers. They are
derived using non-standard asymptotic theory, or complex small sample approximations,
that are unfamiliar to most applied economists. This makes sorting through the diverse
advice on acceptable first stage F levels a daunting task. We seek to explain weak instru-
ment tests in a way that is accessible to applied researchers familiar with basic statistics.
To make this possible, we focus on the case of a single endogenous variable and a single
instrument. This case is very common in applied practice – see Andrews et al. (2019).

Since Stock and Yogo (2005), the weak instrument literature has been heavily focused
on assessing size distortions in 2SLS t-tests.1 We argue this has caused the literature
to gloss over other important problematic properties of 2SLS that persist even when
instruments are “strong” according to Stock-Yogo tests, and even in large samples.

In particular, our analysis shows that the behavior of the 2SLS estimator in environ-
ments characterized by first-stage F thresholds of 10 or 16.4 (or even higher) is extremely
poor. The maximal size distortion of two-tailed 2SLS t-tests is modest, just as Stock-
Yogo predict, but this masks far more fundamental problems: 2SLS has extremely low
power, combined with a very unfortunate tendency to generate artificially low standard
errors precisely when it generates estimates most contaminated by endogeneity.

This covariance between 2SLS standard errors and estimates, which persists even if
instruments are quite “strong” and samples are large, has two important consequences:
First, 2SLS t-tests are much more likely to reject the null H0 : β = 0 in samples where
the 2SLS estimate is shifted in the direction of the OLS bias. Second, 2SLS t-tests have
little power to reject the null if the true β is opposite in sign to the OLS bias.

The practical import of these two facts is serious: In an archetypal application of IV,
one seeks to test if a policy intervention has a positive effect on an outcome, but a con-
found arises because those who receive the intervention tend to be positively selected on
unobservables. In such a context, even if instruments are moderately strong by conven-
tional standards, 2SLS will have spuriously inflated power to find false positive effects,
and little power to detect true negative effects.

If the first-stage F meets the 105 threshold suggested by Lee et al. (2020) then 2SLS
does exhibit nice properties in terms of both two-tailed t-test size and power. But the
covariance between 2SLS standard errors and estimates continues to have an important
influence that distorts t-test results. 2SLS t-tests are much more likely to reject the null
in samples where the 2SLS estimate is shifted in the direction of the OLS bias, and this
problem persists unless until the first-stage F is in the thousands.

We go on to examine whether the use of “weak instrument robust” tests like Anderson-
Rubin or the “conditional t-tests” of Mills et al. (2014) result in more reliable inferences.

1Stock and Yogo (2005) also considered the criterion of bias relative to OLS. But this criterion can only
be assessed given over-identification of degree 2. The large majority of applied IV papers use exactly
identified models, so the bias criterion is not relevant.
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We find that these approaches do alleviate the problems we identify provided the instru-
ments are strong enough that 2SLS has acceptable power in the first place, which in
practice requires a first-stage F threshold of about 50.

We then examine performance of the main alternative estimators to 2SLS, which are
the Fuller (1977) estimator, JIVE and the unbiased estimator of Andrews and Armstrong
(2017). We find that Fuller and the unbiased estimator do offer some improvement, but
again, it seems their performance cannot be judged adequate unless the first-stage F
threshold is at least 50.

In summary, we find 2SLS performs very poorly when the first-stage F is toward the
low end of the 10+ range deemed acceptable by current practice. We argue that a higher
threshold of 50+ should be adopted. Even then, it is essential to use robust tests, like AR
or the “conditional t-tests” of Mills et al. (2014) unless first-stage F is in the thousands.

Finally, we propose a new perspective on weak instruments: Conventional approaches
look at 2SLS in isolation, asking how strong instruments must be for it to exhibit accept-
able properties. We propose an alternative: Applied researchers face a choice between
2SLS and OLS, so it is natural to ask if 2SLS is likely to deliver superior results? We
find the first-stage F must be at least 50 to have confidence in such an outcome. Hence,
we suspect that in applied contexts where this threshold cannot be met, the use of OLS
combined with a serious attempt to control/proxy for sources of endogeneity is likely to
be a superior research strategy to reliance on instrumental variables.

2. SOME BACKGROUND ON THE WEAK INSTRUMENT PROBLEM

To clarify the weak instrument problem, and explain weak instrument tests, we focus on
a simple case: A single endogenous variable and a single instrument. This is by far the
most common case in practice. We also focus on the case of no exogenous covariates, as
their inclusion complicates notation without changing anything of substance. Consider a
structural equation where outcome y for person i is regressed on endogenous variable x :

yi = xiβ + ui, where cov(xi, ui) 6= 0

The first-stage regression of x on the exogenous instrument z is:

xi = ziπ + ei, where cov(z, u) = 0, cov(z, e) = 0, π 6= 0.

The regressor x is endogenous if cov(e, u) 6= 0, and the instrument z is valid if cov(z, u) =
0 and π 6= 0. For our exposition, it is useful to decompose the error term e in the first
stage into parts that are correlated and uncorrelated with the error u in the structural
equation:

ei = ρui + ηi where cov (η, u) = 0, cov (z, η) = 0 (2.1)

Here ρ controls the severity of the endogeneity problem, and x is exogenous if ρ=0.
The 2SLS estimator of β takes the following form, whereˆdenotes a sample value:

β̂2SLS =

∑n
i=1 ziyi∑n
i=1 zixi

= β +

∑n
i=1 ziui∑n
i=1 zixi

= β +
ĉov (z, u)

ĉov (z, x)
(2.2)

Clearly 2SLS is consistent: As N → ∞ the sample covariance ĉov(z, u) converges to its

true value cov(z, u) = 0, and ĉov(z, x) converges to πσ2
z 6= 0. So β̂2SLS converges to the
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true β. But this is not useful in practice: We are interested in properties of 2SLS in finite
samples – including, as we will see, very large finite samples.

We can substitute (2.1) into (2.2), and write β̂2SLS − β in the instructive form:

β̂2SLS − β =
ĉov (z, u)

πv̂ar (z) + ĉov (z, e)
=

ĉov (z, u)

πv̂ar (z) + ĉov (z, η) + ρĉov (z, u)
(2.3)

As a point of comparison, recall that the analogous expression for OLS is simply β̂OLS−
β = ĉov (x, u) /v̂ar(x), where the denominator only depends on observed covariates. This
renders it far easier to analyze. In particular, under standard assumptions, the bias in
OLS is simply ρvar(u)/var(x), so OLS is unbiased in finite samples if ρ = 0.

In contrast to the simple OLS world, the presence of the ĉov (z, η) and ρĉov (z, u) terms
in the denominator of (2.3) make the finite sample properties of 2SLS very difficult to
analyze. In fact, they cause 2SLS to have very odd properties in finite samples.

In this section we explain what these oddities are, why they are serious problems if
instruments are “weak,” but only academic curiosities when instruments are “strong.” We
avoid mathematical formalism throughout, in order to give simple intuitive explanations.

We focus exclusively on the case of a perfectly exogenous instrument z with population
covariance cov(z, u) = 0. We want to concentrate on problems created by weak instru-
ments, abstracting from problems created by departures from instrument exogeneity.

The crucial point to remember is that in finite samples even a perfect instrument has
some sample covariance with the error in the structural equation. That means ĉov(z, u)
will be always be non-zero, even if our instrument is in fact exogenous. Similarly, ĉov(z, η)
will depart from zero in finite samples. As a result, the strength of the relationship be-
tween the instrument z and the endogenous variable x fluctuates from sample to sample,
being stronger in samples where ĉov(z, u) and ĉov(z, η) are the same sign as π.

The fact that ĉov(z, u) and ĉov(z, η) appear in the denominator of (2.3) has unpleasant
consequences for the finite sample behavior of the 2SLS estimator - even in large samples.
We can learn a lot about these properties of 2SLS just by carefully studying equation
(2.3).2 Now we list some key properties:

First, the mean and variance of the 2SLS estimator do not exist: As ĉov(z, u) and
ĉov(z, η) are both random variables, there is nothing to prevent finite sample realizations

where ĉov(z, x) = πv̂ar(z) + ĉov(z, η) + ρĉov(z, u) ≈ 0, causing β̂2SlS to explode. Of

course, this means the variance of β̂2SLS − β doesn’t exist either.
Second, the distribution of β̂2SLS − β will exhibit skewness and fat tails, rendering

conventional t-tests unreliable. To see why, assume π > 0, so z has a positive population
covariance with x, and ρ > 0, so the endogeneity bias is positive. And to keep things
simple, let us assume ĉov(z, x) > 0 so at least the sample covariance of z and x is the
same sign as the population covariance - although this is not guaranteed.3

Given these assumptions, the denominator of (2.3) is positive, so the sign of β̂2SLS−β
is determined by the sign of ĉov(z, u) in the numerator. But the magnitude of β̂2SLS−β is

2Research on finite sample properties of 2SLS with weak instruments relies on non-standard asymptotics
– the local-to-zero asymptotics of Staiger-Stock (1997) or many-instrument asymptotics of Bekker (1994)
– or on complex small sample theory; see Phillips (1983) or Rothenberg (1984). But it is surprising how
much can be learned just by studying equation (2.3) using basic statistics. That is our approach here.
3We may also draw samples with ĉov (z, x) ≈ 0. This generates extreme positive or negative outliers

for β̂2SLS , depending on the sign of ĉov (z, u). Also, if ĉov (z, u) and/or ĉov (z, η) go negative enough to

drive ĉov (z, x) negative, the sign of β̂2SLS − β flips, so the distribution of β̂2SLS − β can be bi-modal.
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amplified (attenuated) when ĉov(z, u) < 0 (>0), which shrinks (inflates) the denominator.
Thus, positive estimates of β are reined in while negative estimates are inflated, and the
distribution of β̂2SLS − β is skewed to the left. [We’ll see this clearly in Section 4.]

Third, a large positive ρĉov(z, u) generates both an estimate shifted towards OLS and
a low standard error - as it causes a large ĉov(z, x). So 2SLS has the unfortunate prop-

erty that it gives artificially low standard errors in samples where β̂2SLS is most shifted
towards OLS. As we’ll see below, this covariance between 2SLS estimates and standard
errors has very important consequences that appear to have been largely neglected, or
at least not adequately explored, in the prior literature.

Fourth, the median of β̂2SLS is biased in the direction of OLS if the instrument is
“weak.” Recall that OLS is biased in a positive direction if ρ > 0. To see that 2SLS is bi-
ased in the same direction, consider the extreme case where the instrument is completely
irrelevant, π = 0, so that xi = ηi + ρui. Then from (3) we have:

β̂2SLS − β =
ĉov(z, u)

ĉov(z, x)
=

ĉov(z, u)

ρĉov(z, u) + ĉov(z, η)
(2.4)

Note that if ρ > 0 then β̂2SLS − β is the ratio of two mean zero random variables that
are positively correlated. The positive correlation causes the median of this ratio to be
positive, simply because the numerator and denominator are more likely than not to have
the same sign. Thus, the median of β̂2SLS is biased in the same direction as OLS.

Furthermore, the two random variables that determine β̂2SLS − β in (2.4) both have
normal distributions in large samples. Marsaglia (2006) shows such a ratio has a Cauchy
distribution shifted right by ρV ar(u)/V ar(x), which is exactly the OLS endogeneity bias.
Thus, when π = 0, we see that the median bias of 2SLS is exactly equal to the OLS bias.4

Among these four properties, the bias of the median 2SLS estimate toward OLS has
received substantial attention in the applied literature; see Bound et al. (1995). The

non-existence of moments and non-normal shape of the β̂2SLS distribution have received
substantial attention from theorists (see Phillips 1983, Rothenberg 1984), and Nelson and
Startz (1990) and Mikusheva (2013) provide nice expositions. But, we argue, the problems
created by covariance between 2SLS estimates and standard errors have received too little
attention. We will explore that issue in detail below.

As we will now explain, the four problematic finite-sample properties of 2SLS remain
relevant even in large samples if instruments are weak, but they vanish if instruments
are sufficiently strong. All four properties arise from the perverse influence of the sample
covariance ĉov(z, e) = ĉov(z, η) + ρĉov(z, u) on the denominator of (2.3), so a natural
reaction is to assume they will vanish in a sample that is large enough so that ĉov(z, e) ≈
0. In fact, this describes the view of applied researchers prior to Bound et al. (1995).

The error in this logic is that, in a huge sample, it is also true that z may appear to be
a significant predictor of x (at the 5% level) even if the true value of π is very small. In
fact, as the sample size gets larger, the value of π that is likely to render z significant at
the 5% level in the first-stage of 2SLS gets small exactly as fast as ĉov(z, e) gets small.
As a result, if z is only significant at the 5% level (and not better), then ĉov(z, e) remains
non-negligible relative to πv̂ar(z). Hence the perverse influence of the ĉov(z, e) term on
the denominator πv̂ar(z) + ĉov(z, e) remains important regardless of sample size.

4The Cauchy has fat tails, and its mean and variance do not exist. The 2SLS estimator inherits these

properties, so the distribution of β̂2SLS−β departs seriously from normality, rendering t-tests misleading.
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Thus, having an instrument that is significant at only the 5% level in a large sample is
not good enough to make the problems with 2SLS vanish. With a “weak” instrument the
problematic finite sample properties of 2SLS remain relevant even in very large samples.
For 2SLS to have nice properties, large samples alone are not adequate. What we need
is an instrument that is “strong,” which is a higher standard of instrument relevance –
see Stock et al. (2002). To explain intuitively what is meant by “strong,” we start by
comparing the population and sample correlations between z and x :

corr(z, x) = πV ar(z)+cov(z,e)
σzσx

= πV ar(z)
σzσx

, ĉorr(z, x) = πv̂ar(z)+ĉov(z,e)
σ̂zσ̂x

Notice the sample correlation is driven by πv̂ar(z), which reflects a true relationship
between z and x, and ĉov(z, e), which reflects spurious correlation between z and x
in finite samples. An intuitive notion of a “strong” instrument is that πvar(z) should
be large enough that we are confident the sample correlation between x and z mostly
reflects their true relationship, not spurious correlation that arises because ĉorr(z, e) 6= 0
in finite samples. That is, we want πvar(z) to be large enough that we can be confident
that |πv̂ar(z)| � |ĉov(z, e)|.

It is simple to see why the strange finite sample properties of 2SLS that we discussed
earlier vanish if |πv̂ar(z)| � |ĉov(z, e)|. In that case, the πv̂ar(z) term in the denominator
of (3) dominates the ĉov(z, e) term, so realizations of ĉov(z, x) that are near zero become
extremely unlikely. This renders non-existence of the 2SLS estimator’s mean and variance
a mere academic curiosity. Furthermore, if the ĉov(z, e) term is negligible, (3) reduces to

just β̂2SLS − β ≈ ĉov(z, u)/πv̂ar(z), which is much simpler to deal with (as it resembles
the expression for OLS). Under a fixed instrument assumption, the asymptotic distribu-

tion of β̂2SLS is approximately normal and centered on β. So 2SLS is “approximately”
unbiased, and normality is a decent approximation to its sampling distribution.

But how can we be confident that |πv̂ar(z)| � |ĉov(z, e)| when π and ĉov(z, e) are
unobserved? First, note that we can rewrite this expression as:

|π| · v̂ar(z)� σ̂zσ̂e · |ĉorr(z, e)| → |π|σ̂z

σ̂e
� |ĉorr(z, e)|

If the instrument z is valid, corr(z, e) = 0, so ĉorr(z, e) converges to zero at a
√
N rate,

and |ĉorr(z, e)| is bounded in probability by k√
N

for a positive constant k>0. Thus:

|π|σ̂z

σ̂e
� k√

N

Finally, substituting our consistent first-stage estimate π̂ for the unobserved π, and squar-
ing both sides, we obtain:

√
N |π̂|σ̂z

σ̂e
� k → N

π̂2σ̂2
z

σ̂2
e
� k2

Recall that the sample F statistic for significance of z in the first stage is F̂ = Nπ̂2σ̂2
z/σ̂

2
e .

Thus our intuitive notion of wanting confidence that |πv̂ar(z)| � |ĉov(z, e)| corresponds
to a desire to have a first-stage F -statistic that is “big” in some sense. The weak instru-
ment test literature asks just how “big” the first-stage F needs to be for 2SLS to have
nice properties. We explore this literature in the next section.

Finally, recall that F = NR2/(1 − R2). A key insight is that properties of 2SLS do
not depend on N or first-stage R2 per se, but only how they combine to form F . So
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a large sample size alone is not sufficient to ensure 2SLS has an approximately normal
sampling distribution. As Mikusheva (2013) explains, the convergence of

√
N(β̂2SLS−β)

to a normal distribution as N →∞ is very slow when the first-stage R2 is small.

3. A SIMPLE GUIDE TO WEAK INSTRUMENT TESTS

Having explained the intuition behind weak instrument tests, we now examine them in
more detail. Consider a model with a single endogenous variable x and a single exogenous
instrument z. We focus on this simple case as it clarifies the key ideas, and it is the most
common in applied practice. We let π determine the strength of the instrument, while
ρ ∈ [0, 1] controls the extent of the endogeneity problem:

yi = βxi + ui

xi = πzi + ei where ei = ρui +
√

1− ρ2ηi
ui ∼ N(0, 1), ηi ∼ N(0, 1), zi ∼ N(0, 1)

(3.5)

Suppose we estimate the first-stage equation for x by OLS, and obtain π̂ and σ̂2
e . We can

test if z is a significant predictor of x using a standard F -test, given by F̂ = Nπ̂2σ̂2
z/σ̂

2
e .

For example, if N =1000 we conclude z is significant at the 5% level if F̂ > 3.85. This
corresponds to a t-test of t > 1.96 (as F is the square of t in this case).

Prior to Bound et al. (1995), passing such an F -test would have been considered suffi-
cient evidence to conclude one’s instrument was relevant, and to proceed with 2SLS. But
Bound et al. drew attention to situations where instruments are significant at conven-
tional levels in the first stage of 2SLS, despite having a small or “weak” correlation with
the endogenous variable. For instance, a quantitatively small correlation may be highly
statistically significant in very large samples. In such cases median 2SLS estimates are
likely to be severely biased towards OLS.

In an important paper, Staiger and Stock (1997) developed the idea that for an instru-
ment to be sufficiently “strong” for 2SLS to have acceptable finite sample properties, it
must meet a higher standard than mere 5% significance in the first stage. They formalize
our statement in Section 2 that we want the first-stage F statistic to be large enough
that we are confident that |πV̂ ar(z)| � |ĉov(z, e)|, which in turn implies 2SLS will have
nice properties.

To understand the Staiger-Stock approach, we define the “concentration parameter”
C, which measures strength of the instrument in first stage. It is closely related to the
sample F -statistic, which have denoted by F̂ . In particular, C is the true value of the F
statistic that we could construct if we observed the unknown π and σ2

e that we estimate
in the first stage. The finite sample properties of 2SLS only depend on N through C:

C = “true”F = N V ar(zπ)
σ2
e

= N
π2σ2

z

σ2
e

= Nπ2 and F̂ = Nπ̂2σ̂2
z/σ̂

2
e

The sample F -statistic is an estimate of C. Just as we showed for F, if C gets large we
can be confident that |πV̂ ar(z)| � |ĉov(z, e)|, and the problems with the 2SLS estimator
vanish. So if C is “large” in some sense the instruments are “strong.” But how large does
C need to be so that weak instruments are not a concern?

Formally, Stock and Yogo (2005) derived how C determines the maximum rejection
rate (size) of a 2SLS 5% level two-tailed t-test, compared to the correct 5% rejection rate
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– where the maximum is over all values of ρ. They argued that this is a natural way to
assess how well-behaved the 2SLS estimates are in a finite sample.

For example, suppose you find it acceptable that the 2SLS two-tailed t-test will reject
the null H0: β = 0 at the 5% level no more than 15% of the time. In other words, you are
willing to tolerate a size distortion of 10%. They derive that you need C of 1.82. Suppose
you want to bring the size distortion down to just 5% (i.e., your 5% t-test should reject
H0: β = 0 no more than 10% of the time). Then you need C =5.78. Finally, Lee et al.
(2020) ask how big C needs to be so that your 5% level two-tailed t-test is really a 5%
level t-test. They derive C = 73.75.

Thus, by requiring C to be large enough we can render size distortions of two-tailed
2SLS t-tests as small as desired. But we can’t observe C, so we must rely on the sample
F̂ as an estimate of C. Unfortunately, because C is equal to V ar(zπ)/σ2

e times a factor
of N, the sample F̂ is not a very accurate estimate of C, and it doesn’t get more accurate
as sample size increases.

In particular, regardless of sample size, the sample F̂ is a draw from a non-central
F with non-centrality parameter C. This means if we want to be confident (at the 95%
level) that C is at least 1.82, we need F̂ to be at least 8.96. If we want to be confident
(at the 95% level) that C is at least 5.78, we need to have F̂ of at least 16.38. In general,
to be confident the concentration parameter C is at least c, we need a first-stage F̂ well
above that level of c.

Table 1 lists several different levels of C, the levels of π required to achieve them when
N = 1000, and the first-stage F -test critical value for a 5% test that C attains the desired
level. For example, as we show in the last row of Table 11, to be confident (at the 95%
level) that C is at least 73.75, we need a first-stage F̂ of at least 104.7.

Table 1 also shows, in some key cases, the 5% two-sided t-test size achieved by that
level of C. For example, Lee et al. (2020) show that if C = 73.75 then a 2SLS 5% level
two-tailed t-tests achieves the correct 5% rejection rate. Table 1 also includes C =2.3,
which corresponds to the Staiger-Stock rule of thumb F̂ > 10.5 Note that size distortion
depends only on C, not on N and π per se, so how we set N and π is somewhat arbitrary.

Table 1. First Stage F Critical Values Required to Achieve Different Objectives

Concentration Parameter
Value of π

F critical value to Rejection rate for a 5%

(“True First-Stage F”) reject C<c at 5% t-test of H0 : β = 0

1.82 0.0427 8.96 15%

2.30 0.0480 10.00 SS Rule of Thumb

3.84 0.0620 13.00 –

5.78 0.0760 16.38 10%

10.00 0.1000 23.10 –

73.75 0.2716 104.70 5%
Note: The instrument z is significant at the 5% level in the first stage if F>3.84.

5We include C = 10 because both Staiger and Stock (1997) and Angrist and Pischke (2008) derive
formulas indicating that, when the first moment exists, the bias of 2SLS relative to OLS is roughly
1/[1 + C]. So C = 10 renders the relative bias only 10%. This result is only useful with 3 or more
instruments, so the moments of the 2SLS estimator exist. But we felt it was interesting to examine
behavior of the 2SLS median in the C = 10 case.
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Next, to gain a better understanding of how weak instrument tests work in practice, we
implemented a simple simulation experiment to assess how well 2SLS estimates perform
under each scenario in Table 1. We simulate data from the model in equation (3.5),
assuming β = 0, varying the degree of endogeneity as captured by ρ in small increments
from 0 to 1. We set the parameter π to each alternative level listed in Table 1, in order to
vary the strength of the instrument. We generate artificial data sets of size N =1,000 for
each combination of (π, ρ). As we’ve noted, it is the level of C, not N or π per se, that
drives the properties of 2SLS. We report results from 10,000 Monte Carlo replications.

Figure 1 reports the rejection rate of a two-tailed t-test test of H0: β = 0 at the 5%
level, based on the 2SLS parameter and standard error estimates, for each combination
of C and ρ. The label shows both C and the associated F -test 5% critical level.

Figure 1. Rejection rate of H0 : β = 0 using a 5% Two-tailed t-test
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C = 10.00 (F5% = 23.10)
C = 73.75 (F5% = 104.7)

Note: The rejection rate should be 5% if 2SLS test statistics are well-behaved.

To understand Figure 1, it is important to note that Stock and Yogo (2005) calculate
worst-case (defined as maximal) rejection rates over all values of ρ. As we see in Figure
1, the worst case corresponds to ρ near 1, so the endogeneity problem is very severe. The
agreement between the results in Figure 1 and the Stock-Yogo analysis is striking. For
C =1.82 (F .05=8.96) they predict a worst-case rejection rate of 15%, and our simulations
show 14.5%. Similarly, for C =5.78 (F.05=16.38) Stock-Yogo predict a worst-case rejection
rate of 10%, and our simulations show 9.7%. And when C =73.75 (F.05=104.7) the worst-
case rejected rate is almost exactly 5%, just as Lee et al. (2020) calculate.
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10 Keane & Neal

4. PROBLEMS WITH 2SLS HIDDEN BY WEAK INSTRUMENT TESTS

An obvious limitation of the Stock-Yogo analysis is that the worst-case rejection rates
tell us little about rejection rates at lower levels of ρ. As we see in Figure 1, rejection
rates are increasing in ρ, and this effect is stronger the weaker is the instrument. In fact,
the results in Figure 1 raise serious concerns about the behavior of 2SLS, even in cases
that easily pass standard tests to rule out weak instruments. To see why, we need to
understand why rejection rates are increasing in ρ. There are two reasons:

First, if ρ is close to 0 then 2SLS estimates are roughly centered at zero, 2SLS standard
errors are very large, and the estimator has very little power. This is why the rejection
rate is very small for small values of ρ in Figure 1 (except when F.05=104.7).

Second, if ρ > 0, then, in samples where ĉov(z, u) happens to be high, 2SLS will tend
to generate both high estimates of β and artificially low standard errors. This is a very
unfortunate property, as it means the 2SLS estimates appear to be spuriously more
precise in samples where they are most shifted upward in the direction of the
OLS endogeneity bias. This is what causes 2SLS to over-reject the null hypothesis
H0: β = 0 when ρ is large, as we see clearly in Figure 1.

Now we examine these two phenomena in more detail: First, we examine the power of
the 2SLS estimator by simulating the probability of rejecting H0: β = 0 when it is false.6

We consider two alternative models with β = 0.30 or β = −0.30. These are quantitatively
large values, as they imply a one standard deviation change in x induces an 0.25 standard
deviation change in y. The results are reported in Table 2.

Table 2. Power of 2SLS – Frequency of Rejecting H0: β = 0 (%)

Concentration
F5%Crit

β = 0.3 β = −0.3

Parameter ρ = 0 ρ = 0.5 ρ = 1 ρ = 0 ρ = 0.5 ρ = 1

1.82 8.96 1.8 11.7 25.5 1.7 0.1 4.2

2.30 10.00 2.4 13.0 25.1 2.2 0.2 3.2

3.84 13.00 4.4 15.9 25.1 4.2 0.3 1.7

5.78 16.38 7.2 18.8 26.3 7.2 0.5 0.8

10.00 23.10 13.4 23.7 28.9 13.3 2.3 0.2

73.75 104.7 71.4 67.8 65.1 71.9 78.0 89.1
Note: The table reports the probability of rejecting the false null hypothesis H0: β = 0.

Focusing on the results for the F.05 = 8.96 through F.05 = 23.10 cases, three features
are notable: First, the power of 2SLS is very low. Second, power is clearly increasing in
ρ if the true β is positive. Third, power is much greater when the true β is positive than
when it is negative. For example, in the F.05 = 10 case widely considered an acceptable
threshold for a strong instrument, the probability of rejecting the false null H0: β = 0 is
only 2.4% when the true β is 0.3 and ρ = 0. Power increases with ρ, as the rejection rate
increases to 13% when ρ = 0.5 and to 25% when ρ=1. Strikingly, if the true β is −0.3

6We can also see the low power of the 2SLS estimator by examining its standard error. Table A1 reports

the median (over simulation runs) of the asymptotic standard error of β̂2SLS , for each level of instrument
strength. The median standard error is not very sensitive to ρ, so we only report the overall median. To
take one example, when C = 5.78 (F.05 = 16.38) the median 2SLS standard error is roughly 0.429. To
get a sense of just how large that is, recall that the worst-case endogeneity bias in OLS, which occurs
when x is perfectly correlated with the error in the outcome equation (i.e., ρ = 1 and π = 0), is 1.0.
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A New Perspective on Weak Instruments 11

and ρ = 0.5 then power is essential zero. This is very concerning, as it means 2SLS has
almost no power to detect a (substantial) true negative effect.

The fundamental reason that 2SLS power increases with the degree of endogeneity ρ
is the third finite sample property of 2SLS we stressed in Section 2: A positive sample
realization of ρĉov(z, u) tends to generate both a 2SLS estimate shifted towards OLS
and a low 2SLS standard error. Larger positive realizations of ρĉov(z, u) reduce the 2SLS
standard error by increasing ĉov(z, x). The larger is ρ, the stronger is the tendency for
2SLS standard errors to be artificially small in samples where the 2SLS estimates are
most shifted in the direction of the OLS bias.

In the present case ρ > 0, so the OLS bias is positive, and hence 2SLS estimates
β̂2SLS and their standard errors have a negative covariance. This is why the rate that
2SLS rejects H0 increases with ρ in Figure 1. This pattern is unfortunate, as it means
the 2SLS estimates appear more informative precisely when β̂2SLS is most shifted in the
direction of the OLS bias. The negative covariance between 2SLS estimates and their
standard errors also explains why 2SLS has almost no power to detect true negative
effects when instrument strength is in the F.05 = 8.96 through F.05 = 23.10 range.

Figure 2 shows the covariance between 2SLS estimates and their standard errors is
very strong when ρ is large. It plots se(β̂2SLS) against β̂2SLS . The left panel shows the
case where ρ=0.8 and C =2.30 (F .05=10). A strong negative covariance between 2SLS
estimates and their standard errors is very evident. As a result, the 2SLS estimates that
are most shifted toward the OLS bias appear to be more precise.

Figure 2. Standard Error of β̂2SLS plotted against β̂2SLS itself (ρ = 0.80)
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Note: Runs with standard error > 1.5 not shown. Red dots indicate H0 : β = 0 rejected at 5% level.

The red dots in Figure 2 indicate cases where β̂2SLS differs significantly from zero
according to a two-tailed 5% t-test. In the C =2.30 (F .05=10) case, the hypothesis H0: β =
0 is rejected at a 10% rate. Due to the negative covariance between the 2SLS estimates
and their standard errors, all rejections occur when β̂2SLS>0, and none when β̂2SLS<0.
Only the estimates most shifted towards the OLS bias are ever judged significant.7

7Lee et al. (2020) argue that if F > 10 is used as a threshold, the critical value of the t-test can be
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12 Keane & Neal

The right panel of Figure 2 shows the case of ρ=0.8 and C =74 (F .05=105). When the

instrument is this strong the negative covariance between se(β̂2SLS) and β̂2SLS persists,
but it is weaker. 2SLS now has a rejection rate near the correct 5% rate (4.87%). But 93%

of those rejections occur when β̂2SLS > 0. A one-tailed 2.5% test of H0: β ≤ 0 rejects at
a 4.54% rate. This asymmetry in positive vs. negative rejections is a direct consequence
of the negative covariance between 2SLS estimates and standard errors.

Table 3 gives a broader view of this covariance phenomenon by reporting slope coeffi-
cients from regressions of se(β̂2SLS) on β̂2SLS for different levels of C (F .05) and selected

values of ρ. Clearly, the negative relationship between se(β̂2SLS) and β̂2SLS is not specific
to the examples in Figure 2. Table 3 shows how the negative relationship gets stronger
as ρ increases, which drives the pattern of rejection rates increasing with ρ in Figure 1.

Table 3. Slope Coefficients from Regressions of se(β2SLS) against β̂2SLS

Concentration F critical value to Slope when Slope when Slope when

Parameter reject C<c at 5% ρ = 0.2 ρ = 0.5 ρ = 0.8

1.82 8.9 -0.092 -0.188 -0.441

2.30 10.00 -0.097 -0.254 -0.556

3.84 13.00 -0.126 -0.387 -0.751

5.78 16.38 -0.175 -0.448 -0.772

10.00 23.10 -0.189 -0.480 -0.701

73.75 104.70 -0.052 -0.127 -0.200
Note: Simulations where the standard error exceeding 2 were not included in the calculation.

An obvious alternative explanation for the pattern in Figure 1, which we can rule
out, is that bias in the median 2SLS estimate increases as the degree of endogeneity (ρ)
increases. In principle, this could cause the rejection rate of H0: β = 0 to increase with ρ.
However, for all values of C we consider, the instruments are strong enough that median
bias in 2SLS is negligible, or at least modest, regardless of the degree of endogeneity.

Figure A3 illustrates this point. If C =10 (F .05=23) or better, the 2SLS estimates are
essentially median unbiased. Even at C =5.78 (F .05=16.4) the median bias is trivial.
Figure A4 plots the median 2SLS bias relative to the OLS bias. Relative bias is modest
in all cases. For example, when C =2.30 (F .05=10) the 2SLS median bias is less than 15%
of the OLS bias unless ρ is very small. Thus, if median bias were one’s only concern, a
first stage F of 10 would be quite sufficient.

In summary, Stock-Yogo style weak instrument analysis focuses on the worst-case
(over ρ) behavior of two-tailed 2SLS t-tests. This conceals problematic behavior of 2SLS
estimators that become apparent if we look over the whole range of ρ, as in Figure 1.
2SLS rejection rates are steeply increasing in ρ (unless F .05=105) because 2SLS has very
low power when ρ is small, but as ρ increases the 2SLS standard errors become artificially
too small in samples where the 2SLS estimates are too high. It is an unfortunate property
of the 2SLS estimator that it tends to generate standard errors that are too low precisely
when it also generates estimates that are shifted in the direction of the OLS bias (positive

replaced by 3.43 to achieve a true 5% test. But this correction does not fix the fundamental problem
revealed in Figures 1 and 2. In fact, if we use 3.43 as the threshold, the rejection rate is 1.75% rather

than 5%, and all rejections occur when β̂2SLS is positive.
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A New Perspective on Weak Instruments 13

in this case). The fact that 2SLS is approximately median unbiased is not so useful when
only estimates shifted in the direction of the OLS bias are likely to be significant, and
they are significant far too often.

5. ONE-TAILED TESTS AND ANDERSON-RUBIN TESTS

An important consequence of the covariance between 2SLS estimates and their standard
errors is that distortions in one-tailed tests are much greater than distortions in two-
tailed tests. This is shown in Figure 3. The red lines show rejection rates of two-tailed
5% t-tests of H0 : β = 0 for different levels of C and ρ. The black/blue lines show how

frequently these rejections occur at positive/negative values of β̂2SLS . This is equivalent
to plotting rejection rates of one-tailed 2.5% t-tests of H0: β ≤ 0 and H0: β ≥ 0.

In the case of C =2.30 (F .05=10) that corresponds to the Staiger-Stock rule of thumb
for acceptably strong instruments, the reject rate of both the 5% two-tailed test and the
2.5% one-tailed test against H0: β ≤ 0 increase from 0% to to 14.5% as ρ increases from
0 to 1. But the one-tailed test against the null of H0: β ≥ 0 never rejects.

Figure 3. Rejection Rates of One and Two-Tailed Tests
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14 Keane & Neal

In the case of C =74 (F.05=105) that Lee et al. (2020) indicate is sufficient to eliminate
maximal size distortion, the reject rate of a 5% two-tailed t-test increases only modestly
from 4.1% if ρ = 0 to 5% when ρ = 1. But size distortions in one-tailed t-tests are much
greater. The reject rate of a 2.5% one-tailed test against H0: β ≤ 0 increases from 2.2%
to 5% as ρ increases from 0 to 1. Conversely, the reject rate of a 2.5% one-tailed test
against H0: β ≥ 0 declines from 1.9% when ρ = 0 down to essentially zero when ρ = 1.
This asymmetry is a direct consequence of the negative covariance between se(β̂2SLS)

and β̂2SLS , which imparts positive β̂2SLS estimates with spuriously high precision.
How strong do instruments need to be for rejection rates to be invariant to the level

of endogeneity, and for both one and two-tailed tests to have correct size? If the concen-
tration parameter C is increased to 336.3, which corresponds to a first-stage F.05=400,
the reject rate of two-tailed 5% level t-tests is roughly constant regardless of ρ. But the
asymmetry in rejection rates for one-tailed tests is still substantial. Strikingly, we find
C must be increased to roughly 10,000 to eliminate size distortions in one-tailed 2SLS
t-tests. Only then are rejection rates of one-tailed tests insensitive to the level of ρ.

The asymmetry in rejection rates of one-tailed t-tests is of great practical importance.
Applied researchers almost always use two-tailed tests because symmetry makes one-
tailed tests redundant (e.g., a 5% two tailed-test is equivalent to a 2.5% one-tailed test).
But as we see, this is false for 2SLS, even with very strong instruments.

A common suggestion in the weak IV literature is to use tests that are robust to
weak instruments. In the one endogenous variable, one instrument case the unambiguous
suggestion is the Anderson and Rubin (1949) test, which is uniformly most powerful. The

AR test is simply the F -test from a regression of y on z. Then, β̂2SLS is judged to be
significant at the 5% level if that F -test is significant at the 5% level. This test obviously
has a “correct” 5% size, as it is simply an F -test from an OLS regression.

However, if instruments are weak, the AR test is more likely to call 2SLS estimates
significant if they are shifted in the direction of the OLS bias. The problem is again the
strong positive covariance between ρĉov(z, u) and β̂2SLS . A large value of ρĉov(z, u) also

generates a large value of the AR test. Thus, if ρ > 0 the AR test and β̂2SLS have a
positive covariance. Hence, the AR test is more likely to reject H0: β = 0 if β̂2SLS > 0.

Figure 4 compares results from t-tests vs. AR tests, focusing on the case of ρ=0.80.
In the case of F .05=10 the 5% two-tailed t-test rejects H0: β = 0 at a 10% rate, and
all rejections involve β̂2SLS > 0. The AR test rejects H0: β = 0 at a 4.8% rate, which
only differs from the correct 5% rate due to sampling variation. However, in the top right
of Figure 4, we see that 85% of those rejections occur when β̂2SLS > 0. So using AR
does not avoid the asymmetry that most rejections occur at positive values, which is the
direction of the OLS bias.

The size distortion in the two-tailed t-test is mostly eliminated if F.05=105. But, as
we see in the bottom panel of Figure 4, 93% of those rejections occur when β̂2SLS > 0.
In contrast, the AR test exhibits a fairly even balance of positive (54%) vs. negative
rejections. Thus, the AR test achieves this balance at a first-stage F vastly smaller than
required for the t-test.

In summary, to avoid over-rejecting the null when β̂2SLS is shifted in the
direction of the OLS bias, one should rely on the AR test rather than the
t-test even when the first-stage F-statistic is in the thousands. While both the
t-test and AR test cause 2SLS estimates to appear spuriously more precise when they are
shifted in the direction of the OLS bias, the AR test is far less sensitive to this problem.
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Figure 4. T-test vs. AR test rejections: SE(β̂2SLS) plotted against β̂2SLS itself (ρ = 0.80)
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Note: Runs with a standard error > 4 are not shown. Red dots indicate H0 : β = 0 is rejected at
the 5% level. The results are for the standard t-test (left panel) or the Anderson-Rubin statistic
(right panel).

6. THE CONDITIONAL T-TEST APPROACH

As we have seen, standard 2SLS t-tests give misleading results due to the covariance
between 2SLS estimates and standard errors, even when instruments are very strong.
This same basic problem affects the AR test, but much less severely. Moreira (2003) and
Mills et al. (2014) have proposed a different approach to 2SLS hypothesis testing known
as the “conditional t-test” approach. It provides a useful way to address this problem.

Due to the covariance between 2SLS estimates and standard errors, the distribution
of 2SLS t-tests under the null is not well approximated by a N(0, 1). In fact, it is highly
asymmetric, even when instruments are strong. The idea of a conditional t-test is to
adjust the critical values of the 2SLS t-test to take this non-normality and asymmetry
into account. This is achieved by using critical values that are conditional on the first-
stage F and the covariance matrix of the errors in the reduced form regressions of y and
x on z. These are y = zβπ + (βe+ u) and x = zπ + e. Under H0 : β = 0 we have y = u
so the covariance of the reduced form errors provides an estimate of ρ = cov(e, u).

As we saw in Figure 1, the size of 2SLS t-tests using standard critical values depends on
F and ρ. Not surprisingly then, it is possible to invert this relationship to find appropriate
critical values conditional on F and ρ such that the t-test has the correct size. As Mills
et al. (2014) note however, there is no known closed form solution for this inversion, so
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16 Keane & Neal

it must be calculated by simulating the distribution of the 2SLS t-test conditional on
estimates of F and ρ. Fortunately this is a simple process.8

Table 4 reports summary statistics for critical values simulated using the DGP in
(3.5) assuming a true ρ = 0.80. For each level of C(F.05) we report the median and
standard deviation of the calculated critical values. Given each dataset drawn from our
DGP, we get estimates of F and ρ, and then simulate the distribution of the t-statistic
conditional on (F̂ , ρ̂). Thus the construction of Table 4 requires running a simulation
within a simulation. Hence, below each median critical value, we report in parenthesis
the standard deviation of the critical values constructed under each true C(F.05) scenario.

Table 4. Median Critical Values for the Mills et al. (2014) One-Tailed t-tests

1% 2.5% 5% 95% 97.5% 99%
C = 2.3 -0.446 -0.445 -0.441 2.606 3.152 3.745

(0.176) (0.176) (0.175) (0.132) (0.126) (0.118)

C = 10 -0.928 -0.921 -0.899 2.253 2.760 3.338
(0.173) (0.161) (0.141) (0.093) (0.114) (0.133)

C = 73.75 -1.774 -1.561 -1.377 1.908 2.306 2.760
(0.039) (0.027) (0.020) (0.017) (0.023) (0.031)

C = 336.3 -2.048 -1.754 -1.516 1.781 2.132 2.526
(0.009) (0.007) (0.005) (0.005) (0.006) (0.009)

C = 1, 000 -2.147 -1.823 -1.567 1.732 2.064 2.434
(0.004) (0.003) (0.002) (0.002) (0.003) (0.004)

C = 10, 000 -2.239 -1.888 -1.613 1.685 1.998 2.344
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Note: The standard deviations in parentheses are across 10,000 simulations.

For example, in the case of C =2.30 (F .05=10) that corresponds to the Staiger-Stock
rule of thumb, the median critical values for 2.5% left-tailed and right tailed t-tests are
-0.445 and 3.152, respectively. Using these critical values, one-tailed tests have the correct
2.5% size. The large deviation of these values from ±1.96 shows the extreme asymmetry
generated by the negative covariance bewteen 2SLS estimates and standard errors in this
case. As Mills et al. (2014) note, the left and right tail conditional critical values can be
used in conjunction to form a two-tailed 5% conditional t-test with correct size.

Figure 5 presents a graphical illustration of how an asymmetric two-tailed conditional t-
test (henceforth “ACT”) works. The left panel shows results for 10,000 simulated datasets

with C =2.30 (F .05=10) and ρ = 0.80. As before, we plot SE(β̂2SLS) against β̂2SLS . The

red dots indicates cases where we reject the null H0: β = 0 because the ratio of β̂2SLS
to the conditional critical value exceeds one. The ACT achieves a correct overall 5%
rejection rate, as well as symmetry with 2.5% negative and 2.5% positive rejections.

We have observed that standard 2SLS t-tests have little power to detect true negative
effects when the OLS bias is positive, even when instruments are “strong” by conventional
standards (e.g., F=10). This is of great practical importance, as it means there is little
chance of detecting negative program effects given positive selection on unobservables.

8Draw many datasets with the same (F̂ , ρ̂) but with different structural errors, using a construction
in Moreira (2003). Then run 2SLS on each dataset, and form the distribution of the t-statistics. Then,
for example, use the 95th percentile of the distribution as the conditional critical value for a 5% test.
Marcelo Moreira provided us with his Matlab code which does this calculation efficiently.
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We see here that the ACT solves this problem by using a very “lenient” critical value in
the left tail (in this case approximately -0.445 instead of -1.96).9 Applied researchers may
find it odd to adopt such a “weak” standard, but, given that covariance between 2SLS
estimates and standard errors is an intrinsic property of the estimator, it is essential if
one desires a “first do no harm” approach to policy evaluation. Conversely, the ACT
adopts a very “strict” critical value of 3.152 for assessing positive effects.

The right panel of Figure 5 presents results for the relatively strong instrument case of
C =74 (F.05=105). Here the median left and right tail critical values used to form the 5%
two-tailed ACT are -1.561 and 2.306. Notice that substantial asymmetry remains even
at this level of instrument strength. This is consistent with our observation in Section 5
that one-tailed t-tests using standard critical values only achieve approximate symmetry
between left-tail and right tail rejection rates if first-stage F is in the tens of thousands.
The ACT achieves a correct overall 5% rejection rate, as well as symmetry with 2.5%
negative and 2.5% positive rejections. Recall that for a conventional two-tailed t-test these
figures were 0.3% and 4.5%, and for the AR test they were 2.3% and 2.7%, respectively.

Figure 5. Mills et al. (2014) One-tailed test rejections (ρ = 0.80)
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Note: Dots are colored depending on the ratio of the t-statistic with its critical value. Runs with
a standard error > 4 are not shown.

In Table 5 we examine power of the ACT test. We again consider two alternative true
values, β = 0.30 or β = −0.30. These are quantitatively large values, as they imply a one
standard deviation change in x induces an 0.25 standard deviation change in y.

Consider first the strong instrument case of C =74 (F.05=105). Here the power of
the ACT test is very good, with a roughly 73% rejection rate in both the β = −0.3 and
β = 0.3 cases. It is interesting to compare this to the AR test, which exhibits a tremendous
power asymmetry: a 91% rejection rate when β = −0.3 but only a 53.4% rejection rate
when β = 0.3. This asymmetry is not specific to this is example: It is a general 2SLS
property that follows directly from the positive covariance between ρĉov(z, u), β̂2SLS and
the value of the AR test (as we discussed in Section 5).

9We emphasize that the conditional critical values differ across the 10,000 datsets, as each dataset has

its own realization of (F̂ , ρ̂), but the median critical values are -0.445 and 3.152.
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Thus, the AR test has more power to detect true effects that are opposite in direction
to the OLS bias, while the ACT test has more power to detect true effects in the same
direction as the OLS bias. Given that both tests have correct size by construction, the
choice between them depends only on power. Suppose the researcher has a strong prior
that the OLS bias is positive (i.e., positive selection into treatment). Adopting a “first
do no harm” approach to policy evaluation, one would want to use the AR test, as it
has more power to detect true negative effects in that context. But we would advise also
implementing the ACT test, as it is more likely to detect true positive effects.

Given negative selection (ρ < 0) this advice is reversed, as the ACT test has more
power than AR to detect a true negative effect. This may seem surprising, given the
unanimous advice of the theory literature to use the AR test in the single endogenous
variable just-identified case, as it is the uniformly most powerful test.10 But that result
only holds within the class of two-tailed tests with symmetric critical values.11

Table 5. Rejection Rates for conditional t-tests and AR tests (ρ = 0.8) (%)

C F5%Crit
Conditional t-test (ACT) AR Test

H0:β = 0 β > 0 β < 0 H0:β = 0 β > 0 β < 0

β = 0.3

2.30 10 8.0 6.6 1.4 6.6 6.5 0.1

5.78 16.38 12.1 11.3 0.9 8.4 8.3 0.2

29.44 50 37.6 37.6 0.0 25.2 25.2 0.0

73.75 104.7 73.3 73.3 0.0 53.4 53.4 0.0

β = −0.3

2.30 10 4.8 0.7 4.2 9.0 3.2 5.9

5.78 16.38 7.3 0.4 7.0 15.0 0.8 14.2

29.44 50 38.3 0.0 38.3 54.7 0.0 54.7

73.75 104.7 73.6 0.0 73.6 91.0 0.0 91.0
Note: The table reports the frequency of rejecting the false null hypothesis H0: β = 0.

Next, we examine power of the ACT test in the case of C =2.30 (F .05=10), often
considered the standard for a “strong” instrument. In this case, power is very low. The
probability of rejecting H0 : β = 0 is only 8% when true β = 0.3, and only 4.8% when
true β = −0.3. In the β = −0.3 case power is no greater than size, meaning the test
is not informative. Moreover, these figures are inflated by the fact that roughly 1/6 of

these rejections occur when β̂2SLS has the “wrong” sign. The AR test doesn’t do any
better. It has even lower power (only 6.6%) when true β = 0.3, and while it superficially
seems to do a bit better (9%) when true β = −0.3, this is spuriously inflated by the fact

10In the single endogenous variable exactly-identified case, the AR test is equivalent to the conditional
likelihood ratio (CLR) test (Moreira 2003) and the Langrange multiplier (LM) test (Kleibergen 2002). In
more general settings these tests differ, and the choice among them is ambiguous. Moreira (2003) argues
that the power of the AR and LM tests deteriorates relative to CLR when there are many instruments.
11Andrews et al. (2007) found that two-tailed conditional t-tests have very poor power. In particular,
when instruments are weak and ρ > 0, they have little power to detect a true negative β. This is because
they constrain the critical values to be symmetric around zero, which fails to deal with the negative
covariance between 2SLS estimates and standard errors that arises in the ρ > 0 case.
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that more than 1/3 of these rejections happen when β̂2SLS > 0. The obvious conclusion
is that in the C =2.30 (F .05=10) case there is simply not much information in the data,
and no choice of testing procedure will change that.

Moving to the case of C =5.780 (F .05=16.38) we see some improvement for both tests,
as power attains levels of 7.3% to 15%, which clearly exceeds the 5% size level, and
“wrong sign” rejections become rare. But these power levels still seem uninspiring. As
in the strong instrument case, and for the same reason, the AR test has more power to
detect a true negative β, while the ACT test has more power to detect true positives, so
there is no unambiguous ranking of the tests.

Finally, we consider a moderately strong instrument case of C =29.4 (F .05=50). At
this level of instrument strength, the ACT test attains a power level of roughly 38%
regardless of whether the true β is positive or negative. But the AR test still has a strong
asymmetry (55% vs. 25%): It has much more power to detect a true negative β.

7. A NEW PERSPECTIVE ON WEAK INSTRUMENT TESTS

A notable aspect of the weak instrument literature is that performance of 2SLS is typi-
cally evaluated in isolation, asking how strong instruments must be for 2SLS to exhibit
acceptable statistical properties. But in practice applied researchers face a choice between
using 2SLS and OLS. So an alternative way to look at the question is to ask: “How strong
do instruments need to be for 2SLS to generate more reliable results than OLS?”

Figure 6. Probability of 2SLS Estimation Error Exceeding Worst-case OLS Bias.
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Note: We plot the proportion of times that |β̂2SLS | > 1, which is the worst-case bias of OLS.

We begin by reporting, in Figure 6, the frequency with which |β̂2SLS | > 1. To put
errors of this size in perspective, recall that 1.0 is the worst-case endogeneity bias in
OLS, corresponding to E(β̂OLS − β) in the case where x is perfectly correlated with the
error in the outcome equation (ρ = 1 and π=0). The results in Figure 6 show that, unless
the first stage F is very large, large outlier 2SLS estimation errors of this magnitude are
quite common. For example, consider the case where C =3.84 (F .05=13). As we saw in
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Figure A4, in this case the 2SLS median bias is well below 10% of the OLS bias at all
levels of ρ. But here we see that there is roughly a 15% chance that |β̂2SLS | > 1.

Next in Figure 7, we report the fraction of simulated datasets where 2SLS performs
worse than OLS, meaning the 2SLS estimate of β is further from the truth than the OLS
estimate. As expected, at low levels of endogeneity (ρ ≈ 0) OLS is almost always better
than 2SLS, as there is little bias and OLS is more efficient. What is surprising is the high
frequency with which OLS outperforms 2SLS at much higher values of ρ. Take the case
of C =2.30 (F.05=10), which corresponds to the Staiger-Stock rule of thumb. The value
of ρ has to approach 0.50 before the probability that 2SLS outperforms OLS passes 50%.

Figure 7. Probability of 2SLS Performing Worse than OLS
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Note: We plot the proportion of Monte Carlo replications where |β̂2SLS−β| > |β̂OLS−β|.

The results in Figure 7 are hard to assess without a prior on reasonable values of the
parameter ρ, which determines the extent of the endogeneity problem. As we noted ear-
lier, the worst-case for endogeneity bias in OLS is the case where x is perfectly correlated
with the error in the outcome equation, ρ = 1 and π=0. Values of ρ close to one may be
relevant in some macro applications (e.g., a regression of consumption on income), but
in typical applied micro applications one would never expect ρ to be so high.

For example, consider a regression of log wages on education. It would be surprising to
get an R2 as high as 0.25, meaning the correlation between education and log earnings
is certainly no higher than 0.5. Thus, if education has no true effect on earnings, and the
only reason it is correlated with earnings is endogeneity - i.e., it is perfectly correlated
with the latent ability endowment - then the highest possible value of ρ is 0.5.

Table 6 presents the probability that 2SLS will perform worse than OLS, under differ-
ent scenarios for the concentration parameter C (and the associated first-stage F ), and
different priors on ρ. For example, in the case of C =2.30 (F .05=10), which corresponds
to the Staiger-Stock rule of thumb for strong instruments, and given a uniform prior
ρ ∈ [0, 1], the probability that OLS outperforms 2SLS is 52%. Alternatively, we have
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argued that in a typical applied micro application - estimating the effect of education
on wages – a plausible upper bound on ρ is 0.50. Given a uniform prior ρ ∈ [0, 0.5],
the probability that OLS outperforms 2SLS is 72%. A researcher who thinks education
is highly (but not completely) endogenous, might, for example, have a uniform prior of
ρ ∈ [0.4, 0.5]. Even in that case, the probability that OLS outperforms 2SLS is 52%.

Table 6. Probability of 2SLS Performing Worse than OLS (%)

Concentration
F5%Crit

Prior Expectation of ρ:

Parameter 0 to 1 0 to 0.5 0.4 to 0.5 0.5 to 1

1.82 8.96 55 74 55 35

2.30 10.00 52 72 52 31

3.84 13.00 44 65 41 23

5.78 16.38 38 59 32 16

10.00 23.10 30 50 20 9

73.75 104.70 11 21 0 0
Note: We report the frequency of |β̂2SLS − β| > |β̂OLS − β| across Monte Carlo replications,
averaged across all possible values of ρ under a uniform prior that ρ falls in the indicated range.

Notice that even in the case of C =10.0 (F .05=23.1), which is a considerably higher
standard of instrument strength than the Staiger-Stock rule of thumb, the probability
that OLS outperforms 2SLS is 30% given the uniform prior ρ ∈ [0, 1], increasing to 50%
under the more reasonable prior (for typical applied micro applications) of ρ ∈ [0, 0.5].

A perhaps surprising result is that even under the very stringent strong instrument
requirement of C =73.75 (F .05=104.7), a uniform prior on ρ ∈ [0, 0.5] still generates a 21%
risk that 2SLS will give worse results than OLS. Overall, the results of this section suggest
that instruments must be much stronger than standard thresholds in the literature - like
the popular F̂ > 10 threshold - would suggest before one can be fairly confident that
2SLS will give results that are superior to OLS, in the sense that |β̂2SLS−β| < |β̂OLS−β|.

8. HOW BIG DOES F REALLY NEED TO BE?

We find 2SLS performs very poorly in the F.05=10 case often viewed as a benchmark
for acceptably strong instruments. It not only exhibits poor size and power properties,
but it is likely to underperform OLS, in that β̂2SLS is likely to be further from the true
value than β̂OLS . 2SLS still performs poorly if we adopt the more stringent F.05=23.1
threshold, but it is very likely to outperform OLS if we adopt a far more stringent
F.05=105 threshold. This raises the question whether there is some intermediate F -
threshold where 2SLS is likely to outperform OLS? We examine this question in Table
7. Based on these results, it appears that raising the F -threshold to roughly 50 attains
most of the improvement achievable by going all the way to 105. We caution however,
that the AR and ACT tests should be used in lieu of the t-test if F is that small.

Our whole discussion has been centered on the iid normal case, in order to focus on key
issues.12 But in assessing acceptable first-stage F statistics in practice it is important to
consider the impact of heteroskedasticity. In general, as Andrews et al. (2019) point out,

12This is not as restrictive as it may appear, as for any heteroskedastic DGP, there exists a homoskedastic
DGP yielding equivalent behavior for 2SLS estimates and test statistics - see Andrews et al. (2019).
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Table 7. Probability of 2SLS Performing Worse than OLS (%)

Concentration
F5%Crit

Prior Expectation of ρ:

Parameter 0 to 1 0 to 0.5 0.4 to 0.5 0.5 to 1

10.00 23.10 30 50 20 9

21.90 40.00 19 36 7 2

29.44 50.00 17 32 4 1

37.22 60.00 15 29 2 0

73.75 104.70 11 21 0 0
Note: We report the proportion of times |β̂2SLS−β| > |β̂OLS−β| across Monte Carlo replications,
averaged across all values of ρ under a uniform prior that ρ falls in the indicated range.

there is no theoretical justification for using either a conventional or heteroskedasticity
robust F-test to gauge instrument strength in non-homoskedastic settings. They suggest
using the Olea and Pflueger (2013) effective first-stage F -statistic. However, as they point
out, in the single instrument just-identified case, this reduces to the conventional robust
F , and also coincides with the Kleibergen and Paap (2006) Wald statistic.

9. IS THERE A BETTER ALTERNATIVE TO 2SLS?

We have argued that a first-stage F of at least 50 is necessary to have reasonable confi-
dence that 2SLS will out-perform OLS. In this Section we consider three alternatives to
2SLS and ask whether they perform better when instruments are weak.

2SLS can be interpreted as IV using ziπ̂ as the instrument for xi, where π̂ is obtained
from OLS regression of x on z. Obviously π̂ tends to be greater in samples where ĉov(z, e)
is greater, and this has an unfortunate consequence: For an individual observation i we
have that cov(ziπ̂, ei) > 0, because a ceteris paribus increase in ziei drives up π̂. If ρ > 0
this means cov(ziπ̂, ui) > 0, so the instrument is positively correlated with the structural
error, which biases the 2SLS median towards OLS.13

Phillips and Hale (1977) noted this phenomenon, and suggested an alternative IV
estimator using ziπ̂−i as the instrument for xi, where π̂−i is obtained from OLS regression
of x on z excluding observation i. This approach, later called “jackknife IV” (JIVE),
breaks the correlation between ziπ̂ and ui. We report results using JIVE in Figure 8.

In the case of C =2.30 (F .05=10) the JIVE estimator causes us to reject H0: β = 0
via a two-tailed 5% t-test a striking 29% of the time, and all the rejections are positive.
In Sections 4-5 we emphasized the problem that 2SLS is much more likely to judge
estimates significant if they are shifted in the direct of the OLS bias. Here we see that
JIVE makes this problem much worse. The negative covariance between se(β̂JIV E) and

β̂JIV E imparts positive β̂JIV E estimates with spuriously high precision.
The reason JIVE performs worse than 2SLS is that the alternative instrument ziπ̂−i

has a smaller correlation with x than ziπ̂, making the weak instrument problem worse.
This has especially dire consequences if the instrument z is weak to begin with.14 In the

13The covariance of ziπ̂ and ui is of order 1/N , as the influence of observation i on π̂ vanishes as N
grows large, but in finite samples it contributes to bias in the 2SLS median. Similarly, if instruments are

strong in the sense discussed in Section 2, so we can be confident that |πV̂ ar(z)| � |ĉov(z, e)|, then the
influence of any particular ei on π̂ becomes negligible.
14In fact, in the runs in the left panel of Figure 8, ĉov(z, x) is always positive, as we would hope given
that cov(z, x) > 0 in the population. But ĉov(zπ̂−i, x) has an incorrect negative sign 30% of the time!
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Figure 8. Standard Error of β̂JIV E plotted against β̂JIV E itself (ρ = 0.80)
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Note: Runs with standard error > 1.5 not shown. Red dots indicate H0 : β = 0 rejected at 5% level.

right panel of Figure 8 we see that in the relatively strong instrument case of C =73.75
(F .05=104.7) JIVE does somewhat better (i.e, 3.84% rejections of which 83% are posi-
tive), but this is not comforting for an estimator designed for use with weak instruments.

The “k-class” estimators modify 2SLS by implementing IV using kziπ̂ + (1− k)xi as
the instrument for xi. Obviously 2SLS uses k = 1. One important alternative to 2SLS
is the Fuller (1977) estimator that uses k = 1 − 1/N (in the one instrument case), thus
leaving in a small part of xi. This “stabilizes” the estimator. Hence, in contrast to 2SLS,
the mean and variance of Fuller’s estimator exist.

We report results using the Fuller estimator in Figure 9. First, consider the case of
ρ = 0.80 and C =2.30 (F .05=10). Comparison with Figure 2 shows that Fuller estimates
and standard errors are substantially less dispersed than 2SLS. Fuller causes us to reject
H0: β = 0 via a two-tailed 5% t-test 15.4% of the time, compared to 10% for 2SLS, so
its size distortion is greater. Just as with 2SLS, all the rejections occur when β̂Full is
positive: the negative covariance between se(β̂Full) and β̂Full imparts spuriously high
precision to Fuller estimates that are most shifted in the direction of the OLS bias.

In the right panel Figure 9 we report results for the relatively strong instrument case
of C =73.75 (F .05=104.7). Comparison with the right panel of Figure 2 reveals that 2SLS
and Fuller estimates are very similar in this case.15

The third and final alternative we consider is the unbiased estimator of β proposed
in Andrews and Armstrong (2017). To understand their approach, consider the reduced
form regression of y on z, y = zβπ+(βe+u) = zξ+v where ξ = βπ. Obviously β = ξ/π.

By analogy, the 2SLS estimator can be calculated by taking the ratio β̂2SLS = ξ̂/π̂ where
π̂ is the first-stage estimate of π. The problematic properties of 2SLS that arise when
instruments are weak (see Section 2) may be understood as arising because π̂ appears in
the denominator of this ratio. Estimates of ratios have poor properties if the denominator
is noisy, including the fact that 1/π̂ is not an unbiased estimator of 1/π.

15The Fuller estimator rejects at a 5.43% rate, but 96% of the rejections are when β̂Full > 0. So just as
with 2SLS, severe one-tailed t-test size distortions persist even with quite strong instruments.
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Figure 9. Standard Error of β̂Full plotted against β̂Full itself (ρ = 0.80)
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Note: Runs with standard error > 1.5 not shown. Red dots indicate H0 : β = 0 rejected at 5% level.

The Andrews-Armstrong idea is that an unbiased estimator of β can be obtained if one
can construct an unbiased estimator of 1/π. Their approach requires the researcher to
be certain that π > 0, which is plausible in many applications. In that case, an unbiased
estimate of 1/π can be constructed by taking 1/π̂∗, where π̂∗ = σ2φ(π̂/σ2)/(1−Φ(π̂/σ2)).
Here σ2 is the standard deviation of π̂, and φ and Φ are the standard normal density
and cdf. Given π̂∗ it is simple to construct an unbiased estimator that we denote β̂U .16

It is important to understand how the first-stage estimate π̂ is modified by this transfor-
mation. Note φ/(1−Φ) is the inverse Mills ratio, so π̂∗ = E(x|x > π̂) where x ∼ N(0, σ2

2).
Thus π̂∗ is positive by construction, and always larger than π̂. If π̂ is negative, then π̂∗

is a small positive number. As π̂ grows large π̂∗ approaches π̂ from above.
We report results using β̂U in Figure 10, where we plot the β̂U against β̂2SLS . The red

dots indicate estimates that are significant at the 5% level according to the Anderson-
Rubin test. In the strong instrument case in the right panel, β̂U and β̂2SLS are nearly
identical. The AR test rejects H0: β = 0 at close to the correct 5% rate, and there is an
fairly even balance between rejections at positive vs. negative estimates of β.

The weak instrument case in the left panel is more interesting. Of course the AR test
rejects H0: β = 0 at close to the correct 5% rate. But for 2SLS the rejections are highly
asymmetric, as 85% occur when β̂2SLS > 0. So using AR does not avoid the asymmetry
that most rejections occur at positive values, which is the direction of the OLS bias. As
we see in the left panel of Figure 10, the unbiased estimator solves this problem, as it
generates only 54% positive rejections. It achieves this in an interesting way: Specifically,
it flips a large fraction of the significant 2SLS estimates from positive to negative. This
occurs in cases where π̂ is negative, so that π̂∗ is positive (consistent with the prior).

16The unbiased estimator of β is simply β̂U = (δ̂/π̂∗)+(σ12/σ2
2), where δ̂ is defined as ξ̂−(σ12/σ2

2)π̂. This

works because E(ξ̂|π̂) = βπ + (σ12/σ2
2)(π̂ − π) where σ12 is the covariance between π̂ and ξ̂. Therefore

E(δ̂|π̂) = βπ− (σ12/σ2
2)π, which is independent of π̂. Hence we can write E(δ̂/π̂∗) = β− (σ12/σ2

2), from

which it follows that Eβ̂U = β. To obtain a feasible estimator replace σ12 and σ2 with their estimates.
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Figure 10. Andrews-Armstrong β̂U plotted against β̂2SLS (ρ = 0.80)
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Note: Runs where β̂U < −6 were censored to −6. Red dots indicate H0 : β = 0 is rejected at the
5% level using the Anderson-Rubin statistic.

Finally, Table 8 repeats the analysis of Sections 7-8, by asking how often the alternative
estimators perform worse than OLS, in the sense that |β̂ − β| > |β̂OLS − β|. In the
F.05 = 50 case the Fuller and Unbiased estimators perform about the same as 2SLS,
with JIVE slightly worse, so at this level of instrument strength there is little to be
gained by using alternatives to 2SLS. When instruments are weaker (F.05 = 10 or 23)
a clear ranking is evident with Fuller doing best, followed by Unbiased, then 2SLS and
then JIVE. For instance, given a uniform prior ρ ∈ [0, 0.5], which we argue is plausible
in many applied micro applications, the probability that OLS outperforms 2SLS is 72%
when F.05 = 10. For Fuller the figure is 57% and for Unbiased it is 65%. So while these
alternatives outperform 2SLS, their performance can hardly be considered acceptable in
any absolute sense when instruments are weak.

In summary, these results reinforce our earlier conclusion that a first-stage F of at least
50 is required to give reasonable confidence that any of the IV estimators will outperform
OLS. And all these estimators should be used in conjunction with the AR and ACT tests.

This paper has focused on the single instrument case, but theory shows the perfor-
mance of 2SLS deteriorates (in that estimates are shifted more towards the OLS bias)
if the number of instruments is increased while holding first-stage F fixed. The absolute
performance of alternative estimators (LIML, Fuller, JIVE, Unbiased) will also deterio-
rate, but less so. The implication is that an even higher threshold of instrument relevance
(than F > 50) would be desirable with multiple instruments.

10. CONCLUSION

We have examined the behavior of 2SLS given different levels of instrument strength,
in a basic iid normal environment. In that context, Staiger-Stock suggested the popular
rule of thumb that the first-stage F should be at least 10 for 2SLS to give reliable results.
And Stock-Yogo showed that a first-stage F of 16.4 ensures maximal size distortion in
two-tailed 2SLS t-tests is no more than 5%. But we find 2SLS is very poorly behaved in
environments characterized by first-stage F -statistics in the 10 to 16.4 range.
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Table 8. Probability of Estimators Performing Worse than OLS (%)

Estimator
Prior Expectation of ρ:

0 to 1 0 to 0.5 0.4 to 0.5 0.5 to 1
C = 2.30, F5%Crit = 10.00

2SLS 52 72 52 31
JIVE 68 77 66 59
Fuller 35 57 31 13
Unbiased 40 65 40 16

C = 10.00, F5%Crit = 23.10
2SLS 30 50 20 09
JIVE 43 59 35 26
Fuller 24 45 13 02
Unbiased 25 46 15 04

C = 29.44, F5%Crit = 50.00
2SLS 17 32 04 01
JIVE 19 35 07 03
Fuller 16 31 03 00
Unbiased 16 31 03 00

Note: We report the frequency of |β̂−β| > |β̂OLS −β| across Monte Carlo replications, averaged
across all possible values of ρ under a uniform prior that ρ falls in the indicated range.

The problem is not the Stock-Yogo analysis itself, which is perfectly correct, but rather
that their focus on maximal size distortions of two-tailed t-tests masks other problems
with 2SLS. First, 2SLS has very low power if the first-stage F is in the 10 to 16.4
range. Second, the 2SLS estimator has the unfortunate property that it tends to generate
standard errors that are artificially too low precisely when it generates estimates that are
shifted most strongly in the direction of the OLS bias. Consequently, nearly all significant
2SLS estimates are severly biased towards OLS when instruments are weak.

In fact, we find standard 2SLS t-tests have little power to detect true negative effects
when the OLS bias is positive, even when instruments are “strong” by conventional
standards (e.g., F=10). This is of great practical importance, as it means there is little
chance of detecting negative program effects given positive selection on unobservables.

A general consequence of the correlation between 2SLS estimates and their standard
errors is that size distortions in one-tailed t-tests are far greater than size distortions in
two-tailed tests. We find very high levels of instrument strength are needed to reduce
those size distortions to modest levels. For example, if the first-stage F meets the 104.7
threshold suggested by Lee et al. (2020), then 2SLS has reasonable power properties, and
size distortions in two-tailed t-tests are modest. But size distortions in one-tailed t-tests
are still enormous. In fact, we find a first-stage F -threshold of about 10,000 is needed to
eliminate size distortions in one-tailed 2SLS t-tests.

The literature on 2SLS seems to have overlooked the problem of size distortions in
one-tailed tests. Applied researchers rarely use one-tailed tests as they expect two-tailed
tests to be symmetric (so a two-tailed 5% test is equivalent to a one-tailed 2.5% test).
But that is completely false with 2SLS: Even with moderately strong instruments almost
all estimates judged significant by two-tailed 2SLS t-tests are shifted in the direction of
the OLS bias, rather then symmetrically distributed around the true value.

The asymmetry in 2SLS t-tests is highly relevant for applied work. Consider the classic
problem of estimating the effect of education on wages. The usual concern is that un-
measured ability biases the OLS education coefficient upward. Our results imply that if
the OLS bias is indeed positive, then larger positive 2SLS estimates of the effect of edu-
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cation on wages will spuriously appear more precise. This will naturally bias researchers
towards exaggerating the effect of education.

We find the Anderson-Rubin (AR) test suffers from the same problem: The AR statistic

tends to be greater when β̂2SLS is shifted in the direction of the OLS bias. So AR over-
rejects H0: β = 0 when β̂2SLS is shifted towards E(β̂OLS). Fortunately, however, the
problem with the AR test becomes negligible at a much lower first-stage F threshold.
Thus, we advise using the AR test even if the first-stage F is in the thousands.

The conditional t-tests of Mills et al. (2014) correct the asymmetry in standard t-tests,
so we advise they should be widely adopted in applied work. When the OLS bias is
positive they have much greater power to detect true positive effects than the AR test,
and vice versa, so we advise using both tests in conjunction.

Going beyond the focus on test statistics, we argue that a limitation of most prior
work on weak instruments is that the quality of 2SLS estimates is evaluated in isolation,
asking how strong instruments ought to be for 2SLS itself to exhibit acceptable statistical
properties. But in practice applied researchers face a choice between using 2SLS and OLS.
So an alternative way to look at the issue is to ask “How strong do instruments need to be
for 2SLS to generate more reliable results than OLS?” Given commonly used thresholds
for testing weak instruments, we find probabilities that 2SLS will perform worse than
OLS are substantial. For example, given a first stage F of 10, and given a uniform prior
on the degree of the endogeneity problem, we calculate a 52% probability that 2SLS will
generate an estimate of β further from the true value than OLS.

Instead, a first-stage F of 50 or more is necessary to have reasonable confidence 2SLS
will outperform OLS. Given these results, we advise applied researchers to adopt a first-
stage F threshold of 50 or better, and to rely on AR tests even if F is in the thousands.
Given the issues with 2SLS we have discussed, we suspect that in many weak instrument
contexts the use of OLS combined with a serious attempt to find controls/proxies for
sources of endogeneity may be a superior research strategy to reliance on IV.

Finally, we note that recent papers by Andrews et al. (2019) and Young (2020) have
emphasized that 2SLS can suffer from low power and size distortions in environments with
heteroskedastic and/or clustered errors, even if conventional F tests appear acceptable.
We complement that work by showing how similar problems may arise even in iid normal
settings when instruments are acceptably strong by conventional standards. As Young
(2020) shows, heteroskedasticity and clustering accentuate the problems we describe.

ACKNOWLEDGEMENTS

We are very grateful to Isaiah Andrews and Robert Moffitt for valuable comments, and
to Marcelo Moreira for providing us with his code for conditional t-tests. This research
was supported by ARC grants DP210103319 and CE170100005.

REFERENCES

Anderson, T. W. and H. Rubin (1949). Estimation of the parameters of a single equation
in a complete system of stochastic equations. Annals of Mathematical statistics 20 (1),
46–63.

Andrews, D., M. Moreira, and J. Stock (2007). Performance of conditional wald tests in
IV regression with weak instruments. Journal of Econometrics 139 (1), 116–132.

© 2021



28 Keane & Neal

Andrews, I. and T. Armstrong (2017). Unbiased instrumental variables estimation under
known first-stage sign. Quantitative Economics 8 (2), 479–503.

Andrews, I., J. Stock, and L. Sun (2019). Weak instruments in instrumental variables
regression: Theory and practice. Annual Review of Economics 11, 727–753.

Angrist, J. and J. S. Pischke (2008). Mostly harmless econometrics: An empiricist’s
companion. Princeton university press.

Bekker, P. (1994). Alternative approximations to the distributions of instrumental vari-
able estimators. Econometrica 62 (3), 657–681.

Bound, J., D. Jaeger, and R. Baker (1995). Problems with instrumental variables esti-
mation when the correlation between the instruments and the endogenous explanatory
variable is weak. Journal of the American Statistical Association 90 (430), 443–450.

Fuller, W. (1977). Some properties of a modification of the limited information estimator.
Econometrica 45 (4), 939–953.

Kleibergen, F. (2002). Pivotal statistics for testing structural parameters in instrumental
variables regression. Econometrica 70 (5), 1781–1803.

Kleibergen, F. and R. Paap (2006). Generalized reduced rank tests using the singular
value decomposition. Journal of econometrics 133 (1), 97–126.

Lee, D., J. McCrary, M. Moreira, and J. Porter (2020). Valid t-ratio inference for IV.
arXiv preprint arXiv:2010.05058 .

Marsaglia, G. (2006). Ratios of normal variables. Journal of Statistical Software 16 (4),
1–10.

Mikusheva, A. (2013). Survey on statistical inferences in weakly-identified instrumental
variable models. Applied Econometrics 29 (1), 117–131.

Mills, B., M. Moreira, and L. Vilela (2014). Tests based on t-statistics for IV regression
with weak instruments. Journal of Econometrics 182 (2), 351–363.

Moreira, M. J. (2003). A conditional likelihood ratio test for structural models. Econo-
metrica 71 (4), 1027–1048.

Nelson, C. R. and R. Startz (1990). The distribution of the instrumental variables estima-
tor and its t-ratio when the instrument is a poor one. Journal of business, S125–S140.

Olea, J. L. M. and C. Pflueger (2013). A robust test for weak instruments. Journal of
Business & Economic Statistics 31 (3), 358–369.

Phillips, G. D. A. and C. Hale (1977). The bias of instrumental variable estimators of
simultaneous equation systems. International Economic Review 18 (1), 219–228.

Phillips, P. C. B. (1983). Exact small sample theory in the simultaneous equations model.
Handbook of Econometrics 1, 449–516.

Rothenberg, T. J. (1984). Approximating the distributions of econometric estimators
and test statistics. Handbook of econometrics 2, 881–935.

Staiger, D. and J. Stock (1997). Instrumental variables regression with weak instruments.
Econometrica 65 (3), 557–586.

Stock, J. and M. Watson (2015). Introduction to econometrics (3rd global ed.). Pearson
Education.

Stock, J., J. Wright, and M. Yogo (2002). A survey of weak instruments and weak
identification in generalized method of moments. Journal of Business & Economic
Statistics 20 (4), 518–529.

Stock, J. and M. Yogo (2005). Testing for weak instruments in linear IV regression. Iden-
tification and inference for econometric models: Essays in honor of Thomas Rothen-
berg 80 (4.2), 1.

Young, A. (2020). Consistency without inference: Instrumental variables in practical
application. Working Paper, London School of Economics.

© 2021



A New Perspective on Weak Instruments 29

A. APPENDIX TABLES AND FIGURES

Table A1. Median Standard Error for β̂2SLS

Concentration Parameter F critical value to Standard Error

(“True First-Stage F”) reject C<c at 5% 2SLS

1.82 8.96 0.799

2.30 10.00 0.705

3.84 13.00 0.533

5.78 16.38 0.429

10.00 23.10 0.322

73.75 104.70 0.117
Note: The worst-case OLS bias is 1.0 when ρ = 1 and π = 0.

Figure A1. 2SLS Power Function, t-test of H0 : β = 0 when true β = 0.3
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Figure A2. The Standard Error of Optimal IV Plotted Against β̂OPT (ρ = 0.80)
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Figure A3. Median Bias of 2SLS by Instrument Strength and ρ
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Note: We plot the median of the β̂2SLS estimates. The worst-case OLS bias is 1.0 when ρ = 1
and π = 0.

Figure A4. Median Bias of 2SLS Relative to OLS Bias (%)

0
.1

.2
.3

M
ed

ia
n 

Bi
as

 (r
el

at
iv

e 
to

 O
LS

)

.1 .4 .7 1
ρ

F5% crit = 8.96 F5% crit = 10.00
F5% crit = 13.00 F5% crit = 16.38
F5% crit = 23.10 F5% crit = 104.70

Note: We plot median(β̂2SLS)/median(β̂OLS). The worst-case OLS bias is 1.0 when ρ = 1 and π = 0.
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