
1 
�

 
 
 
 
 
 

 
ARC Centre of Excellence in Population Ageing Research 

 
 Working Paper 2020/25 

 
 
 
 

Multi-State Health Transition Modeling Using Neural Networks 
�

Qiqi Wang, Katja Hanewald and Xiaojun Wang 

 

 
This paper can be downloaded without charge from the ARC Centre of Excellence in 
Population Ageing Research Working Paper Series available at www.cepar.edu.au 

 
 
 
 
 
 
 
 
 
 
 



1 
 

Multi-State Health Transition Modeling Using Neural Networks 
  

Qiqi Wang1,*, Katja Hanewald2, and Xiaojun Wang1 

July 2, 2021 

 

Abstract 

This article proposes a new model that combines a neural network with a generalized linear 
model (GLM) to estimate and predict health transition intensities. We introduce neural 
networks to health transition modeling to incorporate socioeconomic and lifestyle factors and 
to allow for linear and nonlinear relationships between these variables. We use transfer learning 
to link the models for different health transitions and improve the model estimation for health 
transitions with limited data. We apply the model to individual-level data from the Chinese 
Longitudinal Healthy Longevity Survey from 1998–2018. The results show that our model 
performs better in estimation and prediction than standalone GLM and neural network models. 
We provide new estimates of the life expectancies for a range of population subgroups. We also 
describe a wide range of possible applications for further health-related research, including risk 
prediction using health claim data and mortality prediction based on individual-level mortality 
data.  
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1. Introduction 

This article develops a new model that combines a neural network with a generalized linear 

model (GLM) to estimate and predict age-specific health transition. The new model allows for 

age effects, time trends, socioeconomic factors, and lifestyle behaviors to impact the transitions 

between different health states in a Markov framework. The model detects and incorporates 

linear and nonlinear relationships among the variables autonomously without the need to 

specify the functional form of these relationships. We introduce transfer learning to link the 

models for different health transitions. Our new model has broad applications in insurance, 

actuarial and health research. We describe several possible applications, including risk 

prediction using health claim data and mortality prediction based on individual-level mortality 

data. 

We develop our model using the health trajectories of older individuals as an application. In 

our model, healthy older individuals can develop long-term care (LTC) needs or die. We focus 

on older individuals because, around the world, people are living longer. With increasing age 

and longevity, individuals face a higher risk of chronic disease and age-related disability from 

chronic diseases, cognitive impairment, and functional limitations. As the number of older 

persons grows along with their longevity, the need for LTC will significantly increase in both 

developed and developing countries (United Nations, 2016). Therefore, strategies for how to 

provide and fund these growing LTC needs are needed. Our model can inform the development 

of such strategies by predicting the chance of individuals becoming disabled and needing LTC.  

Our article makes several methodological contributions to the literature. First, we introduce 

socioeconomic and lifestyle factors in the modeling of health transitions. Many existing studies 

on multi-state health transition models use GLMs with a limited number of factors such as age, 

time, and LTC duration (see, e.g., Fong et al., 2015; Li et al., 2017; Fuino and Wagner, 2018; 

Hanewald et al., 2019). However, demographic and medical research has shown that 

socioeconomic and lifestyle factors also impact health states and health transitions. For 

example, there are relationships between health transitions and: marital status (Goldman et al., 

1995; Robards et al., 2012); residency (Eberhardt and Pamuk, 2004; Ikeda et al., 2019); 

smoking behavior (Nusselder et al., 2000; Husemoen et al., 2004); and alcohol consumption 

(Oslin, 2000; Engchuan et al., 2019). Surprisingly, however, few studies include these variables 

in health transition models. 

Second, we introduce neural networks to health transition modeling to incorporate 
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socioeconomic and lifestyle factors and to allow for linear and nonlinear relationships between 

these variables. Most of the current literature on multi-state health transition models relies on 

GLMs. The GLM framework provides a flexible approach to actuarial graduation techniques 

(Renshaw, 1991), which was first applied in health transition models by Renshaw and 

Haberman (1995). Recent papers that use GLMs to model health transitions include Fong et al. 

(2015), Shao et al. (2017), and Hanewald et al. (2019). We build on a growing literature that 

combines GLMs with neural networks. Wüthrich and Merz (2019) introduce the combined 

actuarial neural network (CANN) approach, which blends neural networks and classical GLMs. 

Schelldorfer and Wüthrich (2019) use the CANN approach to calculate claims frequency based 

on French motor third-party liability insurance data. They find that CANN enhances GLM by 

allowing for interactions between the variables. Gabrielli et al. (2020) also show how a GLM 

can be embedded into a neural network architecture to improve the over-dispersed Poisson 

model for general insurance claims reserving. However, we are the first to combine GLMs and 

neural networks to model health transitions. In doing so, we modify the CANN approach for 

health-related data. We show how expert opinion�for example, that age and time are key 

variables impacting health transitions�can be incorporated in a combined GLM–neural 

network model.     

Third, we are the first to introduce transfer learning to link the models for different health 

transitions. Transfer learning aims to solve a problem by utilizing the knowledge learned from 

another problem. It is an important approach in machine learning to deal with small data size 

and enhance model performance by studying similar tasks. Our application involves modeling 

the health transitions between different health states. Previous studies on multi-state health 

transition modeling have modeled the different health transitions separately (e.g., Fong et al., 

2015; Shao et al., 2017; Fuino and Wagner, 2018; Hanewald et al., 2019). However, as the 

health states are linked to each other, the morbidity and mortality transitions are also potentially 

linked (e.g., Alter and Riley, 1989; Johansson, 1991). Therefore, we introduce transfer learning 

to link the models for different health transitions. At the same time, transfer learning makes 

full use of the data by combining the data for different health transitions, which is helpful where 

data are limited.  

We illustrate our model using data from the Chinese Longitudinal Healthy Longevity Survey 

(CLHLS), which has one of the largest samples of the oldest old in the world. Our sample 

consists of 69,063 observations for individuals aged 65–105 in eight survey waves over the 

period 1998–2018. The CLHLS collects intensive individual interview data, including health, 
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disability, demographic, family, socioeconomic, and behavioral risk factors for mortality and 

healthy longevity. The mortality and morbidity data from the CLHLS are high quality (Zheng, 

2020) and have been used to model health transitions using GLMs (e.g., Hanewald et al., 2019).  

We choose to illustrate our model based on data from China because China is experiencing 

very rapid population aging and has implemented a range of policies in response. In 2012, 

China piloted its first public long-term care insurance (LTCI) program in the city of Qingdao, 

which provided professional LTC and geriatric services for those with substantial LTC needs. 

Since 2016, the pilot program has been extended to over 40 cities in China. China is also 

promoting the establishment of a multi-pillar LTCI system and is encouraging the development 

of private LTCI products. Our new model provides a novel approach for predicting more 

accurate health transition estimates, which can inform the development of public and private 

LTCI. 

The empirical results show that our new model performs better than a standalone GLM model 

or a standalone neural network. The new combined model reduces in-sample and out-of-sample 

losses and yields more accurate estimation and prediction results than standalone GLM models 

or standalone neural network models. Transfer learning improves the model by linking the 

separate models for the health transitions, which confirms that the transitions should be 

modeled together. The results also confirm that socioeconomic factors and lifestyle behaviors 

are significant and should be taken into account when estimating and predicting health 

transitions. Based on the estimated health transition intensities for certain groups of people 

with specific socioeconomic and lifestyle characteristics, we provide new estimates and 

predictions of the life expectancies and healthy life expectancies for different population 

subgroups.  

In summary, this article shows that new models that combine traditional insurance techniques 

and neural networks can be used to model health transitions. We find that a combined GLM-

neural network model that includes several socioeconomic and lifestyle factors, takes expert 

opinion into account and uses transfer learning to link the models for different health transitions 

outperforms other model variants. We discuss a wide range of possible applications of our 

modeling approach in insurance, actuarial, and health research in the final section of this paper.   

The remainder of this article is structured as follows. In Section 2, we describe the methodology. 

In Section 3, we describe the CLHLS data and model settings. Section 4 presents the model 

results and the life expectancy estimates. Section 5 reports the sensitivity analysis. We conclude 
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the article in Section 6. 

 

2. Methodology 

This article introduces a new model to estimate and predict health transition intensities. In the 

following, we describe the components of this new model: the Markov process, the neural 

network component, how we combine the neural network with a GLM, how we incorporate 

expert opinion and transfer learning. Section 2.7 summarizes our proposed new model. 

 

2.1. Markov Process 

We assume that an individual’s health transitions can be modeled as a multi-state Markov 

process, where the conditional probability distribution of future states of the process is 

independent of the process history and only depends on the state presently occupied. We 

consider a three-state Markov process with states “H” (healthy/no LTC needs), “L” (LTC 

needs), and “D” (dead). The process is shown in Figure 1. The three transition intensities are 

σ: the intensity of becoming LTC dependent; μ: the mortality intensity for a healthy person; 

and ν: the mortality intensity for a person with LTC needs.3  

Figure 1. Three-State Markov Process. 

 

We assume that the Markov process is time-continuous and inhomogeneous with transition 

probabilities and transition intensities respectively denoted by 

 𝑃𝑃𝑖𝑖𝑖𝑖�𝒙𝒙𝑔𝑔, 𝑡𝑡,𝑢𝑢� = 𝑃𝑃𝑟𝑟�𝑆𝑆�𝒙𝒙𝑔𝑔,𝑢𝑢� = 𝑗𝑗�𝑆𝑆�𝒙𝒙𝑔𝑔, 𝑡𝑡� = 𝑖𝑖�,   0 ≤ 𝑡𝑡 ≤ 𝑢𝑢, 𝑖𝑖, 𝑗𝑗 ∈ {𝐻𝐻, 𝐿𝐿,𝐷𝐷} (1) 

 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖�𝒙𝒙𝑔𝑔, 𝑡𝑡� = lim
𝑢𝑢→𝑡𝑡+

𝑃𝑃𝑖𝑖𝑖𝑖�𝒙𝒙𝑔𝑔, 𝑡𝑡,𝑢𝑢�/(𝑢𝑢 − 𝑡𝑡) , 𝑡𝑡 ≥ 0, 𝑖𝑖 ≠ 𝑗𝑗 , (2) 

 
3 Hanewald et al. (2019) use a similar three-state Markov process to model health transitions using GLMs based 
on CLHLS data. In the CLHLS data, there are very few recovery transitions from the functionally disabled to the 
nondisabled state. Therefore, we do not consider such recoveries in this study. 

H L 

D 

𝜎𝜎 

𝜇𝜇 𝑣𝑣 
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where 𝒙𝒙𝑔𝑔 is a vector containing features (or variables)4 with:  

𝒙𝒙𝑔𝑔 =  (Age𝑔𝑔, Gender𝑔𝑔, Residency𝑔𝑔, Marital status𝑔𝑔, Smoking𝑔𝑔, Drinking𝑔𝑔)′. 

The index g denotes a group of people with a certain value for each variable. 𝑡𝑡 is time with 

ℎ ≥ 0. 𝑆𝑆(𝒙𝒙𝑔𝑔, 𝑡𝑡) denotes the stochastic health status of an individual with certain features and 

time 𝑡𝑡, and 𝑖𝑖, 𝑗𝑗 ∈ {𝐻𝐻, 𝐿𝐿,𝐷𝐷}. 𝑃𝑃𝑖𝑖𝑖𝑖�𝒙𝒙𝑔𝑔, 𝑡𝑡,𝑢𝑢� denotes the transition probability from state 𝑖𝑖 with 

certain features 𝒙𝒙𝑔𝑔  and time 𝑡𝑡  to state  𝑗𝑗  at time 𝑡𝑡 +  ℎ . 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖�𝒙𝒙𝑔𝑔, 𝑡𝑡�  is the instantaneous 

transition intensity. 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 is age-dependent and is assumed to be integrable on compact intervals.  

We would like to briefly discuss some of the model assumptions: 

The number of health states: We model three health states (healthy/no LTC needs, LTC needs, 

and dead). Our model can be easily extended to more health states for other applications, 

provided that sufficient data exist. A version of the model with two health states (alive, dead) 

can be used to model mortality rates.  

Markov process: We model an individual’s health transitions as a multi-state Markov process, 

where the transition probability only depends on the individual’s current health state. We 

acknowledge that, in practice, past health states can impact LTC disability and mortality rates 

so that the health transitions could be modeled as semi-Markov processes. We adopt the 

Markov assumption for three reasons: (i) to reduce complexity and obtain an easily manageable 

model (Christiansen, 2012; Biessy, 2017); (ii) to facilitate comparison with previous studies 

(e.g., Fong et al., 2015; Shao et al., 2017; Hanewald et al., 2019); and (iii) because there is no 

information on LTC disability duration reported in the data set we used and the time intervals 

between survey waves are too long to estimate disability duration. Our model could be easily 

applied under a semi-Markov assumption when data on LTC disability duration are available. 

Time-inhomogeneous Markov process: We allow the health transition intensities to be 

dependent on time to account for time trends. 

Continuous-time Markov model: The panel dataset we use contains the current health status of 

the survey participants at the time of each follow-up survey. The time intervals between surveys 

vary between two to four years. We approximate the underlying continuous health process by 

a continuous-time Markov model. This model assumes that an individual will stay in one health 

state for a period of time and then immediately jump to another state. The continuous-time 

 
4 We use the terms “variables” and “features” interchangeably. 
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Markov process allows for equal and unequal observation intervals, which is suitable for 

longitudinal surveys with different observation intervals. As a result, the continuous-time 

Markov model is widely used in the actuarial literature using follow-up survey data (see, e.g., 

Jones and Grunwald, 2006; Fong et al., 2015; Hanewald et al., 2019).  

2.2. Generalized Linear Models 

The standard approach for modeling the health transitions in Figure 1 is to estimate separate 

standalone GLMs for each transition intensity (e.g., Renshaw and Haberman, 1995; Fong et al., 

2015; Shao et al., 2017; Hanewald et al., 2019).  

Let 𝑛𝑛𝑔𝑔 denote the number of transitions in group g and and 𝑒𝑒𝑔𝑔 denote the corresponding central 

exposure to risk in each interval. In common with Renshaw and Haberman (1995), we assume 

that a transition intensity is constant within one-year age intervals, and thus 𝑛𝑛𝑔𝑔  follows a 

Poisson distribution  

 𝑛𝑛𝑔𝑔~𝑃𝑃𝑃𝑃𝑖𝑖(𝜂𝜂(𝜸𝜸𝒈𝒈)𝑒𝑒𝑔𝑔), (3) 

with 𝜸𝜸𝒈𝒈 =  (t𝑔𝑔, Age𝑔𝑔, Gender𝑔𝑔, Residency𝑔𝑔, Marital status𝑔𝑔, Smoking𝑔𝑔, Drinking𝑔𝑔)′  and 

𝜂𝜂�𝜸𝜸𝒈𝒈� represents the transition intensity. 

The GLM is calibrated to the data based on independent Poisson response variables 𝑛𝑛𝑔𝑔, where 

 𝐸𝐸(𝑛𝑛𝑔𝑔|𝑒𝑒𝑔𝑔, 𝜂𝜂(𝛾𝛾𝑔𝑔))  =  𝑒𝑒𝑔𝑔𝜂𝜂(𝛾𝛾𝑔𝑔)  =  𝑚𝑚𝑔𝑔, (4) 

 𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛𝑔𝑔|𝑒𝑒𝑔𝑔,𝜎𝜎𝜎𝜎)  =  𝜑𝜑𝑚𝑚𝑔𝑔. (5) 

Thus, the GLM takes the form: 

 𝑙𝑙𝑃𝑃𝑙𝑙 𝜂𝜂(𝜸𝜸) = 𝛽𝛽0 + ∑ 𝛽𝛽𝑙𝑙𝛾𝛾𝑙𝑙 ≝ ⟨𝜷𝜷,𝜸𝜸⟩𝑞𝑞0
𝑙𝑙=1  (6) 

for the parameter vector 𝜷𝜷 =  (𝛽𝛽0, … ,𝛽𝛽𝑞𝑞0)′ ∈ ℝ𝑞𝑞0+1 , 𝜷𝜷 stands for unknown coefficients that 

need to be estimated, 𝜸𝜸 represents the variables we have in the model, and 𝑞𝑞0 is the number of 

chosen variables. 

The GLMs are fitted to the data using maximum likelihood estimation to estimate the 

regression coefficients 𝜷𝜷 and their associated asymptotic standard errors.  

As noted in the introduction, many existing studies on multi-state health transition models use 

GLMs with a limited number of factors such as age, time, and LTC duration (see, e.g., Fong et 

al., 2015; Li et al., 2017; Fuino and Wagner, 2018; Hanewald et al., 2019). We include a GLM 
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(GLM0) that only includes age and time with an interaction between age and time (as in 

Hanewald et al., 2019) in the model comparison:5 

 𝜂𝜂𝑎𝑎𝑔𝑔𝑎𝑎,𝑡𝑡𝑖𝑖𝑡𝑡𝑎𝑎 =  𝛽𝛽0  +  𝛽𝛽1𝑉𝑉𝑙𝑙𝑒𝑒 + 𝛽𝛽2𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒 +  𝛽𝛽3𝑉𝑉𝑙𝑙𝑒𝑒 ∗  𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒. (7) 

We also include a GLM with additional covariates in the model comparison. In doing so, we 

extend the current literature in this area.  

 

2.3. Neural Networks 

In this section, we describe the neural network component of our model. Neural networks are 

machine learning algorithms that are inspired by the biological neural networks in the human 

brain. They are versatile and powerful machine learning techniques and are widely used in 

pattern recognition, recommendation systems (e.g., to recommend music clips in different 

apps), and medical diagnoses. There is also a growing research interest in neural networks in 

insurance and actuarial studies (e.g., Brockett et al., 2006; Cheng et al., 2020; Kiermayer and 

Weiß, 2020).  

Neural network models consist of nodes that connect to other nodes that have associated 

weights. The nodes are aggregated into layers. There is one input layer of nodes, one or more 

hidden layers, and an output layer. Neural networks with more than one hidden layer are called 

deep neural networks. 

At a node, the inputs from previous nodes are multiplied by the weights (which are estimated 

from the data) and summed up. The sum is passed on to an activation function, which further 

modifies the output before passing it on to the next node. The type of activation function is a 

model setting, and there are many different types of activation functions. The information 

passed on by the activation function depends on some thresholds being assumed by the function.  

The information from the nodes in the input layer is processed through all nodes in the next 

layer, with different weights at each node. For neural networks with several hidden layers, this 

process is repeated at each layer. Thus, the hidden layers perform nonlinear transformations of 

the inputs entered into the network. 

 
5 We note that when we only consider age and time, we calculate the transition intensities using different counts 
of transition and exposure. Thus, we only group the individual data based on different ages and time. However, 
when we take other variables into account, the counts need to be subdivided, and exposures are calculated 
according to the given values of all these variables. 
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In this paper, we focus on regression neural networks, which have a regression function as an 

activation function for the output layer. Another type of neural network, classification neural 

networks, has different activation functions for the output layer.  

We start by defining our health transition model in a neural network framework: 

Our Poisson regression framework in the form of neural networks is given by  

 𝑙𝑙𝑃𝑃𝑙𝑙 𝜂𝜂(𝜸𝜸) = �𝒘𝒘(𝐾𝐾+1), (𝒛𝒛(𝐾𝐾) ∘ ⋯ ∘ 𝒛𝒛(1))(𝜸𝜸)� , (8) 

with 𝒒𝒒𝒌𝒌 hidden neurons in the 𝑘𝑘-th hidden layer given by 

  𝑧𝑧𝑖𝑖
(𝑘𝑘)  (𝒛𝒛) = 𝑓𝑓(𝒘𝒘𝑖𝑖,0

(𝑘𝑘) + ∑ 𝒘𝒘𝑖𝑖,𝑙𝑙
(𝑘𝑘)𝒒𝒒𝒌𝒌−𝟏𝟏

𝑙𝑙=1 𝑧𝑧𝑙𝑙), (9) 

where 𝜸𝜸 represents the variables we have in the model, 𝒘𝒘(𝑘𝑘) represents the weights, and 𝑓𝑓 is a 

(nonlinear) activation function. 

We can apply a neural network to model the health transition intensities because the universal 

approximation theorem ensures that a neural network with a single layer, a finite number of 

nodes, and an activation function can approximate any arbitrary complex and continuous 

relationship among the input variables (Goodfellow et al., 2013).  

We include two standalone neural network models in the model comparison: NN0, which only 

includes age and time, and NN, which includes age, time, and additional covariates. For both 

NN0 and NN, we use a deep neural network structure to detect linear and nonlinear 

relationships between the variables.  

 

2.4. Basic Combined Model 

To develop our proposed new model, we combine a neural network with a GLM and include 

important variables other than age and time to enhance the model’s estimation performance.  

As noted previously, Wüthrich and Merz (2019) and Schelldorfer and Wüthrich (2019) use the 

CANN approach, which nests a GLM into a neural network architecture. The CANN model 

can be defined as follows: 

 𝑙𝑙𝑃𝑃𝑙𝑙 𝜂𝜂(𝜸𝜸) = ⟨𝜷𝜷,𝜸𝜸⟩ + �𝒘𝒘(𝐾𝐾+1), (𝒛𝒛(𝐾𝐾) ∘ ⋯ ∘ 𝒛𝒛(1))(𝜸𝜸)�. (10) 

Equation (10) combines the regression function from the GLM in equation (6) and the 

regression function from a neural network given in equation (8). Figure 2, taken from 
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Schelldorfer and Wüthrich (2019), shows the original CANN approach.  

 

Figure 2. Original CANN Approach.  

 

Note: The line represents the GLM in the skip connection added to a neural network.  

Source: Schelldorfer and Wüthrich (2019, p. 14). 

 

Figure 3 shows the combined model (CM) in our paper. We modify the CANN approach for 

health-related data. We combine a GLM with a neural network to construct a wide and deep 

network architecture (Cheng et al., 2016). The ‘architecture’ of our combined model differs 

from Schelldorfer and Wüthrich’s (2019) CANN approach shown in Figure 2. We note that 

CM is a non-trivial adaptation of the CANN framework to health-related data. 

In our model, the deep component is a neural network with several hidden layers that can find 

unknown variable combinations (i.e., the linear and nonlinear connections) among the 

socioeconomic and lifestyle variables. The wide component is a GLM, as described in Section 

2.2. The estimated parameters of the GLM pass on to the last hidden layers as the wide 

component. The GLM part of the model does not include any interactions between the variables 

because the neural network finds linear and nonlinear interactions. The outputs of the deep 

component and the wide component concatenate (are combined) using a logistic function, and 
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the resulting information is passed on to the activation function in the output layer. 

Figure 3. Wide and Deep Structure in the Combined Model. 

  

 

2.5. Expert Opinion 

We can incorporate expert opinion into a wide and deep network structure (Alashkar et al., 

2017). To emphasize the importance of specific variables, we can pass specific variables to an 

activation function and then add it directly to the last hidden layer to reflect the relationship 

between the variable and the outputs. In previous studies, age patterns and time trends have 

typically been included to model health transitions (Renshaw and Haberman, 1995; Fong et al., 

2015; Shao et al., 2017; Hanewald et al., 2019). Building on this literature, we add age and 

time into the last layer of our model and jointly train6 the wide component and deep component 

to further improve our model. This structure is shown in Figure 4. We call this model variant 

‘combined model with expert opinion (CME)’. 

 

 

 
6 Training is the process of finding the appropriate weights in neural networks. 
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Figure 4. Combined Model with Expert Opinion. 

  

 

2.6. Transfer Learning 

A key innovation of our model is that it features transfer learning between different health 

transitions. Transfer learning is a machine learning method that improves learning in new tasks 

by transferring knowledge from related tasks that have been learned (Ye and Dai, 2018; Zhuang 

et al., 2020). 7 In other words, transfer learning utilizes the knowledge from one task to solve 

related tasks. It reuses the trained model as the starting point to build a new model for a related 

task. We refer to Tan et al. (2018) for a mathematical definition of transfer learning and a 

description of different transfer learning techniques.  

Most previous research on transfer learning is related to object detection, image classification, 

and various medical applications. Most of the research has been published in computer science 

journals. A few recent studies have used transfer learning in finance-related applications, for 

 
7 Transfer learning differs from credibility theory, which is an important actuarial tool for estimating pure 
premiums, frequencies, and severities for individual risks or classes of risk. Credibility theory combines multiple 
estimates of a future event to achieve a more accurate estimate. Transfer learning uses pre-trained models as the 
starting point for the new but similar task. Transfer learning relaxes the assumption that training data and future 
data must be in the same feature space and have the same distribution. Transfer learning can use different types 
of knowledge (features, weights, etc.) from previously trained models to train newer models. 
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example, to improve financial trading decisions (Jeong and Kim, 2019) and in text analysis of 

financial information (Kraus and Feuerriegel, 2017; Tang et al., 2019).  

Transfer learning is mainly used to enhance the performance of neural networks, but it can also 

be applied to other machine learning methods, for example, in boosting algorithms (Dai et al., 

2007) and deep forests (Utkin and Ryabinin, 2017).  

We introduce transfer learning into the model for two reasons. First, we want to model different 

health transitions together instead of modeling them separately. While the health states in our 

model link directly to each other, as shown in Figure 1, there can also be connections between 

the transitions (see, e.g., Alter and Riley, 1989; Johansson, 1991). Transfer learning can 

transfer knowledge from one health transition to other transitions to improve model 

performance. Second, in the successful CANN application examples (Schelldorfer and 

Wüthrich, 2019; Gabrielli, 2020), the data sets are relatively large, and a model is built for one 

sample. However, health-related data are often limited. Transfer learning can be used to 

develop models for limited data by learning from related models based on related (larger) 

datasets. In health transition studies, we often model several health transitions related to 

different health states. When these health transitions are modeled separately, the data for 

establishing each model can be relatively limited. Transfer learning allows us to use all 

available data (for all health transitions) to model specific health transitions.  

There are several transfer learning methods (see, e.g., Zhuang et al., 2020), which differ in the 

kind of knowledge that is transferred from one task to a related task. We choose the parameter 

transfer method, in which the related models share layer parameters (Kim and Youn, 2019). 

The parameter transfer method encodes transferred knowledge into these parameters. 

Specifically, the shared parameter-based transfer method attempts to find the common 

parameters between related tasks and transfer these parameters from the source task to the 

target so that knowledge transfer can be achieved through further processing neural networks 

(Kumagai, 2016). We use the method to model the relationships between the three transition 

intensities in our Markov model (see Figure 1). With this approach, the potential links between 

different health transitions lie in the parameter transfer, and transfer learning can improve the 

performance of our new model by learning useful knowledge from other transitions during 

model training.8 

 
8 Learning in transfer learning is the passing on of knowledge from a trained model to a related task. 
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We estimate one model for the health transition with the largest number of observed transitions, 

which is the mortality intensity for a healthy person 𝜇𝜇, and fine-tune the model.9 Then we 

transfer the weights of the trained model as the initialization for the models for the other two 

health transitions (i.e., the intensity of becoming LTC dependent σ and the mortality intensity 

for a person with LTC needs ν). We use transfer learning in two model variants in the model 

comparison: in the combined model with transfer learning (CMT) and the combined expert 

opinion neural network model with transfer learning (CMET).  

 

2.7. Proposed New Model 

Our final model (CMET) includes all the elements described in the previous subsections: we 

combine a GLM with a neural network, add covariates to both the GLM and the neural network 

parts of the model, include expert opinion, and use transfer learning to model different health 

transitions together and to improve the model performance. Our approach does not establish 

causality but finds the relationships between outputs (health transition intensities) and inputs 

(socioeconomic and lifestyle factors). In section 4, we will compare our proposed new model 

with different GLMs, neural networks, and combined models without transfer learning.  

 

2.8. Estimation and Loss Functions 

To estimate the models mentioned in the previous subsections, we randomly split our data into 

a training data set 𝐷𝐷 and a test data set 𝑇𝑇. The GLM models are fitted with maximum likelihood 

estimation to the training data set 𝐷𝐷. The log-likelihood ℓ is 

 ℓ = ∑ 𝑛𝑛𝑔𝑔 𝑙𝑙𝑃𝑃𝑙𝑙 �𝜂𝜂�𝜸𝜸𝒈𝒈�� − 𝑒𝑒𝑖𝑖𝜂𝜂�𝜸𝜸𝒈𝒈�
𝑁𝑁𝐷𝐷
𝑔𝑔=1  ,  (11) 

where 𝑁𝑁𝐷𝐷 is the sample size in the training data set 𝐷𝐷.  

We assess the quality of the models based on the mean square error (MSE), which is a 

commonly used loss function to train models and measure prediction performance in deep 

learning (see, e.g., Yin and Htay, 2020; Bu et al., 2021). We compare models based on their 

in-sample MSE given by formula (12) using the training data set 𝐷𝐷 and the out-of-sample MSE 

given by formula (13) using test data set T. The in-sample loss assesses the fit and the out-of-

 
9 The objective of fine-tuning is to adjust the weights of the trained model from the final phase to improve the 
prediction outcome (Lin et al., 2018).  
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sample loss assesses the prediction performance. 

 𝐿𝐿(𝐷𝐷, �̂�𝜂) = 1
𝑁𝑁𝐷𝐷
∑ �𝑙𝑙𝑃𝑃𝑙𝑙 �𝑛𝑛𝑔𝑔

𝑎𝑎𝑔𝑔
� − 𝑙𝑙𝑃𝑃𝑙𝑙 ��̂�𝜂�𝜸𝜸𝒈𝒈���

2
𝑁𝑁𝐷𝐷
𝑔𝑔=1 .  (12) 

 𝐿𝐿(𝑇𝑇, �̂�𝜂) = 1
𝑁𝑁𝑇𝑇
∑ �𝑙𝑙𝑃𝑃𝑙𝑙 �𝑛𝑛𝑔𝑔

𝑎𝑎𝑔𝑔
� − 𝑙𝑙𝑃𝑃𝑙𝑙 ��̂�𝜂�𝜸𝜸𝒈𝒈���

2
𝑁𝑁𝑇𝑇
𝑔𝑔=1 . (13) 

 

3. Data and Model Settings 

3.1. Data 

We illustrate our model using longitudinal data from the CLHLS, a follow-up survey organized 

by an international team of researchers with funding and institutional support from a range of 

sources, including the U.S. National Institute on Aging; Peking University; and the United 

Nations Fund for Population Activities (UNFPA). Data are available from eight survey waves 

over the years 1998–2018. The data set can be download for free after registration (see Center 

for Healthy Aging and Development Studies, 2020).   

The CLHLS focuses on the oldest-old aged 80 and older from 22 provinces in mainland China. 

Since 2002, the CLHLS has included a comparison group of younger elders aged 65–79. The 

CLHLS uses face-to-face interviews based on internationally compatible questionnaires to 

collect detailed information about health, socioeconomic characteristics, family, lifestyle, and 

other demographic variables. At each wave, the survivors are re-interviewed, and deceased 

interviewees are replaced with new participants. Data on mortality and health status before 

dying are collected in interviews with a close family member of the deceased. For more detailed 

information about the survey design, please refer to Zheng (2020). 

The CLHLS has one of the largest samples of the oldest-old in the world. Even at higher ages, 

the sample size of the CLHLS is large. We use data for the 65–105 age group in one-year age 

groups. We discard 840 individuals with missing independent and dependent variable 

information, leaving a baseline sample of 69,063 observations in eight survey waves. In some 

waves, a small amount of data is collected in the next calendar year. We consider the exact date 

of the interview when calculating the risk exposure. 

We use information about ADL (activities of daily living) limitations to classify individuals 

into LTC states. In all waves of the CLHLS, six ADL items were consistently evaluated: 

bathing, dressing, eating, using the toilet, continence, and transferring in and out of bed. 
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Individuals rated their ability to perform these activities on a three-point scale (1 = no help 

required, 2 = partial assistance required, 3 = full assistance required). We classify individuals 

as being able to perform an ADL only when they need no assistance. If they encounter 

difficulties with two or more ADL, we define them as LTC dependent, which is consistent with 

previous research by Fong et al. (2015) based on U.S. data, and Hanewald et al. (2019) based 

on data from the CLHLS. This definition of LTC disability is also consistent with the trigger 

conditions for the payment of benefits for many existing LTCI policies in the U.S. market and 

some LTCI pilot programs in China.  

Table 1 summarizes the variables (or factors) included in our model based on previous research. 

The table also summarizes how we pre-processed the data following previous studies. We 

selected variables that (i) were available in the CLHLS data, (ii) are known to be related to the 

health transition based on previous studies (see, e.g., Goldman et al., 1995; Robards et al., 2012; 

Engchuan et al., 2019), and (iii) can be easily verified by insurance companies. The model can 

be easily extended to include additional variables if larger and more detailed data are available.  

Table 1. Variables. 

Variable  Reference  Type of variable Details 
Age Fong et al. (2015) Continuous One-year age groups 65–105 
Time Li et al. (2017) Continuous Seven starting time points: 1998, 

2000, 2002, 2005, 2008, 2011, 2014 
Gender Hanewald et al. (2019) Binary Rural vs. urban residency  
Residency Hanewald et al. (2019) Binary Rural vs. urban residency 
Marital status Gu and Yi (2004) Binary Currently married and living with 

spouse vs. not 
Smoke Gu and Feng (2015) Binary Currently smoking vs. not 
Drink Gu and Feng (2015) Binary Currently drinking vs. not 

Note: All references above are for processing the variables. 

We use data from all eight CLHLS survey waves (1998, 2000, 2002, 2005, 2008, 2011, 2015, 

2018). To make full use of the available information, we use an unbalanced panel design that 

includes all individuals with at least two consecutive observations. As a result, each individual 

can have up to seven health transitions. And described in Table 1, we use time as a continuous 

variable, which is consistent with previous research on health transitions using CLHLS data 

(Hanewald et al., 2019). For the model estimation, we define the year 1998 as t = 0 and set the 

data points in the model to t = (1, 3, 5.5, 8.5, 11.5, 14.5, 18) to reflect the fact that the transition 

intensities refer to the middle of the time intervals between survey waves and to account for 

the different interval lengths between survey waves.  
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Table A.1 in the appendix reports the attrition rates for each wave compared to the previous 

wave. The attrition rates vary between 8% and 21%. The attrition rates in the CLHLS are 

similar to that in surveys conducted in Western countries (Gu, 2008). The CLHLS does not 

provide weights that would allow us to correct attrition. We acknowledge that as a result, we 

are probably underestimating the three transition intensities σ, μ and ν because individuals who 

could not be followed up might have died without being recorded, or they may have been 

institutionalized in a hospital or nursing home. We recommend that future research should 

check and correct for attrition if data are available. 

We calculate crude transition intensities as the number of health transitions divided by the 

corresponding central exposure to risk for a given time interval and given values of other 

variables. Table 2 reports that there are 31,660 transitions in the dataset, of which 15% are 

transitions into LTC needs, 59% are the deaths of healthy individuals, and 26% are the deaths 

of individuals with LTC needs. The total number of exposure years is 156,875. We also 

compare the transition counts and exposures of age 85 and age 105 in Table A.2 in the appendix. 

The comparison shows that there are fewer transition counts at higher ages, and therefore the 

crude transition intensities vary more at higher ages. Table A.3 in the appendix shows the crude 

intensities for each wave and each age group. The intensities increase by age and fluctuate over 

time. 

Table 2. Transition Counts for Different Variables. 

    Transition counts   Exposure years 
Variables   σ: H→L μ: H→D ν: L→D   H L 

        

Gender Male 1,758  8,457 2,453  61,876  7,446  
Female 3,145 10,118 5,729   70,499 17,053  

        
Marital 
status 

With spouse 1,011 3,426 875  47,913 3,922 
Without spouse 3,892 15,149 7,307  84,463 20,578 

        

Residency Rural 2,540 11,103 4,431  75,867  12,917  
Urban 2,363 7,472 3,751  56,509  11,583  

        

Smoke Yes 730 3,385 638   27,781  2,466  
No 4,173 15,190 7,544  104,594  22,033  

        

Drink Yes 834 3,761 940    28,872  3,226  
No 4,069 14,814 7,242  103,504  21,273  

        

Total   4,903 18,575 8,182   132,376 24,500 
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We show the correlations between the variables and the health transition intensities in Figure 

A.1 in the appendix. Unlike intensity v, intensities σ and μ have strong positive correlations 

with age. Our model can capture these linear and other nonlinear relationships between the 

variables.  

 

3.2. Model Settings 

We estimate the standalone neural networks NN0 and NN and the deep component in the 

models CM, CME and CMET with three hidden layers and 80 nodes for each layer. Section 5 

reports the results of a sensitivity analysis regarding the choice of these hyperparameters. We 

use the scaled exponential linear unit (SELU) as the activation function (Klambauer et al., 

2017). We use the SELU for all hidden layers because it ensures that our network self-

normalizes.10 We use linear activation in the last layer to solve the Poisson regression problem. 

We use a stochastic gradient descent11 method called adaptive moment estimation (Adam) 

(Kingma and Ba, 2014) to search for optimal weights. Adam is straightforward to implement 

and computationally efficient, and for this reason, it is a popular method in deep-learning 

applications. The weights are tuned by backpropagation.12 

Deep neural networks have a large number of parameters that can cause overfitting. We use 

the dropout technique to avoid overfitting (Hinton et al., 2012). The idea of dropout is to 

randomly drop nodes from the neural network during training. In this article, we set the dropout 

probability at 10%.  

We adopt batch normalization for faster and more stable training of the model13. Proposed by 

Ioffe and Szegedy (2015), batch normalization is a method used to make neural networks faster 

and more stable by normalizing the input layer by re-centering and re-scaling. Batch 

 
10 Self-normalization means that the output of each layer will preserve a mean of zero and a standard deviation of 
one during training, which solves the vanishing/exploding gradients problem. The exploding gradient problem is 
when the derivatives are large and the gradient increases exponentially through the neural network. 
11 Gradient descent is an optimization algorithm that minimizes the loss function by repeatedly moving along the 
steepest descent defined by the negative value of the gradient. 
12 Back propagation is a gradient descent optimization algorithm. Each weight is adjusted based on the loss back 
propagated from the output to the input. 
13 In the neural network training process, the entire dataset passes through the network multiple times to adjust 
the weights. To process the data into the network for training, the dataset is divided into a number of batches. One 
epoch is when the whole dataset passes through the network once, and the size of the batch is the number of 
samples in one batch. 
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normalization subtracts the batch mean and divides it by the batch standard deviation. It can 

also eliminate the need for dropout, so we only add dropout to the last hidden layer (Li et al., 

2018). 

We implement the neural network models using Google’s ‘TensorFlow’ package interacted 

with the programming language Python and estimate the GLM models using the Python 

module ‘statsmodels’. We are happy to share the code and provide guidance on how to 

implement the models.  

 

4. Empirical Results 

4.1. Model Comparison 

In the following, we compare our proposed new model against several alternative models. 

Table 3 shows the average computing time and average losses for the following models (all 

variables are described in Table 1): 

• GLM0 is a GLM that only includes age and time with an interaction between age and time.  

• GLM is a GLM that includes all the variables presented in Table 1.  

Table A.4 and Table A.5 in the appendix report the parameter estimates for GLM0 and GLM .  

• NN0 is a neural network that only contains age and time as input variables.  

• NN is a neural network that includes all the variables listed in Table 1.  

• CM is the basic combined model described in Section 2.4 that combines NN and GLM.  

• CME is the combined model with expert opinion incorporated: age and time are added to 

the last hidden layer, as described in Section 2.5.  

The six models mentioned above model the three health transitions shown in Figure 1 

separately. The final two models link the three health transitions by transfer learning as 

described in Section 2.6. 

• CMT is a combined model with transfer learning.  

• CMET is our proposed combined model with expert opinion and transfer learning.  

Table 3 reports the in-sample and out-of-sample losses along with the computing times14 for 

the different models for the three health transition intensities σ, µ, and ν. We first compare the 

 
14 The computing time was measured on a personal laptop Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz with 
16GB RAM. 



20 
 

standalone GLM and neural network models. We note that GLM0 and NN0 have different 

counts and exposures than GLM and NN, so we cannot directly compare the losses. However, 

Appendix A.5 shows that all the variables in GLM are significant, which indicates that these 

variables should be included when modeling the health transitions. The standalone neural 

network NN performs much better than the GLM (and NN0 performs better than GLM0), as 

all in-sample and out-of-sample NN losses are much lower than for the GLM.  

The basic combined model CM has smaller in-sample losses than the neural network NN, but 

the out-of-sample losses are larger for one transition intensity (ν) compared to NN. This 

suggests that a combined GLM-NN model can be suitable for some health transitions but can 

also be improved.  

Adding expert opinion in model CME (in our case, adding age and time in the last layer) gives 

a better fit (lower in-sample loss) and better prediction (lower out-of-sample loss) than model 

CM and the standalone GLM and NN models for all three health transitions. Compared with 

model CM, the out-of-sample MSE losses for model CME are 1% lower for the intensity of 

becoming LTC disabled (σ), 3% lower for the mortality intensity of healthy individuals (μ), 

and 3% lower for the mortality intensity of individuals with LTC needs (ν). This shows that it 

can be important to take expert opinion into account and confirms that age and time are 

important when modeling health transitions.  

Adding transfer learning to the combined model (in model CMT) also reduces both in-sample 

and out-of-sample losses compared to model CM, especially for the intensity of becoming LTC 

disabled (σ). The out-of-sample MSE losses for model CMT compared with model CM are 

about 17% lower for σ, the same for μ, and 4% lower for ν. This indicates that the health 

transitions should be modeled together.  

Finally, the best performance in both in-sample and out-of-sample losses is achieved in our 

proposed combined model CMET, which incorporates both expert opinion in the wide 

component with age and time and transfer learning. Overall, our proposed model CMET 

decreases the out-of-sample loss compared with the basic CM model by about 25% for σ, 3% 

for μ, and 7% for ν.   

Overall, our new model CMET has the best performance. Nesting classic actuarial models and 

expert opinion as the wide component into a neural network gives more accurate estimates by 

reducing in-sample and out-of-sample losses. Transfer learning connects the models for 

different transitions, which further improves the overall model. The results also confirm that 
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the three health transition intensities should be modeled together.  

Table 3. MSE Loss Comparison and Computing Time for Different Models. 

   In-sample loss (× 10−2)    Out-of-sample loss (×10−2 )   Computing time (s) 

Models   
σ:  

H→L 
μ:  

H→D 
ν:  

L→D 
 σ:  

H→L 
μ:  

H→D 
ν:  

L→D 
 σ:  

H→L 
μ:  

H→D 
ν:  

L→D 

GLM0  158.43 77.54 45.99  125.55 63.32 66.71  0.04 0.06 0.04 

GLM  80.69 86.42 56.08  95.22 96.80 55.78  0.04 0.06 0.04 

NN0  129.11 59.27 30.11  145.65 18.98 53.31  2.55 2.57 2.23 

NN  43.03 31.20 52.86  49.29 34.40 53.37  10.27 14.96 9.34 

CM  38.54 29.29 52.04  42.78 31.70 54.10  10.48 15.39 9.68 

CME  37.32 28.50 51.01  42.34 30.82 52.67  11.68 17.06 10.79 

CMT  31.27 29.29 50.22  35.35 31.70 52.02  10.54 15.39 9.65 

CMET   31.08 28.50 49.70  32.25 30.82 50.47  11.73 17.06 10.82 

 

To illustrate how combined neural network methods and transfer learning improve the models, 

we compare the observed transition intensities against the fitted transition intensities based on 

the models GLM, CM, and CMET in Figure 6. To show the results only by age, we average 

the estimated intensities for all individuals within the same age group. To do so, we first 

calculate the estimated counts of health transitions and then divide the sum of the counts in one 

age group by the exposure in the same age group.15 The intensity of becoming LTC disabled 

(σ) and the mortality intensity of healthy individuals (μ) increase by age. The estimated 

intensities fluctuate at higher ages due to limited data. CM and CMET smooth the curves by 

age, and the estimates of CMET are closer to the data.16 The mortality intensity for individuals 

with LTC needs fluctuates before age 80 and then rises gently. Overall, CMET improves the 

GLM fitting, and transfer learning improves the models. The comparison shows that adding 

age and time in the last layer and introducing transfer learning improves the model fit of health 

transition intensities.   

 
15 We note that some of the fitted intensities shown in Figure 6 are more erratic than the data because they result 
from models that are fitted to all covariates. This is because the different models were estimated based on counts 
and exposures grouped by all covariates (not just age). Therefore, the counts and exposures in Figure 6 are only 
group by age which are different from the counts and exposures we used to estimate the health transitions. 
16 In practical applications, incidence rates and mortality rates can be smoothed by age and time. 
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Figure 6. Intensities and Residuals by Age. 

    

(a) σ: H→L intensity  (b) σ: H→L residual 

   

(c) μ: H→D intensity (d) μ: H→D residual 

   

(e) ν: L→D intensity (f) ν: L→D residual 
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Figure 7. Intensities and Residuals over Time. 

   

(a) σ: H→L intensity  (b) σ: H→L residual 

    

(c) μ: H→D intensity (d) μ: H→D residual 

   

(e) ν: L→D intensity (f) ν: L→D residual 

Figure 7 shows the estimated intensities and corresponding residuals over time. We note that 

the intensities decline over time, with some fluctuations between waves. There is a drop in 

some intensities from 2000 to 2002. A possible reason for this drop is that since 2002 the 

CLHLS has included a comparison group of younger older persons aged 65–79 who have lower 

transition intensities. Our model smooths the fluctuations and gives estimates and predictions 
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that are closer to the data compared with the GLM. 

Figures A.2 and A.3 in the appendix show the estimates of CMET. Figure A.2 illustrates how 

variables other than age and time influence the health transition intensities. The three columns 

show the three different intensities. The first row compares the two genders. For most ages, 

males have higher transition intensities, reflecting a higher risk of becoming disabled or dying. 

However, there is a slight change after age 98 in the disability intensity, which shows that at a 

higher age, women are more likely to become disabled than men. The second row illustrates 

the effects of urban versus rural residency. Individuals in urban areas have higher mortality 

intensities but are less likely to be disabled than those in rural areas. This finding agrees with 

Wei and Wang (2017), who also employ CLHLS data. As for marital status, we find that 

healthy individuals who are presently living with a spouse have a lower risk of becoming 

disabled or dying (Zeng, 2013; Mu and Yang, 2016). However, once disabled, individuals 

living with a spouse have higher mortality intensities than those without a spouse. The next 

two rows show how lifestyle impacts health transitions. The intensities are much higher for 

individuals who smoke or drink alcohol compared to others, which confirms the adverse health 

effects of smoking and drinking.  

Figure A.3 compares the average of the estimated intensities over time by gender and residency. 

The intensities decline over time, with different rates for males and females, and urban and 

rural residents. The results for other variables are available upon request. Overall, our model 

reflects the time trends in the health transitions and reasonable differences for different 

demographic groups. 

 

4.2. Importance of Variables 

We use a method called “permutation feature importance,” which was introduced by Breiman 

(2001) to determine the importance of variables. The main idea behind this method is that if 

randomly permutating the value of a feature increases the model error, the feature is “important” 

because the model relies on this feature to make predictions. If the value of the feature is 

changed, and the model error remains the same, the feature is “not important.” The algorithm 

is described in Fisher, Rudin, and Dominici (2018): 

The inputs are: trained model 𝑓𝑓, feature matrix 𝑋𝑋, target vector 𝑦𝑦, error measure 𝐿𝐿(𝑦𝑦,𝑓𝑓). The 

steps of the algorithm are: 
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1. Estimate the original model error 𝑒𝑒𝑜𝑜𝑟𝑟𝑖𝑖𝑔𝑔 =  𝐿𝐿(𝑦𝑦,𝑓𝑓(𝑋𝑋) (e.g., mean squared error). 

2. For each feature 𝑗𝑗 =  1, . . . ,𝑝𝑝: 

o generate feature matrix 𝑋𝑋𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡 by permuting feature 𝑗𝑗 in the data 𝑋𝑋. This breaks 

the association between feature 𝑗𝑗 and the true outcome 𝑦𝑦; 

o estimate error 𝑒𝑒𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡 =  𝐿𝐿(𝑦𝑦,𝑓𝑓(𝑋𝑋𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡 )) based on the predictions of the 

permutated data; 

o calculate permutation feature importance 𝐹𝐹𝑇𝑇𝑖𝑖 =  𝑒𝑒𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡/𝑒𝑒𝑜𝑜𝑟𝑟𝑖𝑖𝑔𝑔.  

3. Sort features by descending 𝐹𝐹𝑇𝑇𝑖𝑖. 

To illustrate how permutating a feature will increase the errors, we show the percentage of loss 

increase (𝐹𝐹𝑇𝑇𝑖𝑖 − 1 =  (𝑒𝑒𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡 − 𝑒𝑒𝑜𝑜𝑟𝑟𝑖𝑖𝑔𝑔)/𝑒𝑒𝑜𝑜𝑟𝑟𝑖𝑖𝑔𝑔)  in Table 4. The order of importance of the 

variables is different for the three different transitions. Age plays the most important role in the 

health transitions of healthy individuals. Lifestyle behaviors are important for the onset of LTC 

needs. Gender is the most important for the mortality of the disabled, which is why many 

studies on mortality modeling often split the data by gender first. We do not need to do this 

prework because the neural network automatically detects these differences and relationships. 

Furthermore, marital status plays a relatively important role in all health transitions. We note 

that age and time are not very important in modeling the mortality of disabled individuals.  

In summary, we find that several socioeconomic and health behavior factors influence the 

transition intensities significantly. However, few previous studies consider factors other than 

age and time when modeling health transition intensities. Estimates of the importance of 

different variables suggest that other than age and time, socioeconomic and lifestyle factors 

should also be considered in health transition estimations.  

Table 4. Importance of Different Variables. 

Variables σ: H→L (%) μ: H→D (%) ν:L→D (%) 

Age 72.98 200.63 1.77 
Time 7.04 2.16 0.89 
Gender 5.60 12.02 8.25 
Residency 3.04 0.34 0.93 
Marital status 7.78 7.00 4.26 
Smoke 13.93 2.89 3.18 
Drink 8.06 1.86 2.63 
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4.3. Proportional Hazards Model and Survival Curve 

Our model can also estimate the hazard function in survival analysis. The hazard function is a 

measure of risk at time 𝑡𝑡 and is typically denoted as 𝜆𝜆(𝑡𝑡). If we assume that an individual has 

survived for a time 𝑡𝑡, and, then the hazard function is the probability that the individual will 

not survive for an additional time 𝛿𝛿: 

 𝜆𝜆(𝑡𝑡) = lim
δ→0

𝑃𝑃𝑟𝑟(𝑡𝑡 ≤ 𝑇𝑇 < 𝑡𝑡 + 𝛿𝛿|𝑇𝑇 ≥ 𝑡𝑡)/𝛿𝛿 . (14) 

Formula (14) is very similar to transition intensity (2), so our proposed model can be used to 

estimate the hazard function.  

The proportional hazards model is a widely used method in survival analysis. The hazard 

function of the model consists of two functions: a baseline hazard function, 𝜆𝜆0(𝑡𝑡) and a risk 

function, ℎ(𝜎𝜎), representing the influence of covariates 𝜎𝜎: 

 𝜆𝜆(𝑡𝑡|𝜎𝜎) = 𝜆𝜆0(𝑡𝑡) ∗ ℎ(𝜎𝜎), (15) 

 𝜆𝜆(𝑡𝑡|𝑥𝑥)
𝜆𝜆0(𝑡𝑡) = ℎ(𝜎𝜎) = exp𝛼𝛼𝑥𝑥 ,  (16) 

where 𝛼𝛼 stands for coefficients of 𝜎𝜎. Our proposed model can be used to estimate the hazard 

ratio ℎ(𝜎𝜎) with age as the time scale.  

We use the estimates of ℎ(𝜎𝜎) from our proposed model to test if the proportional hazard 

assumption that the baseline hazard ratio 𝜆𝜆0(𝑡𝑡) is constant over the time scale (i.e., age in our 

case) is satisfied. Figure A.4 in the appendix tests shows that the proportional hazard 

assumption is violated for different variables. 

Figure A.5 in the appendix shows the survival curve by time for all individuals aged 85 in 1998 

in our data. We compare the percentage of individuals alive at all subsequent CLHLS survey 

waves for three models: GLM, CME, and CMET. Our proposed model CMET provides a good 

fit to the data. 

 

4.4. Life Expectancy and Healthy Life Expectancy 

One of the advantages of our new model CMET is that it can be used to calculate life 

expectancy for all demographic, socioeconomic, and lifestyle factors included in the model. To 

calculate life expectancy for specific values of specific variables, we use CMET to estimate 

and predict the health transition intensities for people with different characteristics. This allows 
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us to use the full sample containing three types of transitions. Then we take an average of life 

expectancy across all the other variables when we only consider one certain variable.  

In the following, we provide estimates of life expectancy and healthy life expectancy for three 

different years: the year of the first CLHLS survey (1998), the year of the most recent CLHLS 

survey (2018), and 20 years after the last CLHLS survey (2038). Based on initial health status, 

we calculate life expectancy and healthy life expectancy at ages 75 and 85. We define an 

individual as “healthy” if the individual has no more than two ADL limitations, which is 

consistent with the definition in section 2.1. The resulting life expectancy for healthy and 

disabled individuals is shown in Table 5. Overall, life expectancy increases over time. For 

individuals who are healthy initially, the model predicts a nearly 1.5-year increase every 20 

years for 75-year-old individuals and a one-year increase for 85-year-old individuals. The 

model predicts slower increases in life expectancy for the disabled. Healthy life expectancy 

increases over time as well. From 1998–2018, the healthy life expectancy for 75-year-old 

individuals and 85-year-old individuals increased by 1.8 and 1.3 years, respectively, and is 

projected to further increase over the next 20 years.  

The life expectancy estimates also differ by other demographic, socioeconomic, and lifestyle 

factors. Figure 8 shows that women have a longer life expectancy than men. In terms of lifestyle 

behaviors, smokers and drinkers have a much lower life expectancy than non-smokers and non-

drinkers. These differences grow over time. For socioeconomic factors, individuals who live 

in urban areas have a higher life expectancy, which is in line with other studies (e.g., Hanewald 

et al., 2019). Furthermore, healthy married individuals have a higher life expectancy than those 

who live alone. Healthy life expectancy shares a similar pattern to the life expectancy of healthy 

individuals by gender, smoking, drinking, residency, and marital status.  

 

Table 5. Life Expectancy (LE) and Healthy Life Expectancy (HLE). 

   75 years old   85 years old 
 Variables     1998 2018 2038   1998 2018 2038 
LE for healthy   8.27 9.77 11.25  5.10 6.26 7.14 
HLE  

  7.08 8.85 10.57  4.37 5.66 6.62 
LE for disabled   4.11 4.82 5.65  2.74 2.78 2.80 
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Figure 8. Life Expectancy (LE) and Healthy Life Expectancy (HLE) of Healthy Individuals. 

  

(a) LE and HLE by gender  (b) LE and HLE by marital status 

   

(c) LE and HLE by residency (d) LE and HLE by smoking 

 

 

(e) LE and HLE by drinking  
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Figure 9. Life Expectancy (LE) of Disabled Individuals. 

  

(a) LE by gender, marital status, and residency  (b) LE by smoking and drinking 

 

Using our new model CMET, we can calculate life expectancy for certain groups of individuals. 

In Table A.6 in the appendix, we report life expectancy for 75-year-old healthy individuals as 

an example. The table shows that individuals with different characteristics have different life 

expectancies and experience different increases in life expectancy over time. 

Overall, our results show health differences among individuals with different backgrounds. We 

document improvements in life expectancy over time. The results confirm the adverse effects 

of smoking and drinking on health. Our model can be used to calculate and predict life 

expectancy for individuals with different characteristics. 

 

5. Sensitivity Analysis 

The results of the models will change if we split the dataset randomly.  Therefore, the in-sample 

and out-of-sample performance of our model will be slightly different, depending on which 

data are used for training and testing. To evaluate the impact of the choice of data for the 

training set and test set on the performance of the models, we perform 100 trials using simple 

random sampling (SRS) to split the dataset. SRS is the most common method for data splitting 

and has been implemented in neural networks (May et al., 2010). Figure A.6 in the appendix 

shows the out-of-sample results of 100 trials for CMET.  

We calculate the bias and variance of the testing error as follows: 

 𝐸𝐸(MSE) = 1
𝑀𝑀
∑ MSE𝑀𝑀
𝑡𝑡=1 , (14) 
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 𝑉𝑉(MSE) = 1
𝑀𝑀−1

∑ (MSE𝑡𝑡 − 𝐸𝐸(MSE))2𝑀𝑀
𝑡𝑡=1   (15) 

Table A.7 in the appendix summarizes the bias and variance of the out-of-sample error for 

different models. We find that CMET has the lowest average MSE compared to other models. 

We also note that CMET has a relatively small variance of estimates for all intensities, which 

shows that our new model provides very stable estimates. 

While the overall structure of the models influences performance, different choices of 

hyperparameters, including the number of layers, nodes, epochs, and batches, also affect the 

fitting and prediction process of the neural network. Table A.8 in the appendix shows a 

comparison of the different hyperparameters. We use as our default setting the settings of the 

CMET model analyzed in section 4.1: three hidden layers, 80 nodes, 100 epochs, and a batch 

size of 32. The results in Table A.8 are the averages of 100 times of training. 

The results in Table A.8 show that a higher number of layers and nodes can improve the 

model’s fit and reduce the in-sample losses. However, better fitting does not always mean 

better prediction performance: a model version with four hidden layers leads to higher out-of-

sample losses for 𝜇𝜇 and 𝜈𝜈 than the base case with three hidden layers. Also, adding layers and 

nodes will increase complexity and is time-consuming. Larger epochs, which means increasing 

the number of iterations, or reducing the batch size, do not always improve the model but do 

increase the time. A higher out-of-sample loss for 𝜈𝜈 with a setting of 150 epochs compared to 

the default setting suggests that the estimate is not improved but requires more running time. 

Thus, the choice of hyperparameters of the neural network involves trade-offs between fitting 

and prediction, time, and performance. 

 

6. Conclusions 

This study proposes a new model that combines a neural network with a GLM to estimate and 

predict health transition intensities. Our model incorporates age effects, time trends, 

socioeconomic factors, and lifestyle behaviors in a Markov model with three health states 

(healthy, LTC needs, and dead). The model detects and incorporates complex relationships 

among the variables autonomously; that is, the model does not require these relationships to be 

specified in advance. We model different health transitions together using transfer learning, 

which also allows us to use the available data more effectively. 

We illustrate the use of the new model based on data for individuals aged 65–105 from the 
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CLHLS over the period 1998–2018. We identify important factors explaining the transition 

intensities between the three health states for different subpopulations. We find that all of the 

variables mentioned above, including the socioeconomic and lifestyle factors, impact the onset 

of LTC needs and mortality of individuals with LTC needs. However, the ranking of the 

variables by importance varies for the different health transitions. The comparison of losses 

shows that basic combined GLM-NN models outperform most standalone GLM and neural 

network models. A combined model called CMET with expert opinion and transfer learning 

performs best.  

We apply the new combined model to estimate life expectancy and healthy life expectancy and 

analyze how socioeconomic and lifestyle factors impact these measures. The results suggest 

that life expectancy will continue to increase over time, and that place of residence, marital 

status, and lifestyle factors such as smoking and drinking influence life expectancy 

significantly. Our model allows researchers and practitioners to predict the life expectancy and 

health expectancy of individuals with different backgrounds. 

Overall, our study shows that the combination of traditional actuarial ideas and neural networks 

provides better-performing health transition models. Transfer learning enhances the 

performance of such combined models by linking the model estimation for different health 

transitions.  

Our proposed new model has broad applications and provides a starting point for further health-

related research. The new model can be easily applied to other health datasets. For example, 

the model can be used to estimate and predict health transitions with differently defined health 

states, a different number of health states, and for other countries. For instance, the model can 

be applied to fit and predict individual-level mortality data. We explained in section 2.1 that a 

version of the model with two health states (alive, dead) could be used to model mortality rates. 

While this would involve a single health transition (from alive to dead), transfer learning could 

be used to study the links between subgroups of individuals with different characteristics. 

Our model can also be modified for classification problems where inputs are classified into 

categories of outputs. In this case, the activation function at the last layer should be replaced 

by a nonlinear activation function such as Softmax. With this change, the model could be used 

to predict an individual’s health status directly. This change would also make it possible to 

apply our model to health insurance claims data for risk prediction. To adapt our model for 

claims data, the inputs of our model need to be replaced by information from medical claims, 
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including medical codes (diagnosis, procedure, medication) and individual-level information 

(age, sex, annual cost). Future research in this area could build previous research which has 

shown that deep learning in electronic health record data is promising (Lin et al., 2019). 

Second, the model can be modified to improve micro-simulation health models, for example, 

the Future Elderly Model (FEM), which projects health and health care costs in the United 

States (Goldman et al., 2015) and the COMPAS model, which projects health trajectories in 

Canada (Boisclair et al., 2019). Our modeling strategies could be used to improve the 

individual-level health transition models in these models. Our model could allow researchers 

to incorporate additional variables and find linear and nonlinear relationships between the 

variables to improve the projection accuracy. Furthermore, our model with transfer learning 

could also be used to develop new micro-simulation health models for other countries, 

including countries with limited data, by transferring knowledge from developed models such 

as FEM and COMPAS. 

Our model can also be extended to develop new multi-population mortality models, for 

example, by adding geographic variables (e.g., state or province). Transfer learning can 

discover the relationships between different subpopulations and improve model performance 

when data are limited in some areas. Transfer learning can help develop mortality models for 

populations with limited mortality data and address data limitations at older ages. Overall, 

transfer learning promises to be a useful tool for health and insurance studies when datasets are 

relatively small and when related datasets can be explored to offer meaningful information to 

the task under study.  

Future research can also apply the model to pricing LTCI and other types of health insurance 

for individuals with different characteristics. It would also be interesting to use neural networks 

to determine the causality between socioeconomic variables and health transitions (see 

Chattopadhyay et al., 2019, for methods to detect causality with neural networks). 

In summary, we believe that there are several promising directions for future research in 

insurance studies and actuarial science based on machine learning techniques. 

 

References 

Alashkar, T., S. Jiang, S. Wang, and Y. Fu, 2017, Examples-Rules Guided Deep Neural Network for 
Makeup Recommendation, Proceedings of the Thirty-First AAAI Conference on Artificial 
Intelligence, AAAI Press: 941-947. 



33 
 

Alter, G., and J. C. Riley, 1989, Frailty, Sickness, and Death: Models of Morbidity and Mortality in 
Historical Populations, Population Studies, 43(1): 25-45. 

Biessy, G., 2017. Continuous-Time Semi-Markov Inference of Biometric Laws Associated with a 
Long-Term Care Insurance Portfolio, ASTIN Bulletin, 47(2): 527-561. 

Boisclair, D., Y. Décarie, F. Laliberté‐Auger, & P. C. Michaud, 2019, COMPAS: A health 
microsimulation model for Quebec and Canada. Technical document, Chaire de recherche sur les 
enjeux économiques intergénérationnels, Montréal. 

Breiman, L., 2001, Random Forests, Machine Learning, 45(1): 5-32. 
Brockett, P. L., L. L. Golden, J. H. Jang, and C. H. Yang, 2006, A Comparison of Neural Network, 

Statistical Methods, and Variable Choice for Life Insurers' Financial Distress Prediction, Journal of 
Risk and Insurance, 73: 397-419. 

Bu, Z., S. Xu, and K. Chen, 2021, A Dynamical View on Optimization Algorithms of 
Overparameterized Neural Networks. In International Conference on Artificial Intelligence and 
Statistics (pp. 3187-3195). PMLR. 

Center for Healthy Aging and Development Studies, 2020, The Chinese Longitudinal Healthy 
Longevity Survey (CLHLS)-Longitudinal Data (1998-2018),  
https://doi.org/10.18170/DVN/WBO7LK, Peking University Open Research Data Platform, V2. 

Chattopadhyay, A., P. Manupriya, A. Sarkar, and V. N. Balasubramanian, 2019, Neural Network 
Attributions: A Causal Perspective. In International Conference on Machine Learning (pp. 981-
990). PMLR. 

Cheng, H. T., L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, ... and R. Anil, 2016, Wide & 
Deep Learning for Recommender Systems, In Proceedings of the 1st Workshop on Deep Learning 
for Recommender Systems (pp. 7-10). 

Cheng, X., Z. Jin, and H. Yang, 2020, Optimal Insurance Strategies: A Hybrid Deep Learning Markov 
Chain Approximation Approach, ASTIN Bulletin, 50(2): 449-477. 

Christiansen, M. C., 2012, Multistate Models in Health Insurance, AStA Advances in Statistical 
Analysis, 96(2): 155-186. 

Dai, A. M., and Q. V. Le, 2015, Semi-supervised Sequence Learning. In Advances in Neural 
Information Processing Systems (pp. 3079-3087). 

Eberhardt, M. S., and E. R. Pamuk, 2004, The Importance of Place Of Residence: Examining Health in 
Rural and Nonrural Areas, American Journal of Public Health, 94(10): 1682-1686. 

Engchuan, W., A. C. Dimopoulos, S. Tyrovolas, F. F. Caballero, A. Sanchez-Niubo, H. Arndt, ... and 
D. B. Panagiotakos, 2019, Sociodemographic Indicators of Health Status Using a Machine Learning 
Approach and Data from the English lLongitudinal Study of Aging (ELSA), Medical Science 
Monitor, 25: 1994. 

Fisher, A., C. Rudin, and F. Dominici, 2018, Model Class Reliance: Variable Importance Measures for 
Any Machine Learning Model Class, from the "Rashomon" Perspective, arXiv preprint 
arXiv:1801.01489, 68. 

Fong, J. H., A. W. Shao, and M. Sherris, 2015, Multistate Actuarial Models of Functional 
Disability, North American Actuarial Journal, 19(1): 41-59. 

Fuino, M., and J. Wagner, 2018, Long-Term Care Models and Dependence Probability Tables by 
Acuity Level: New Empirical Evidence from Switzerland, Insurance: Mathematics and Economics, 
81: 51-70. 

Gabrielli, A., 2020, A Neural Network Boosted Double Over Dispersed Poisson Claims Reserving 
Model, ASTIN Bulletin, 50(1): 25-60. 

Gabrielli, A., Richman, R., & Wüthrich, M. V., 2020, Neural network embedding of the over-dispersed 
Poisson reserving model. Scandinavian Actuarial Journal, 2020(1), 1-29. 

Goldman, N., S. Korenman, and R. Weinstein, 1995, Marital Status and Health Among the Elderly, 
Social Science & Medicine, 40(12): 1717-1730. 

Goodfellow, I., D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, 2013, Maxout Networks, 

https://doi.org/10.18170/DVN/WBO7LK


34 
 

In International Conference on Machine Learning (pp. 1319-1327), PMLR. 
Gu D., 2008, General Data Quality Assessment of the CLHLS. In: Yi Z., D.L. Poston, D.A. Vlosky, D. 

Gu (eds) Healthy Longevity in China. Demographic Methods and Population Analysis, vol 20., 
Springer, Dordrecht.  

Gu, D., and Q. Feng, 2015, Frailty Still Matters to Health and Survival in Centenarians: The Case of 
China, BMC Geriatrics, 15(1): 159. 

Gu, D., and Z. Yi, 2004, Sociodemographic Effects on the Onset and Recovery of ADL Disability 
Among Chinese Oldest-Old, Demographic Research, 11: 1-42. 

Hanewald, K., H. Li, and A. W. Shao, 2019, Modelling Multistate Health Transitions in China: A 
Generalised Linear Model with Time Trends, Annals of Actuarial Science, 13(1): 145-165. 

Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, 2012, Improving 
Neural Networks by Preventing Co-adaptation of Feature Detectors, arXiv preprint 
arXiv:1207.0580. 

Husemoen, L. L. N., M. Osler, N. S. Godtfredsen, and E. Prescott, 2004, Smoking and Subsequent Risk 
of Early Retirement Due to Permanent Disability, The European Journal of Public Health, 14(1): 
86-92. 

Ikeda, T., T. Tsuboya, J, Aida, Y. Matsuyama, S. Koyama, K. Sugiyama, ... and K. Osaka, 2019, Income 
and Education Are Associated with Transitions in Health Status Among Community-Dwelling 
Older People in Japan: The JAGES Cohort Study, Family Practice, 36(6): 713-722. 

Ioffe, S., and C. Szegedy, 2015, Batch Normalization: Accelerating Deep Network Training by 
Reducing Internal Covariate Shift, arXiv preprint arXiv:1502.03167. 

Jeong, G., and H. Y. Kim, 2019, Improving Financial Trading Decisions Using Deep Q-learning: 
Predicting the Number of Shares, Action Strategies, and Transfer Learning, Expert Systems with 
Applications, 117: 125-138.  

Johansson, S. R., 1991, The Health Transition: The Cultural Inflation of Morbidity During the Decline 
of Mortality, Health Transition Review, 39-68. 

Jones, R. H., Xu, S., & Grunwald, G. K. (2006). Continuous time Markov models for binary longitudinal 
data. Biometrical Journal, 48(3), 411-419. 

Kiermayer, M., and C. Weiß, 2020, Grouping of Contracts in Insurance Using Neural Networks, 
Scandinavian Actuarial Journal, 1-28. 

Kim, H., and B. D. Youn, 2019, A New Parameter Repurposing Method for Parameter Transfer with 
Small Dataset and Its Application in Fault Diagnosis of Rolling Element Bearings, IEEE Access, 7: 
46917-46930. 

Kingma, D. P., and J. Ba, 2014, Adam: A Method for Stochastic Optimization, arXiv preprint 
arXiv:1412.6980. 

Klambauer, G., T. Unterthiner, A. Mayr, and S. Hochreiter, 2017, Self-Normalizing Neural Networks. 
In Advances in Neural Information Processing Systems (pp. 971-980). 

Kumagai, W., 2016, Learning Bound for Parameter Transfer Learning. In Advances in Neural 
Information Processing Systems (pp. 2721-2729). 

May, R. J., Maier, H. R., & Dandy, G. C., 2010, Data splitting for artificial neural networks using SOM-
based stratified sampling. Neural Networks, 23(2), 283-294. 

Li, C., S. Gupta, S. Rana, V. Nguyen, S. Venkatesh, and A. Shilton, 2018, High Dimensional Bayesian 
Optimization Using Dropout, arXiv preprint arXiv:1802.05400. 

Li, Z., A. W. Shao, and M. Sherris, 2017, The Impact of Systematic Trend and Uncertainty on Mortality 
and Disability in a Multistate Latent Factor Model for Transition Rates, North American Actuarial 
Journal, 21(4): 594-610. 

Mu, H., and Z. Yang, 2016, A Study on the Effect of Marital Status on the Probability of Elderly Death: 
An Empirical Analysis Based on CLHLS Cohort Data, Southern Population, 04: 38-49 [in Chinese]. 

Nusselder, W. J., C. W. N. Looman, P. J. Marang-van De Mheen, H. Van de Mheen, and J. P. 
Mackenbach, 2000, Smoking and the Compression of Morbidity, Journal of Epidemiology & 
Community Health, 54(8): 566-574. 



35 
 

Oslin, D. W., 2000, Alcohol Use in Late Life: Disability and Comorbidity, Journal of Geriatric 
Psychiatry and Neurology, 13(3): 134-140. 

Radford, A., K. Narasimhan, T. Salimans, and I. Sutskever, 2018, Improving Language Understanding 
with Unsupervised Learning, Technical Report, OpenAI. 

Renshaw, A. E., 1991, Actuarial Graduation Practice and Generalised Linear and Non-linear Models, 
Journal of the Institute of Actuaries, 118(2): 295-312. 

Renshaw, A. E., and S. Haberman, 1995, On the Graduations Associated with a Multiple State Model 
for Permanent Health Insurance, Insurance: Mathematics and Economics, 17(1): 1-17. 

Robards, J., M. Evandrou, J. Falkingham, and A. Vlachantoni, 2012, Marital Status, Health and 
Mortality, Maturitas, 73(4): 295-299. 

Schelldorfer, J., and M. V. Wüthrich, 2019, Nesting Classical Actuarial Models into Neural 
Networks, available at SSRN 3320525. 

Shao, A. W., M. Sherris, and J. H. Fong, 2017, Product Pricing and Solvency Capital Requirements for 
Long-Term Care Insurance, Scandinavian Actuarial Journal, 2017(2): 175-208. 

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 2014, Dropout: A Simple 
Way to Prevent Neural Networks from Overfitting, The Journal of Machine Learning Research, 
15(1): 1929-1958. 

Tan, C., F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, 2018, A Survey on Deep Transfer Learning. 
In International Conference on Artificial Neural Networks (pp. 270-279). Springer, Cham. 

Tang, S., Q. Liu, and W. A. Tan, 2019, Intention Classification Based on Transfer Learning: A Case 
Study on Insurance Data. In International Conference on Human Centered Computing (pp. 363-
370). Springer, Cham. 

United Nations, 2016. Briefing Paper: Growing Need for Long-Term Care: Assumptions and Realities. 
United Nations Department of Economic and Social Affairs Ageing. Retrieved from: 
https://www.un.org/esa/socdev/ageing/documents/un-ageing_briefing-paper_Long-term-care.pdf 

Wei, M., and H. Wang, 2017, Gender, Urban-Rural and Cohort Differences in the Disability Trajectory 
of the Elderly in China, Population & Development, 23: 5 [in Chinese]. 

Wüthrich, M. V., and M. Merz, 2019, Yes, We CANN!, ASTIN Bulletin, 49(1): 1-3. 
Ye, R., and Q. Dai, 2018, A Novel Transfer Learning Framework for Time Series Forecasting, 

Knowledge-Based Systems, 156: 74-99. 
Yin, K. S., and S. S. Htay, 2020, Prediction of Natural Gas Final Consumption using Artificial Neural 

Networks. In 2020 International Conference on Advanced Information Technologies (ICAIT) (pp. 
224-229), IEEE. 

Zeng, Y., 2013, A Follow-Up Survey of Factors Affecting Health of the Elderly in China (1998–2012) 
and a Review of Related Policy Research (Part 2), Aging Science Research, (2): 63-71 [in Chinese]. 

Zheng, Z., 2020, Twenty Years' Follow-Up on Elder People's Health and Quality of Life, China 
Population and Development Studies, 1-13. 

Zhuang, F., Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, 2020, A Comprehensive 
Survey on Transfer Learning, arXiv e-prints, arXiv:1911.02685. 

 

 

  

https://www.un.org/esa/socdev/ageing/documents/un-ageing_briefing-paper_Long-term-care.pdf


36 
 

Appendix 

Figure A.1. Correlations between Variables. 

 

(a) σ: H→L  (b) μ: H→L  (c) ν: L→D  

 

Figure A.2. Intensities by Ages and Different Variables. 

   
(a) σ: N→F by gender (b) μ: N→D by gender (c) ν: F→D by gender 

   

(d) σ: N→F by residency (e) μ: N→D by residency (f) ν: F→D by residency 
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(g) σ: N→F by marital status (h) μ: N→D by marital status (i) ν: F→D by marital status 
 

   

(j) σ: N→F by smoking (k) μ: N→D by smoking (l) ν: F→D by smoking  

   

(m) σ: N→F by drinking (n) μ: N→D by drinking (o) ν: F→D by drinking 

 

Figure A.3. Intensities with Time for Different Variables. 

   

(a) σ: N→F by gender (b) μ: N→D by gender (c) ν: F→D by gender 

   

(d) σ: N→F by residency (e) μ: N→D by residency (f) ν: F→D by residency 
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Figure A.4. –ln(–ln) Survival By Different Variables. 

   

  

 

Figure A.5. Survival Curve for Individuals Aged 85 in 1998.
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Figure A.6. Out-of-Sample Losses (× 10-2) of 100 Trials of Different Transitions. 

 

 

Table A.1. Attrition Rates. 

Wave 
Full sample 

Individuals 
Lost to follow-up 

compared to the previous wave 
Attrition rate 

    
2000 9,093 894 9.83% 
2002 11,199 1,541 13.76% 
2005 16,064 2,015 12.54% 
2008 15,638 2,938 18.79% 
2011 16,954 2,894 17.07% 
2014 9,765 820 8.40% 
2018 7,192 1,525 21.20% 

Note: Numbers obtained from the CLHLS website. Numbers refer to the full CLHLS data.  

 

Table A.2. Transition Counts for Different Variables at Ages 85 and 105. 
    Transition counts (age 85/105)   Exposure years (age 85/105) 

  σ: H→L   μ: H→D   ν: L→D  H   L 
Age   85 105  85 105  85 105  85 105  85 105 

          
      

Gender 
Male 74 8  350 55  72 37  2,526 143  232 67 
Female 101 43  231 222  77 192  2,337 556  375 451 
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Marital 
status 

With 
spouse 55 0  165 7  44 4 

 
1,521 25  192 12 

Without 
spouse 120 51  416 270  105 225 

 
3,341 674  415 506 

          
 

     

Residency 
Rural 93 24  339 181  63 128  2,727 466  277 286 
Urban 82 27  242 96  86 101  2,136 232  330 231 

          
 

     

Smoke 
Yes 29 4  139 31  16 10  998 91  84 22 
No 146 47  442 246  133 219  3,865 608  523 495 

          
 

     

Drink 
Yes 25 7  122 53  9 32  1,046 151  74 66 
No 150 44  459 224  140 197  3,817 547  533 451 

          
 

     
Total   175 51   581 277   149 229   4,863 698   607 518 

 

Table A.3. Crude Intensities for Time and Age Groups. 

       Age 
Time 65–69 70–74 75–79 80–84 85–89 90–94 95–99 100–105 

  

σ: H→L 

1998–2000 - - 4.15 3.71 6.29 7.45 9.05 9.57 

2000–2002 - - 9.33 4.36 6.94 9.40 12.23 14.49 

2002–2005 0.50 0.92 1.36 2.41 3.58 5.13 5.80 6.95 

2005–2008 0.53 0.64 1.07 2.05 3.02 4.02 4.35 4.86 

2008–2011 0.73 1.16 1.71 2.88 4.25 6.01 6.82 6.87 

2011–2014 0.88 0.73 1.53 3.05 4.05 5.42 6.11 8.39 

2014–2018 0.35 0.73 1.64 1.75 3.01 4.60 4.96 4.54 

          

μ: H→D 

1998–2000 - - 5.93 9.05 13.15 22.44 27.29 33.70 

2000–2002 - - 9.33 10.29 14.59 19.29 31.82 37.51 

2002–2005 2.77 3.47 6.27 10.87 15.91 22.72 28.95 35.45 

2005–2008 2.30 4.11 4.87 9.01 15.27 21.74 27.04 34.95 

2008–2011 1.62 3.49 6.01 9.02 15.18 22.79 30.49 37.17 

2011–2014 1.52 2.46 4.58 7.63 12.49 19.76 26.39 24.98 

2014–2018 1.93 2.99 4.20 7.09 11.31 19.26 26.35 28.73 

 
         

ν: L→D 

1998–2000 - - 21.18 16.20 18.86 28.45 44.09 48.46 

2000–2002 - - 48.32 23.86 25.87 27.80 38.79 51.90 

2002–2005 11.72 9.94 11.03 19.41 26.72 32.56 39.39 43.81 

2005–2008 6.48 14.79 15.51 18.06 24.99 26.98 36.26 45.55 
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2008–2011 6.00 13.35 12.31 12.88 18.87 29.09 37.31 41.81 

2011–2014 0.00 17.55 12.28 16.66 23.12 35.04 40.06 36.14 

2014–2018 14.41 18.80 14.58 18.64 22.89 25.33 40.27 46.98 

Note: The numbers are all percentages. 

 

Table A.4. GLM0 Regression Results. 

 Coef for σ Coef for 𝜇𝜇 Coef for 𝑣𝑣 
Age -4.0799** -2.1669*** -1.1757*** 
Time -9.4054*** -6.7797*** -3.8519*** 
Age × Time 12.5894*** 9.2766*** 4.6225*** 

Note: *p<0.05; **p<0.01; ***p<0.001 

 

Table A.5. GLM Regression Results. 

 
Coef for 𝜎𝜎 Coef for 𝜇𝜇 Coef for 𝑣𝑣 

Age -0.1519** 0.5834*** 0.1728*** 

Time -1.0198*** -0.7456*** -0.2935*** 

Gender_Male -0.7331*** -0.4382*** 0.0695** 

Residency_Rural -0.4864*** -0.3093*** -0.0752*** 

Marital status_With spouse -0.3584*** -0.8153*** -0.1681*** 

Smoking_No -1.1695*** -0.8979*** -0.6943*** 

Drinking_No -0.8196*** -0.5876*** -0.2983*** 

 
 

Table A.6. Life Expectancy of Healthy 75-Year-Old Individuals. 

        Male  Female   

 75   Rural   Urban  Rural  Urban  

            

1998 

Smoke 
Yes  7.03  7.45  7.32  7.27  

No  7.59  8.02  9.54  9.47  

           

Drink 
Yes  7.31  7.44  8.33  7.96  

No  7.38  8.01  9.48  9.40  

           

Marital Yes  7.57  8.26  9.58  8.37  
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No  7.14  7.35  9.33  8.36  

            

2018 

Smoke 
Yes  7.68  8.45  9.02  9.02  

No  9.55  10.20  11.06  11.69  

           

Drink 
Yes  8.28  8.62  9.96  9.34  

No  8.94  10.06  11.00  11.66  

           

Marital 
Yes  9.28  10.56  12.58  13.63  

No  8.14  8.64  10.54  11.07  

            

2038 

Smoke 
Yes  9.09  9.69  9.68  9.55  

No  11.44  11.36  11.86  12.54  

           

Drink 
Yes  9.99  9.99  10.87  10.58  

No  10.61  11.16  11.78  12.43  

           

Marital 
Yes  10.98  11.67  14.54  15.25  

No  9.90  9.89  11.13  11.68  

                        

 

Table A.7. Bias and Variance Estimations for Different Models 

   E (× 10-2)  V (× 10-4)   

Methods   σ: N→F μ: N→D ν: F→D  σ: N→F μ: N→D ν: F→D 
 

      
    

GLM  81.09 86.05 55.09  60.72 42.24 92.23 
 

NN  40.68 30.24 50.42  30.74 9.17 87.56  

CM  40.83 30.26 50.24  29.50 11.20 82.17 
 

CMT  31.38 30.26 50.38  8.82 11.20 85.79 
 

CME  37.14 27.75 50.12  19.52 8.67 91.18 
 

CMET   30.90 27.75 50.11  8.67 8.67 88.48  

 

Table A.8. Hyperparameters Comparison. 

    In-sample loss (× 10-2)   Out-of-sample loss (× 10-2)   Time (s) 

    σ: N→F μ: N→D ν: F→D   σ: N→F μ: N→D ν: F→D 
 

σ: N→F μ: N→D ν: F→D 
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Hidden 
layers 

2 36.23 36.55 54.16  33.61 33.03 59.11  9.76 14.58 8.89 

3 30.76 27.51 50.92  30.90 27.75 50.11  11.73 17.06 10.82 

4 25.55 25.43 50.75  30.45 29.50 52.10  12.50 18.52 11.44 

              

Nodes 

30 39.15 50.34 52.96  41.60 49.83 49.53  10.89 15.52 10.10 

80 30.76 27.51 50.92  30.90 27.75 50.11  11.73 17.06 10.82 

130 29.52 25.34 50.35  29.30 25.31 50.93  12.85 19.12 11.57 

              

Epochs 

50 33.42 34.96 53.98  32.62 38.32 51.92  8.59 11.22 8.10 

100 30.76 27.51 50.92  30.90 27.75 50.11  11.73 17.06 10.82 

150 29.95 25.75 50.84  29.26 25.82 51.72  14.53 21.95 13.64 

 
             

Batch 
size 

16 29.89 25.84 50.88  28.86 25.86 54.46  25.09 36.15 23.27 

32 30.76 27.51 50.92  30.90 27.75 50.11  11.73 17.06 10.82 

64 38.14 49.40 53.39  37.41 49.43 53.22  5.29 7.94 4.87 
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