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Abstract

We develop and assess a value-based longevity index that closely tracks the value

of longevity-linked liabilities with the potential to signi�cantly lower the costs and

improve the e�ciency of index-based longevity hedging techniques relative to stan-

dard mortality rate indices, currently referenced in �nancial markets. As the US is

one of the largest countries in terms of market potential for such an index, we use

US economic and population data to demonstrate that hedging with our proposed

index generates a material reduction in basis risk relative to indices based purely on

mortality rates. This is aided by the use of a multi-population continuous-time a�ne

mortality model and a dynamic Nelson-Siegel model for interest rates. We allow both

interest rate and in�ation risks to impact the value of longevity-linked liabilities in

our longevity risk hedging. We also bridge the gap between continuous-time and

discrete-time multi-population mortality models and show that the continuous-time

models are as e�ective in hedging liabilities as the often used discrete-time models,

while being more familiar to �nancial market participants.
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1 Introduction

Retirement income providers such as de�ned bene�t pension funds and annuity providers
are heavily exposed to longevity risk - the potential unexpected increase in life expectancy
of pensioners and life annuity holders. Some estimates suggest that each additional year
of life expectancy increases annual pension liability values by 3 to 4 percent (International
Monetary Fund, 2012; Chang and Sherris, 2018). The world's aggregate longevity risk
exposure is growing rapidly. The 2018 Global Pension Assets Study by Willis Towers
Watson (2018) reports that the value of de�ned bene�t pension assets has grown by 4.5%
per year over the last 20 years, and was valued at US$21.3 trillion as of February 2018.
The Joint Forum (2013) highlights that each year of life expectancy underestimation
could potentially cost risk holders up to US$1 trillion in additional unexpected bene�t
payments.

The traditional approach to managing longevity risk is through the transfer of liabilities
to life insurance or reinsurance companies (Coughlan et al., 2011). This can be achieved
through either a pension buy-in or a pension buy-out, as described in Blake et al. (2018).
However, with consistent growth in retirement income liability volumes over recent years,
the world's aggregate longevity risk exposure is approaching the global insurance indus-
try's �nite capacity for longevity risk absorption (Barrieu et al., 2012; Joint Forum, 2013).
Furthermore, regulations such as Solvency II have enhanced the demand for longevity
reinsurance as a means of reducing solvency capital requirements (Xu et al., 2019).

In recent years, the development of a longevity risk transfer market has emerged as a
potential solution, with the development of various mortality and longevity-linked indices,
instruments and derivative securities. The risk transfer and capital market database
Artemis (2019)1 has documented at least 91 longevity-linked transactions completed
as of September 2019, collectively valued at an aggregate amount of over ¿180 billion
with transaction sizes growing over time since the �rst ever transaction took place in
January 2008 between J.P. Morgan and UK insurer Lucida. Most transactions to date
have been customised or �bespoke� indemnity swaps, that is, customised over-the-counter
hedges that transfer a retirement income provider's speci�c longevity risk exposure to a
counterparty.

In bespoke transaction, there is no longevity basis risk associated with the hedge for the
retirement income provider as the counterparty e�ectively assumes all obligations arising
from the exposure. From an economic perspective, an indemnity hedge is identical to the
traditional approach of transferring the annuity book to a life insurer or reinsurer, however
in the format of a capital market instrument (Coughlan, 2009). The major drawback is
the need for investors to analyse fund-speci�c details on the portfolio being hedged. This
makes it complex and costly for capital markets to evaluate potential transactions, thereby
discouraging investors and inhibiting the development of market liquidity (Coughlan,
2009).

By contrast, a standardised index-based hedge is based on the mortality experience over
time of some underlying �reference� population as represented by a published longevity
index. For example, in 2007 J.P. Morgan launched the Lifemetrics Index2 which provides
male and female period life expectancies, crude central mortality rates and graduated
initial mortality rates for the US, England and Wales, the Netherlands and Germany

1www.artemis.bm/library/longevity_swaps_risk_transfers.html
2https://llma.org/index/index-description/
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(Coughlan et al., 2007). From 2010, the management of the Lifemetrics Index is under
the Life and Longevity Markets Association (Life and Longevity Markets Association,
2018). Another well known longevity index is the Xpect-Club Vita Index3 launched by
Deutsche Börse in March 2008 (Deutsche Börse, 2018).

It is critical that any longevity index intended for index-hedging purposes is transpar-
ent, objective and can serve as an unbiased point of reference for all participants in the
longevity risk transfer market (Loeys et al., 2007; Sweeting, 2010). In contrast to in-
demnity hedges, index hedges do not require the analysis of portfolio-speci�c details;
cash�ows only depend on population-level mortality experience as represented by the
published longevity index which makes it much simpler for investors to understand and
manage the associated risks. Therefore, these instruments have a much greater potential
to develop su�cient market liquidity over time and become viable longevity risk transfer
vehicles (Villegas et al., 2017). However, longevity index-based instruments cannot hedge
the speci�c mortality experience of a given retirement income portfolio or �book�. That is,
they are subject to longevity basis risk � an issue which remains a major barrier to index-
based hedging solutions (Coughlan et al., 2007). Our research is primarily motivated by
this critical need to minimise the basis risk associated with such hedging techniques.

The Longevity Basis Risk Working Group (LBRWG) notes that in addition to the preva-
lence of longevity basis risk, the lack of a robust framework for quantifying longevity basis
risk has further impeded the appetite for standardised index-based longevity hedging so-
lutions. In order to tackle this issue, the LBRWG commissioned a major research project
to develop a methodology for assessing basis risk in longevity transaction as documented
in the Phase 1 (Haberman et al., 2014) and Phase 2 (Li et al., 2017) technical reports
of the research. These technical reports, which are complemented by scholarly research
(see Villegas et al. (2017) and Li et al. (2019)) propose techniques to quantify each of the
three constituent of longevity basis risk described in Mosher and Sagoo (2011), namely:

(i) Structuring basis risk resulting from di�erences in the timing or maturity of cash-
�ows between the hedging instrument to that of the annuity liability which is incor-
porated using numerical optimisation procedures,

(ii) sampling basis risk arising from the random variation around expected mortality
outcomes in �nite book sizes is quanti�ed by implementing random sampling tech-
niques, and

(iii) demographic basis risk resulting from socio-economic or demographic di�erences
between the composition of the reference and book populations is modelling through
multi-population mortality modelling frameworks.

Our research seeks to complement the work of the LBRWG by proposing a value-based
longevity index and a novel continuous-time approach for quantifying the resulting basis
risk.

To quantify demographic basis risks it is necessary to capture the mortality dependence
structure among the di�erent populations relevant to the the longevity transaction. This
is typically achieved by �tting multi-population mortality models to the mortality data of
the di�erent populations, modelling their relationship over time and projecting their joint

3http://www.xpect-index.com
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mortality outcomes into the future. Most multi-population mortality models described
in the literature are constructed in discrete-time, with a comprehensive overview of the
�universe� of such models detailed in Villegas et al. (2017). However, the literature on
applications of continuous-time multi-population mortality modelling is much less devel-
oped. To the best of our knowledge, the models proposed in Jevti¢ and Regis (2019) and
Xu et al. (2019) are some of the few continuous-time multi-population mortality models
proposed to date. This is in spite of the fact that, relative to discrete-time models,
the continuous-time class of mortality models o�er vastly superior versatility in applica-
tions involving �nancial modelling (Jevti¢ et al., 2013). Furthermore, no research has yet
directly compared hedging outcomes under the two types of multi-population mortality
modelling frameworks, providing scope for our research to o�er a novel contribution to
the existing literature.

Retirement income providers are not only exposed to longevity risk, but also interest
rate and in�ation risks (Towers Watson, 2013). However, to date, index-based longevity
hedging transactions have referenced longevity indices linked to national life tables such
as the Lifemetrics Index which fails to incorporate these other critical sources of risk
(Cairns, 2017). This has been a key motivation for Sherris (2009) who highlights the need
for value-based longevity indices which aim to track the expected present value of a unit
of longevity-indexed income. Unlike life tables-based survival rate indices, value-based
longevity indices have the capacity to integrate all of the major risk factors associated
with the provision of retirement income products (Wills and Sherris, 2010). Therefore,
such indices should intuitively be associated with lower levels of structuring basis risk
when used to underlie standardised longevity hedging transactions, particularly if they are
designed in such a way as to re�ect the major sources of risk associated with retirement
income portfolios which is a central hypothesis of this paper.

Xu et al. (2019) construct value-based longevity indices based on uncertain interest rates
and mortality dynamics of Australia, the UK, the Netherlands and France. Despite not
explicitly modelling sampling nor structuring basis risk, their analysis demonstrates that
interest rate risk is a material element in the hedging framework, implying that value-
based longevity indices have the capacity to improve hedging outcomes through their
potential to incorporate interest rate uncertainty in addition to longevity risk. Similarly,
Chang and Sherris (2018) �nd that the basis risk associated with an index swap referencing
a value-based longevity index is signi�cantly lower than that of an S-forward based on
population survival rates in stochastic interest rate settings. While the analysis in Chang
and Sherris (2018) does not incorporate demographic basis risk nor in�ation-indexation
of retirement bene�ts, it demonstrates the potential for value-based longevity indices to
signi�cantly improve standardised longevity hedging outcomes. This paper seeks to extend
on these analyses by explicitly addressing all three constituent components of longevity
basis risk in the evaluation of index-based hedging of retirement income portfolios.

In 2013, the global asset manager BlackRock launched the Cost of Retirement Index
(CoRI)4 for twenty US cohorts; a set of value-based longevity indices which track the cost
of an in�ation-indexed retirement income stream while incorporating the market price of
longevity risk as re�ected in the prevailing prices of retirement income products. However,
as Sweeting (2010) notes, longevity indices that are used for index hedging applications
must be calculated in an objective and transparent manner. Since retirement income
providers are able to directly in�uence the CoRI through their pricing policies, the index
would not be perceived as an independent, objective representation of longevity outcomes

4https://www.blackrock.com/cori/fact-sheets
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if used to underlie standardised capital market instruments.

The contribution of this paper is threefold. Firstly, while various value-based longevity
indices have been proposed and constructed in the literature, to date none have incorpo-
rated all three of the major risk factors associated with retirement income portfolios; that
is, longevity risk, interest rate risk and in�ation risk (Towers Watson, 2013). We expect
to �ll this literature gap by providing a template for the development of an index that
closely tracks the value of longevity-linked liabilities, ful�lling a key need of practitioners
in the longevity risk transfer market. Furthermore, by constructing such an index, the
attribution of risk among these three elements can be estimated.

Various authors have assessed the basis risk associated with value-based longevity indices,
none have engaged the holistic, decomposed quanti�cation framework developed by the
LBRWG. For example, Xu et al. (2019) account for demographic basis risk in their analy-
sis, while Chang and Sherris (2018) incorporate sampling basis risk. By assessing all three
constituent components of longevity basis risk, our second contribution �lls this impor-
tant literature gap and contribute towards the robust evaluation of index-based longevity
hedging in industry. Indeed, we present compelling evidence of reduced basis risk for the
value-based longevity index relative to standard survival rate indices.

Finally, while both discrete-time and continuous-time multi-population mortality mod-
elling techniques have been developed, no work has compared the hedging outcomes as-
sociated with the two di�erent classes of models. Our third contribution �lls this gap
where we note that despite their signi�cant methodological di�erences, the two modelling
frameworks ultimately suggest relatively comparable hedging outcomes � a contribution
which additionally facilitates the assessment of model risk on hedge outcomes which is
another key consideration for practitioners.

The remainder of this paper is organised as follows. Section 2 introduces the proposed
value-based longevity index. Subsection 2.1 details both the continuous-time and discrete-
time mortality models utilised in this paper, while the interest rate modelling framework
is described in Subsection 2.2. The liability pro�le of the retirement income portfolio is
presented in Section 3. Section 4 presents numerical illustrations for the value-based
longevity index. Section 5 introduces an index swap instrument and designs a hedging
strategy to calibrate the optimal notional swap weighting. Section 6 presents several
basis risk measures to compare the hedge e�ectiveness of the value-based longevity index
relative to a variety of indices with various speci�cations to highlight the additional risk
reduction generated by the proposed index. Section 7 presents a range of sensitivity
analyses to determine the signi�cance of various modelling assumptions and experimental
design settings. Finally, Section 8 concludes the paper.

2 Value-Based Longevity Index

This paper considers the construction of a value-based longevity index, Ix,t, which quan-
ti�es the expected present value of a unit of longevity and in�ation indexed income paid
annually in arrears to a cohort aged, x, at initial time, t. As it accounts for all three main
risk factors associated with retirement income portfolios, the index is able to more e�-
ciently track the value of longevity-linked liabilities; the ability to simultaneously hedge
longevity risk, interest rate risk and in�ation risk with a single product ful�ls a key need
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of practitioners in the longevity risk transfer market. The value of the index is represented
as

Ix,t =
ω−x∑
i=1

SR(x, t, t+ i)× PR(t, t+ i),

where ω is the maximum attainable age. The quantity SR(x, t, t + i) denotes the i year
survival probability of the population underlying the index, and is forecast using the
mortality modelling frameworks described in Subsection 2.1. The quantity PR(t, t + i)
denotes the time t price of an in�ation-indexed zero coupon bond making a single unit
payment at time t+i, and is forecast using the interest rate modelling techniques presented
in Subsection 2.2. The functional forms of the forecast survival probabilities and bond
prices, SR(x, t, t+ i) and PR(t, t+ i), are presented in Subsections 2.1 and 2.2 respectively.

The population whose mortality underlies the value-based longevity index is termed the
�reference� population and is distinguished from the �book� population which refers to
the retirement income portfolio to be hedged against the index. In order to capture their
dependence in longevity experience, the mortality dynamics of the two populations are
jointly modelled in Subsection 2.1.

In contrast to the BlackRock's CoRI5, which is in�uenced by prevailing pricing of retire-
ment income products by providers, the value-based longevity index does not incorporate
any longevity risk premium, re�ecting only the forecast survival rates, interest rates and
in�ation. This ensures that market participants view the index as an independent, ob-
jective representation of longevity outcomes, which is a critical requirement for a viable
index-based longevity risk transfer market (Sweeting, 2010). Financial markets are left
to determine an appropriate price for longevity risk through the setting of forward prices
for traded index-linked instruments. Furthermore, in accordance with Chang and Sherris
(2018), the index does not account for any expense loading or pro�t margin.

2.1 Mortality Modelling Framework

Despite the well-developed literature on discrete-time multi-population mortality mod-
elling, continuous-time models have not been explored much regardless of their enormous
�exibility in applications when integrated with other �nancial modelling elements (Jevti¢
et al., 2013). For the mortality modelling framework, we adopt the multi-factor joint
a�ne term structure model (ATSM) as developed in Xu et al. (2019). This model is
inspired by multi-country a�ne term structure interest rate models which have proved to
be �exible, tractable and exhibit exceptional empirical �t (Christensen et al., 2011). Fur-
thermore, the a�ne term structure framework provides explicit closed-form solutions for
survival probabilities as a function of the underlying factors, which signi�cantly simpli�es
our computational process.

In explaining the mortality dynamics of the two populations, three latent time-varying
factors are incorporated into the modelling framework; a local factor Rx,t which only
impacts the mortality of the reference population R, another local factor Bx,t which only
impacts the mortality of the book population B and a common factor Cx,t which a�ects the
mortality dynamics of both the reference and book populations. These three factors are
depicted in red, blue and red-blue combined circles in Figure 1 respectively, with arrows

5https://www.blackrock.com/cori/fact-sheets
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denoting their respective impacts on each of the two populations modelled. The reference
and book populations are depicted as red (�R�) and blue (�B�) rectangles respectively.

Figure 1: Structure of the joint a�ne term structure model for mortality.

From this diagram, it is apparent that the common factor captures all the dependence
in mortality experience across the two populations arising from their mutual exposure to
certain common in�uences (for example, a strong winter). Conversely, the two local factors
facilitate discrepancies in mortality dynamics over time between the two populations owing
to di�erences in their demographic composition; namely the issue of demographic basis
risk described in Mosher and Sagoo (2011).

Starting from a given age x at initial time t, the average mortality intensities µ̄Rx,t and µ̄
B
x,t

of the book and reference populations are modelled as a�ne functions of the time-varying
factors

µ̄Rx,t = δR,0 + δR,1Cx,t + δR,2Rx,t,

µ̄Bx,t = δB,0 + δB,1Cx,t + δB,2Bx,t.

The factors are assumed to evolve independently, implying that the common factor does
not depend on the local factors. This allows the joint ATSM to be decomposed into
two single-population term structure mortality models (Egorov et al., 2011). Due to the
incompleteness of the longevity market, Xu et al. (2019) de�ne a best-estimate measure
Q̄, �xed to observed mortality rates. Factor dynamics under Q̄ can be represented asdCx,tdRx,t

dBx,t

 = −

φ1 0 0
0 φ2 0
0 0 φ3

Cx,tRx,t

Bx,t

 dt+

σ1 0 0
0 σ2 0
0 0 σ3


dW

Q̄,C
t

dW Q̄,R
t

dW Q̄,B
t

 ,
where φ1, φ2, φ3, σ1, σ2 and σ3 are constant parameters with W Q̄,C

t , W Q̄,R
t and W Q̄,B

t

being Wiener processes under the best-estimate measure.

In order to derive the factor dynamics under the real-world probability measure, P , we
use Girsanov's theorem (Girsanov, 1960) to relate the best-estimate Wiener process to
their real-world counterparties. Using an essentially a�ne risk premium speci�cation, the
change of measure can be described as follows
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dW
Q̄,C
t

dW Q̄,R
t

dW Q̄,B
t

 =

dW P,C
t

dW P,R
t

dW P,B
t

+

γ0
1

γ0
2

γ0
3

+

γ1
1,1 γ1

1,2 γ1
1,3

γ1
2,1 γ1

2,2 γ1
3,3

γ1
3,1 γ1

3,2 γ1
3,3

dCx,tdRx,t

dBx,t

 dt, (1)

where the γ parameters are constant and W P,C
t , W P,R

t and W P,B
t are Brownian motions

under the real-world measure. Substituting the vector of best-estimate Wiener processes
into equation (1) and assigning values to the γ parameters as appropriate, the real world
dynamics can be expressed asdCx,tdRx,t

dBx,t

 = −

ψ1 0 0
0 ψ2 0
0 0 ψ3

Cx,tRx,t

Bx,t

 dt+

σ1 0 0
0 σ2 0
0 0 σ3

dW P,C
t

dW P,R
t

dW P,B
t

 ,
where ψ1, ψ2 and ψ3 are constant parameters. We use the real-world measure to model
observed mortality dynamics across the two populations and to simulate future factor
paths.

Taking a conditional expectation with respect to the best-estimate probability measure,
Xu et al. (2019) show that survival probabilities for the reference and book populations
are respectively given by

SR(x, t, T ) = eB1(t,T )Cx,t+B2(t,T )Rx,t+AR(t,T ),

SB(x, t, T ) = eB1(t,T )Cx,t+B3(t,T )Bx,t+AB(t,T ),

where

Bj(t, T ) = −1− e−φj(T−t)

φj
for j = 1, 2, 3,

AR(t, T ) =
1

2

∑
j=1,2

σ2
j

φ3
j

[
1

2
(1− e−2φj(T−t))− 2(1− e−φj(T−t)) + φj(T − t)],

AB(t, T ) =
1

2

∑
j=1,3

σ2
j

φ3
j

[
1

2
(1− e−2φj(T−t))− 2(1− e−φj(T−t)) + φj(T − t)].

The average force of mortality curve for each population is modelled as

µ̄ix,t(T ) = − 1

T − t
log[Si(x, t, T )]

= − 1

T − t
[B1(t, T )Cx,t +Bj(t, T )ix,t + Ait(t, T )]

=
1− e−φ1(T−t)

φ1(T − t)
Cx,t +

1− e−φj(T−t)

φj(T − t)
ix,t −

Ait(t, T )

T − t
, for i =

{
R, (j = 2)

B, (j = 3)

}
.

The model can be written in state space form and can therefore be estimated using the
Kalman �lter (Kalman, 1960). In particular, the state space form consists of a measure-
ment equation, which speci�es the relationship between the average mortality intensities
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µ̄x,t and the factors Rx,t, Bx,t and Cx,t, as well as a state transition equation which de-
scribes the time series dynamics of the latent time-varying factors. These equations are
presented in Appendix A.

We de�ne the reference population to be the US national male population and the book
population as a pool of lifetime income stream income recipients whose mortality re�ects
that of an a�uent subset of the US male population. As with Xu et al. (2019) and Luciano
et al. (2017), we choose male mortality in order to establish upper bounds on the market
price of longevity risk.

For the reference population mortality evolution, we use single-year single-age population-
level deaths and exposure data for US males from ages 65 to 99 between 1980 and 2015
sourced from the Human Mortality Database (2018)6. A starting year of 1980 is selected
to re�ect the period analysed in Li et al. (2017) who highlight the structural di�erences
in mortality in prior periods noted by various authors (Renshaw and Haberman, 2003; Li
and Hardy, 2011).

However, time series deaths and exposure data for US annuity holders is not publicly
available. Therefore, we construct a synthetic book population which is assumed to
approximate the demographics of a typical retirement income portfolio. The United States
Mortality Database (2018)7 publishes state-level mortality data over the period 1959 to
2015. We aggregate the exposure and deaths data using the set of states in the highest
US income quintile based on state-level average household income statistics published
in Small Area Income and Poverty Estimates Program (2018)8 in order to construct a
synthetic book population mortality dataset of single-year single-age deaths and exposure
data from ages 65 to 99 between 1980 and 2015. This methodology is underpinned by the
assumption that retirement income portfolios typically consist of more a�uent subsets of
the population (Coughlan et al., 2011).

The average force of mortality for the reference and book populations over the in-sample
period is shown in Figures 2(a) and 2(b), respectively. Both populations clearly exhibit
mortality improvement over time. The book population generally has lower mortality
relative to the reference population, a feature which is highlighted when comparing initial
mortality rates for selected ages across the two populations as depicted in Figures 2(c)
and 2(d).

The model can be estimated using the Kalman �lter (Kalman, 1960) which employs max-
imum likelihood estimation techniques to calibrate model parameters by simultaneously
�tting the observed average force of mortality to the model average force of mortality for
each population. Having estimated the model parameters, we then forecast and simulate
the future average force of mortality and the associated survival probabilities starting
from age x over N years, where N is the initial horizon of the annuity liability. The
forecasting of survival probabilities is achieved as follows:

1. Forecast the common, reference and book factors CF
x,t, R

F
x,t, B

F
x,t for years t =

1, 2, ..., N from the estimated joint ATSM starting from age x.

2. Substitute the forecast factors into the average force of mortality functions to fore-

6www.mortality.org/
7https://usa.mortality.org/
8https://www.census.gov/en.html
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(a) Reference average mortality inten-

sity (b) Book average force of mortality

(c) Age 65 initial mortality rates (d) Age 75 initial mortality rates

Figure 2: Observed mortality for ages 65 to 99 from 1980 to 2015 in the reference and
book populations for US males showing mortality improvement across both populations
and lower mortality in the book population.
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cast the average force of mortality starting from age x

µ̄i,Fx,t (T ) =
1− e−φ1(T−t)

φ1(T − t)
CF
x,t +

1− e−φj(T−t)

φj(T − t)
iFx,t −

Ait(t, T )

T − t
for i =

{
R, (j = 2)

B, (j = 3)

}
.

3. Compute the associated survival probability forecasts

SR,F (x, t, T ) = e(−µ̄R,Fx,t (T )×(T−t)),

SB,F (x, t, T ) = e(−µ̄B,Fx,t (T )×(T−t)).

The simulation of survival probabilities follows a similar procedure, using the simulated
factors in place of the forecast factors. We simulate a large number of factor paths and
the corresponding survival probabilities matching the liability horizon.

In addition to the continuous-time a�ne framework, we also �t a discrete-time multi-
population mortality model for validation purposes. Drawing on the methodology devel-
oped by the LBRWG (Haberman et al., 2014; Villegas et al., 2017; Li et al., 2017, 2019),
the M7-M5 model is adopted. This model allows for inter-age mortality correlations and
is appropriate for basis risk assessments for annuity portfolios that have at least 25,000
lives, 8 years of reliable data, a stable demographic mix and do not have book speci�c
cohort e�ects. The speci�cation, calibration and forecasting of the M7-M5 model are
detailed in Appendix B.

2.2 Interest Rate Modelling Framework

Apart from uncertainty in future mortality rates, the value of longevity-linked liabilities
is also signi�cantly impacted by �nancial risk; hedging analyses that fail to incorporate
uncertainty associated with interest rates cannot support the credible evaluation of index-
based swaps for the purposes of hedging retirement income portfolio risk exposures. We
adopt the dynamic Nelson-Siegel (DNS) interest rate model with independent factors, as
developed in Diebold and Li (2006), to model �nancial risk. Belonging to the a�ne term
structure class of interest rate models, the DNS model is mathematically tractable and
has closed-form zero-coupon bond prices.

The development of the DNS model originates from the yield curve function pioneered in
Nelson and Siegel (1987). However, it models bond yields as a function of latent time-
varying factors, thus allowing yields of any maturity to be forecast or simulated over any
given horizon. Diebold and Li (2006) also show that this model provides good empirical �t.
We �t the DNS model to both nominal (N) and real (R) interest rate data, adopting the
conventional assumption of independence between mortality dynamics and interest rates
(Bi�s, 2005). The nominal interest rate model is required for the discounting of index
swap payments, while the real interest rate model facilitates the valuation of in�ation-
linked liabilities. No dependence between the two interest rate processes is modelled. This
assumption is underpinned by the Fisher e�ect which posits that real interest rates are
independent of monetary measures such as nominal interest rates; a hypothesis which has
been supported by numerous recent empirical studies (Panopoulou and Pantelidis, 2016;
Uribe, 2018; Cai, 2018).

Beginning with the nominal interest rate model, we �rst de�ne the three latent time-
varying factors: a level factor LNt , a slope factor SNt and a curvature factor CN

t . As the
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independent-factor DNS model is not constrained to a unique speci�cation of the factor
dynamics under the real-world probability measure (Christensen et al., 2011), we initially
present the risk-neutral Q dynamics of the factors. The risk-neutral measure supports
the valuation of future cash�ows and has the following factor dynamic speci�cation under
our modelling frameworkdLNtdSNt

dCN
t

 = −

0 0 0
0 λN −λN
0 0 λN

LNtSNt
CN
t

 dt+

σN1 0 0
0 σN2 0
0 0 σN3


dW

Q,LN

t

dWQ,SN

t

dWQ,CN

t

 ,
where λN is the Nelson-Siegel parameter, σN1 , σ

N
2 and σN3 are the factor volatility param-

eters, while WQ,LN

t , WQ,SN

t and WQ,CN

t are the corresponding Wiener processes.

We use the real-world measure to model observed bond yield data and to simulate future
factor paths. However, Christensen et al. (2011) note that in order to maintain a�ne
dynamics under the real world probability measure, an essentially-a�ne risk premium
speci�cation must be assumed upon invoking the Girsanov theorem (Girsanov, 1960)
when changing the measure from Q to P . Therefore, the real-world factor dynamics are
represented as

dLNtdSNt
dCN

t

 =

kN1 0 0
0 kN2 0
0 0 kN3

[θ1,N

θ2,N

θ3,N

−
LNtSNt
CN
t

]dt+

σN1 0 0
0 σN2 0
0 0 σN3


dW

P,LN

t

dW P,SN

t

dW P,CN

t

 ,

where kN1 , k
N
2 , k

N
3 , θ

N
1 , θ

N
2 and θN3 are constant real-world parameters, W P,LN

t , W P,SN

t and

W P,CN

t are Wiener processes under the P measure.

Given the model dynamics under the risk neutral measure, the zero coupon nominal bond
yield at time t with τ months maturity is given by the yield function

yNt (τ) = LNt + SNt

(
1− e−λN τ

λNτ

)
+ CN

t

(
1− e−λN τ

λNτ
− e−λN τ

)
.

For the nominal yield data, we use monthly observations published by the US Department
of the Treasury9 from October 2006 to May 2018 as this provides complete data across all
eleven published maturity terms: 1 month, 3 months, 6 months, 1 year, 2 years, 3 years,
5 years, 7 years, 10 years, 20 years and 30 years. The summary statistics for the empirical
nominal yield rates are provided in Table 1.

The empirical data is presented in Figure 3(a). In general, the yield curve is upward-
sloping with respect to maturity over the in-sample period. We also note higher volatility
in the short-term interest rates relative to the long-term rates. Indeed, the standard
deviation of 1 month yields is almost double the mean.

As with the joint ATSM, the DNS interest rate model can be expressed in state space
form in terms of a measurement equation and a state transition equation as detailed in
Appendix C. Therefore, it can be estimated using the Kalman �lter (Kalman, 1960). We

9https://home.treasury.gov/
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Maturity (months) Mean Standard Deviation Min Max
1 0.98 1.63 0.00 5.24
3 1.04 1.65 0.00 5.16
6 1.14 1.67 0.03 5.24
12 1.23 1.61 0.09 5.21
24 1.43 1.47 0.20 5.16
36 1.66 1.37 0.30 5.13
60 2.14 1.21 0.59 5.10
84 2.54 1.09 0.98 5.11
120 2.91 1.00 1.46 5.15
240 3.46 0.97 1.78 5.35
360 3.63 0.83 2.18 5.21

Table 1: Nominal US interest rate summary statistics from October 2006 to May 2018.

(a) Observed (b) Fitted

(c) Mean (d) Residuals

Figure 3: Nominal US bond yields from October 2006 to May 2018 indicating that key
data features have been e�ectively captured
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apply the Kalman �ltering technique to the observed nominal bond yield data. The �tted
yields are presented in Figure 3(b) and broadly capture the key features of the observed
interest rate data. Figure 3(c) compares the empirical and �tted mean yield curves, while
Figure 3(d) presents the model residuals' time series for selected maturities. These �gures
con�rm the satisfactory overall �t of the estimated interest rate model, although �tting
performance for maturities under 3 months is less precise and is more volatile, which is
in line with the high relative standard deviations observed in the summary statistics at
the short end of the yield curve. However, given that our basis risk analysis is based on
maturities ranging from 1 year to 35 years, the model �ts well over the most relevant
maturities. This is con�rmed by the the mean and standard deviations of the model
residuals by maturity provided in Table 2. These residuals are broadly in line with those
reported in Christensen et al. (2010).

Maturity (months) Mean (bps) Standard Deviation (bps)
1 -13.3333 6.6372
3 -7.5352 5.9266
6 0.3016 0.7937
12 2.3771 6.6486
24 0.9736 5.7837
36 -1.2565 2.5624
60 -0.1157 5.2012
84 2.1626 4.2657
120 -0.0610 0.8739
240 0.8163 4.0693
360 -1.0173 3.2993

Table 2: Nominal US interest rates: residual mean and standard deviation by maturity.

Having estimated the model, we then forecast and simulate the future term structure of
interest rates and the associated zero coupon bond prices over N years. The forecasting
of zero coupon bond prices is achieved as follows:

1. Forecast the level, slope and curvature factors LFt , S
F
t , C

F
t for years t = 1, 2, ..., N

from the estimated DNS interest rate model.

2. Substitute the forecast factors into the yield function to forecast the term structure
of interest rates

yFt (τ) = LFt + SFt

(
1− e−λτ

λτ

)
+ CF

t

(
1− e−λτ

λτ
− e−λτ

)
.

3. Compute the associated zero coupon bond price forecasts:

P F (t, T ) = e(−yFt (T−t)×(T−t)).

The simulation of zero coupon bond prices follows a similar procedure, using the simulated
factors in place of the forecast factors. We simulate a large sample of factor paths and
corresponding bond prices over the liability horizon as in the mortality forecasting case.

The modelling of real interest rates is equivalent to that of nominal rates described above.
To calibrate the real DNS interest rate model, we use monthly observations published by
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the US Department of the Treasury10 from February 2010 to May 2018 as this provides
complete data across all �ve published maturity terms: 5 years, 7 years, 10 years, 20 years
and 30 years. Although it is possible to go further back, doing so necessitates excluding the
30-year maturity from the estimation set which could materially compromise the model's
out-of-sample forecasting performance given our required 35-year forecasting horizon. The
summary statistics for the empirical real yield rates are provided in Table 3.

Maturity (months) Mean Standard Deviation Min Max
60 -0.24 0.57 -1.47 0.72
84 0.08 0.54 -1.20 1.23
120 0.34 0.50 -0.79 1.60
240 0.81 0.46 -0.09 1.99
360 1.05 0.43 0.32 2.16

Table 3: Real US interest rate summary statistics from February 2010 to May 2018

The empirical data is shown in Figure 4(a). Similarly to the nominal interest rate data,
the real yield curve also slopes upwards with respect to maturity over the in-sample period
and higher volatility is observed in the short-term interest rates relative to the long-term
rates. However, unlike the nominal interest rates, we observe negative bond yields at
various di�erent time points, particularly in the 5 year maturity range.

(a) Observed (b) Fitted

(c) Mean (d) Residuals

Figure 4: Real US bond yields from February 2010 to May 2018 indicating that key data
features have been e�ectively captured

We apply the Kalman �ltering technique to the observed real bond yield data. The �tted
yields are presented in Figure 4(b) and broadly capture the key features of the observed

10https://home.treasury.gov/
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interest rate data. Figure 4(c) compares the empirical and �tted mean yield curves, while
Figure 4(d) presents the model residuals for selected maturities. These �gures con�rm
the satisfactory overall �t of the estimated interest rate model. This is con�rmed by the
the mean and standard deviations of the model residuals by maturity provided in Table 4.
These residuals are broadly in line with those reported in Xu et al. (2019). The forecasting
and simulation of real zero coupon bond yields and prices re�ects the framework described
previously for the nominal interest rates.

Maturity (months) Mean (bps) Standard Deviation (bps)
60 -2.4091 5.6250
84 3.1164 6.7812
120 0.0000 0.0000
240 -2.3681 3.3248
360 0.3077 0.8901

Table 4: Real US interest rates: residual mean and standard deviation by maturity.

3 Liability Pro�le

For our hedging analysis, we assume that a retirement income provider is aiming to hedge
the risks associated with a closed annuity pool comprising of individuals from a single
cohort initially aged x in year t who are promised $1 of in�ation-indexed income per year
upon survival from ages x+1 to the maximum attainable age, ω, hence the initial horizon
of the annuity liability is given by ω − x. The present value of the retirement income
portfolio liability is

PV (Unhedged Portfolio) =
ω−x∑
i=1

lBx+i,t+i × PR(t, t+ i),

where lBx+i,t+i is the number of surviving annuitants (aged x + i at time t + i) and this
is dependent on the simulated book population mortality dynamics generated by the
chosen mortality model. However, we also account for sampling basis risk by allowing the
number of deaths in any given year to follow a binomial distribution DB

x,t ∼ Bin(EB
x,t, q

B
x,t)

(Haberman et al., 2014) where the exposure EB
x,t is given by the number of surviving

annuitants in year t and the mortality rate parameter qBx,t is simulated from the mortality
model. The quantity, PR(t, t + i), is the time t price of an in�ation-indexed zero coupon
bond making a single unit payment at time t+ i as computed from the real interest rate
model.

In Figure 5, we plot a histogram showing 10,000 simulations of the liability present value
for a portfolio with an initial size of 100,000 lives based on a starting age of x = 65 and an
assumed �nal payment age of ω = 100, giving an initial liability term of ω−x = 35 years.
A degree of positive skewness is apparent, with the simulated distribution exhibiting a
heavier right tail. This highlights the importance of e�ectively hedging against more
extreme outcomes in pension liabilities resulting from unexpected mortality or �nancial
market experience.
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Figure 5: Liability present value histogram for the book population cohort initially aged
65 (joint ATSM, 10,000 simulations, 100,000 lives).

4 Value-Based Longevity Index Computation

As presented in Section 2, we de�ne the value-based longevity index, Ix,t, as the expected
present value of a unit of longevity and in�ation-indexed income paid annually in arrears
to a cohort aged x at initial time t. Drawing on the survival probabilities of the reference
population, as generated by the continuous-time mortality model, as well as forecast real
zero coupon bond prices, we compute the initial (that is, time t = 0) index values for ages
65 to 99, as depicted in Figure 6. The index value for age 65 is 12.98, that is, for each 65
year old male who is promised $1 of in�ation-indexed income per year upon survival from
ages 66 to 100, a retirement income provider requires $12.98 worth of investments today.

Figure 6: Initial index value by age from 65 to the maximum attainable age, ω = 100.

It is also possible to forecast and simulate future index values over time based on mortality
and interest rate forecasts and simulations. For example, the forward index values for the
cohort initially aged x = 65 (at time t = 0) is represented by the black curve in Figure
7. This shows the expected path of the value-based longevity index over the payment
period for this particular reference population cohort, where a smooth and stable decline
is observed.
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In reality, mortality, interest rate and in�ation factors will di�er over time from initial
forecasts and hence the evolution of the index will not exactly track its expected pathway.
Figure 7 also shows 10,000 simulations of the index value for the cohort initially aged
x = 65. We note that although the forward index values remain broadly in the middle
of the distribution of simulated paths, there is material variability around the expected
value over time. The volatility around the forward values declines over time until the �nal
age is reached.

Figure 7: Forward and simulated index values for the reference population cohort initially
aged 65 (joint ATSM, 10,000 simulations).

5 The Hedging Framework

Assume that an annually-settled index swap trades in the longevity risk transfer mar-
ket. For a given age x at initial time t, the swap references the constructed value-based
longevity index Ix,t; at time t+ i, the �xed leg pays the i year forward index value Ifx+i,t+i

while the �oating leg pays the realised index value Ix+i,t+i. As index values are based on
forward-looking cash�ows, the �nal swap payment is made when the initial cohort reaches
age ω − 1; not at age ω when the �nal annuity payments are made to surviving policy-
holders. That is, the swap has an initial maturity term of ω− x− 1, hence the longevity,
interest rate and in�ation risk over the �nal year of the liability remain unhedged. This
mismatch between liability and hedge cash�ows constitutes an example of structuring
basis risk.

A retirement income provider seeking to hedge their risk exposure would be the �xed leg
payer to this index swap. From their perspective, the random present value of the swap
instrument is

PV (Index Swap) =
ω−x−1∑
i=1

(Ix+i,t+i − Ifx+i,t+i)× PN(t, t+ i),

where x = 65 and ω = 100, Ifx+i,t+i denotes the forward index value which is computed
from central forecasts, and Ix+i,t+i denotes the realised index value whose computation
entails two distinct steps. The initial phase involves the simulation of a single mortality
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intensity and interest rate path up until time t+ i. In the second stage, conditional on the
mortality and interest rate realisations in the �rst phase, central forecasts from time t+ i
onwards are computed to derive the realised index value Ix+i,t+i. The quantity, PN(t, t+i),
is the time t price of a nominal zero coupon bond making a single unit payment at time
t+ i, and this is simulated from the nominal interest rate model.

For an index swap written on the index for the cohort initially aged x = 65, the simulated
swap payment paths received by the �xed leg payer over the ω−x−1 = 34-year swap term
is shown in Figure 8. These swap simply represent the di�erence between the simulated
and forward index values over time shown in Figure 7.

Figure 8: Simulated swap payments for the reference population cohort initially aged 65
(joint ATSM, 10,000 simulations).

Although individual swap payment paths can be volatile, the average swap payment as
depicted by the black line remains very close to zero. This re�ects the fact that forward
index values are simply assumed to follow the expected values with no risk or pro�t
premiums priced in to the forward values. As re�ected in Figure 7, the variability of
swap payments is highest in the early years of the hedge and steadily decreases over the
term of the swap. This is because the earlier that unexpected deviations in experience
occur, the greater the number of remaining future cash�ows to be impacted, and hence the
expected present value of future cash�ows is more sensitive in the early years to emerging
unexpected deviations in mortality, in�ation and interest rate experience.

When retirement income providers hedge their exposure using the swap instrument, they
e�ectively combine the hedging instrument with their exposed portfolio. Therefore, the
random present value of the retirement income providers' hedged portfolio is given by the
sum of the the present values of the two components

PV (Hedged Portfolio) = PV (Unhedged Portfolio) + PV (Index Swap)

=
ω−x∑
i=1

lBx+i,t+i × PR(t, t+ i) + w0

ω−x−1∑
i=1

(Ix+i,t+i − Ifx+i,t+i)× PN(t, t+ i),

where w0 refers to the notional amount of the longevity swap. As with Li et al. (2017), w0

is estimated using numerical optimisation with an objective to minimise the variance of
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the hedged portfolio's present value (Appendix D) conditional on the simulated liability
values and realised swap payment paths, obtaining a solution of w0 = 0.3056.

6 Basis Risk Metrics

Inspired by Chang and Sherris (2018), we compare the hedge outcomes associated with
the value-based longevity index to two other longevity indices which we also construct.
The purpose of these comparisons is to attribute the risks associated with retirement
income portfolios into longevity risk, interest rate risk and in�ation risk components.

We de�ne the index I0
x,t as the expected survival probability of a cohort aged x in year t.

The survival index value is represented as

I0
x,t =

ω−x∑
i=1

SR(x, t, t+ i),

where SR(x, t, t+ i) denotes the forecast i year survival probability of the reference pop-
ulation.

We de�ne the index I1
x,t as the expected present value of a unit of longevity-indexed income

paid annually in arrears to a cohort aged x in year t. The index value is represented as

I1
x,t =

ω−x∑
i=1

SR(x, t, t+ i)× PN(t, t+ i),

where SR(x, t, t+ i) denotes the forecast i year survival probability of the reference popu-
lation and PN(t, t+ i) is the forecast time t price of a nominal zero coupon bond making
a single unit payment at time t+ i as computed from the nominal interest rate model.

The attribution of risk can be outlined as follows:

• The risk reduction achieved by hedging the retirement income portfolio using I0
x,t

as the reference index represents the impact of longevity risk.

• The additional risk reduction achieved by hedging the retirement income portfolio
using I1

x,t as the reference index (relative to a hedge referencing the index I0
x,t)

represents the impact of interest rate risk.

• The additional risk reduction achieved by hedging the retirement income portfolio
using Ix,t as the reference index (relative to a hedge referencing the index I1

x,t)
represents the impact of in�ation risk.

Having calibrated the longevity swap instrument, it is critical to assess the e�ectiveness
of the hedging strategy. We initially adopt graphical risk reduction representations as
visualisation can be a very e�cient way to communicate the e�ectiveness of hedging
strategies to a variety of di�erent stakeholders. Following Coughlan (2009), we plot the
simulated liability distributions to obtain a preliminary overview of the degree of risk
reduction achieved by the index-based hedge, as well as the other comparison indices
described above.
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In Figure 9, the blue histograms represent the present value of the unhedged portfolio
liability outcomes, while the overlaid orange histograms represent the net present value
of the hedged liability outcomes (that is, the sum of the unhedged liability outcomes
and the weighted index swap outcomes). These diagrams represent annuity pools with
100,000 initial members. For all three indices, we observe a reduction in the volatility
of liability valuations once the index swaps have been taken into account. However, as
depicted in Figure 9(c), it is also apparent that when the liability is hedged with reference
to the in�ation-indexed value-based longevity index Ix,t, the hedged distribution becomes
materially narrower relative to the two alternate longevity indices.

(a) Survival index I0
x,t (b) Nominal-linked value index I1

x,t

(c) In�ation-linked value index Ix,t

(d) Box and whisker plots of the liabil-

ity present value distribution by hedg-

ing index

Figure 9: Hedged and unhedged liability present value distributions by hedging index
(joint ATSM, 10,000 simulations, 100,000 lives).

We also present a box and whisker plot of the simulated liability present value outcomes
in Figure 9(d). In all four simulated distributions, the median outcome as indicated
by the central mark is relatively similar. However, once we examine the 25th and 75th

percentiles of the liability distribution (represented by the lower and upper edges of the box
respectively), we note that variability is materially reduced when comparing the in�ation-
linked hedge against the unhedged liability as well as the two other alternate hedging
indices. Furthermore, the outliers associated with the simulated net liability outcomes
(indicated by the red crosses) are much less extreme in the case of the in�ation-linked
value-based longevity index, con�rming the observations inferred from the histograms in
Figure 9.

However, although graphical representations can provide an adequate understanding of
hedging e�ciency, in order to systematically evaluate the hedge e�ectiveness of the in�ation-
indexed value-based longevity index relative to the other longevity indices, quantitative
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risk measures must also be examined. Therefore, we investigate the summary statistics
of the simulated liability present value distributions, as presented in Table 5. From these
�gures, it is evident that the minimum and maximum outcomes are much less extreme
and the variance of the liability present value distribution is materially reduced by hedg-
ing. Indeed, given the approximate normality of the distributions observed in Figure
9, we conduct an F-test for equality of two variances to formally examine whether the
variance of the liability present value is reduced when hedged against the in�ation-linked
value index relative to the two other indices. Against a one-sided alternative, we are able
to reject the null hypothesis at all reasonable signi�cance levels (p-value < 0.0001) and
conclude that the variance of the hedged liability tied to the in�ation-linked value index
is lower than the other indices at a statistically-signi�cant level.

Hedging Index Minimum Maximum Mean Variance
Unhedged 9.47 19.97 13.92 2.00
Survival index I0

x,t 10.66 17.84 13.87 0.83

Nominal-linked value index I1
x,t 10.87 16.13 13.87 0.52

In�ation-linked value index Ix,t 11.88 15.85 13.86 0.31

Table 5: Summary statistics: hedged and unhedged liability present value outcomes by
hedging index (joint ATSM, 10,000 simulations, 100,000 lives)

The Longevity Risk Reduction (LRR) metric is also well established in the literature as a
robust indicator of hedging performance for longevity-linked instruments (Coughlan et al.,
2011; Li et al., 2017). Note that some authors refer to the LRR metric using alternate
terms such as �hedge e�ciency� (Chang and Sherris, 2018). Following Cairns et al. (2014),
we de�ne our LRR measure based on the percentage reduction in variance of the liability
present value:

Longevity Risk Reduction =

(
− var(Hedged Portfolio)

var(Unhedged Portfolio)

)
× 100%,

where var(Unhedged Portfolio) and var(Hedged Portfolio) refer to the variance of the
retirement income provider's net position before and after the hedge has been applied,
respectively.

In Table 6, we show the LRR attained by the various indices across three di�erent book
sizes. It is apparent that all indices are ine�ective at book sizes of 1,000 policyholders
due to sampling basis risk. Once the portfolio size increases to 10,000 and eventually
100,000 policyholders, all three indices exhibit a much improved hedging performance.
However, the LRR associated with the in�ation-linked value-based longevity index re-
mains materially superior to the other indices at all book sizes, with the magnitude of the
out-performance found to be higher in larger portfolios. However, it should be noted that
even in a particularly large portfolio of 100,000 annuitants, the in�ation-indexed value-
based longevity index does not provide a perfect hedge (LRR of 84.58%). Demographic
basis risk remains a factor, while the structuring basis risk associated with the �nal year
of the liability remaining unhedged also impacts the outcome.

The di�erences between the hedging outcomes associated with the three indices also pro-
vide an indication as to the relative impact of the three identi�ed risk sources. For
example, the additional risk reduction attained using the in�ation-linked value index as
opposed to the value index linked to nominal interest rates is over 10% in a book of
100,000 policyholders. Therefore, when hedging annuity exposures where payments are
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Hedging Index
Book Size

1,000 10,000 100,000

Survival index I0
x,t 31.52 54.07 58.71

Nominal-linked value index I1
x,t 37.82 67.24 74.07

In�ation-linked value index Ix,t 42.67 77.43 84.58

Table 6: Longevity risk reduction: percentage reduction in variance showing the greater
e�ectiveness of the in�ation-linked value-based longevity index relative to alternate indices
(joint ATSM, 10,000 simulations).

tied to price levels, an index that re�ects the in�ation-linked nature of these obligations
provides a material advantage over indices that fail to account for in�ation. Similarly,
we observe a di�erence of almost 26% between the in�ation-linked value index and the
standard survival rate index, suggesting that retirement income providers who pursue
survivor swaps when hedging in�ation-linked liabilities would experience signi�cant basis
risk due to the inability of survival indices to account for in�ation or interest rate risk.

7 Sensitivity Analysis

From a practitioner's perspective, it is critical to assess the signi�cance of various mod-
elling assumptions and experimental design settings. Following the template of Li et al.
(2017), we perform robustness checks on various aspects of the modelling framework
and methodological process to examine the potential impact of di�erent assumption set-
tings on hedge outcomes. In each of the following cases, one key experimental variable is
changed, while all other factors and settings are held constant.

It is well established in the literature that the e�ectiveness of index-based longevity hedges
are greater for larger book sizes (Villegas et al., 2017; Li et al., 2017; Chang and Sher-
ris, 2018); a �nding which is also evidenced in our analysis. It occurs because in larger
retirement income portfolios, sampling basis risk lacks the su�cient leverage to mate-
rially impact aggregate hedge outcomes. To more closely examine the relationship be-
tween portfolio size and longevity risk reduction, we test our hedging framework utilising
the in�ation-linked value-based longevity index in portfolio sizes of 1,000; 5,000; 10,000;
25,000; 50,000 and 100,000 lives. The LRR outcomes attained at these book sizes are
plotted in Figure 10.

While hedge e�ciency improves at a signi�cant rate up until about 10,000 lives, the impact
of sampling basis risk on portfolio hedging outcomes becomes progressively smaller for
larger pension pools, with minimal marginal bene�ts extracted when increasing the book
size beyond 50,000 lives.

In order to evaluate the potential impact of model risk on hedging outcomes, we repeat our
analysis using the simulation and forecasting results generated by the discrete-time M7-
M5 mortality model (Haberman et al., 2014). This facilitates the comparison of the two
mortality modelling frameworks and bridges the literature gap between continuous-time
and discrete-time multi-population mortality modelling techniques. As in the previously
presented example, we assume that a retirement income provider is aiming to hedge the
risks associated with a pool of 65 year old males who are promised $1 of in�ation-indexed
income per year upon survival from ages 66 to 100. In this analysis, the simulated interest
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Figure 10: Hedge e�ciency by book size indicating the diminishing marginal bene�t of
increasing book size (joint ATSM, 10,000 simulations).

rate paths are controlled from the results presented for the continuous-time analysis.

From the LRR metrics presented in Table 8 and the summary statistics detailed in Table 7,
we do not observe material di�erence between the continuous and discrete-time mortality
modelling frameworks in the analysis of hedge e�ectiveness. For the in�ation-linked value-
based longevity index, the observed LRR metric is 85.51% for a portfolio size of 100,000
with an associated swap weight parameter of w0 = 0.3093. This is highly comparable to
the corresponding values of 84.58% and w0 = 0.3056 from the joint ATSM, with minor
di�erences between the two approaches potentially resulting from the discretisation errors
associated with the discrete-time framework.

Hedging Index Minimum Maximum Mean Variance
Unhedged 9.51 20.03 14.01 2.03
Survival index I0

x,t 10.59 17.72 13.99 0.81

Nominal-linked value index I1
x,t 11.24 16.37 13.97 0.51

In�ation-linked value index Ix,t 11.76 15.72 13.98 0.29

Table 7: Summary statistics: hedged and unhedged liability present value outcomes by
hedging index (M7-M5 model, 10,000 simulations, 100,000 lives).

Hedging Index
Book Size

1,000 10,000 100,000

Survival index I0
x,t 31.77 54.93 59.90

Nominal-linked value index I1
x,t 38.42 68.59 74.88

In�ation-linked value index Ix,t 43.07 78.23 85.51

Table 8: Longevity risk reduction: percentage reduction in variance showing the greater
e�ectiveness of the in�ation-linked value-based longevity index relative to alternate indices
(M7-M5 model, 10,000 simulations).

Having estimated both the continuous-time and discrete-time mortality modelling frame-
works, we can as well examine the stability of hedging outcomes when the alternate model
is used to calibrate the notional swap parameter w0. That is, we can estimate the swap
weight using the discrete-time mortality model and use this weighting to compute the
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hedging outcomes associated with the value-based longevity index under the continuous-
time mortality framework (and vice-versa). We �nd that the sensitivity of risk reduction
outcomes to this variation in hedge calibration method is limited. As shown in Tables
9, 10 and 11, for the continuous-time and discrete-time mortality models, the reduction
in hedging e�ciency is minimal when the other model is used to compute w0; a result
which is expected given the similar swap weight parameters obtained by the two di�erent
mortality modelling frameworks, suggesting that model risk is limited.

Joint ATSM M7-M5 model
w0 calibrated by same model 84.58% 85.51%
w0 calibrated by alternate model 84.27% 85.11%

Table 9: In�ation-linked value-based longevity index: model hedge e�ective comparison
indicating similar overall outcomes across the two mortality modelling frameworks (per-
centage reduction in variance, 10,000 simulations, 100,000 lives).

Joint ATSM M7-M5 model
w0 calibrated by same model 74.07% 74.88%
w0 calibrated by alternate model 73.81% 74.51%

Table 10: Nominal value-based longevity index: model hedge e�ective comparison indicat-
ing similar overall outcomes across the two mortality modelling frameworks (percentage
reduction in variance, 10,000 simulations, 100,000 lives).

Joint ATSM M7-M5 model
w0 calibrated by same model 58.71% 59.90%
w0 calibrated by alternate model 58.36% 59.58%

Table 11: Expected survival index: model hedge e�ective comparison indicating similar
overall outcomes across the two mortality modelling frameworks (percentage reduction in
variance, 10,000 simulations, 100,000 lives).

We have demonstrated that the universal value-based longevity index facilitates superior
hedging outcomes relative to standard survival rate indices, such as those examined by
the LBRWG. Furthermore, we have used this index to attribute the risks arising from
retirement income portfolios into longevity risk, interest rate risk and in�ation risk com-
ponents. Finally, we have conducted a range of sensitivity analyses on the hedging results,
demonstrating that our �ndings can vary among retirement income portfolios of di�ering
size, but are robust across di�erent age ranges and mortality modelling frameworks.

8 Conclusion

This paper has made threefold contributions to the literature which are motivated by
the fundamental aim of supporting and accelerating the practice of index-based longevity
hedging for retirement income portfolio risk exposures and establishes a framework which
facilitates the establishment of a liquid market for trading longevity-linked instruments.

A value-based longevity index has been constructed whose functionality is illustrated
with the aid of US economic and mortality data. This contribution demonstrates how the
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market can design an index that closely tracks the value of longevity-linked liabilities; a
critical requirement for the development of a viable, liquid longevity risk transfer mar-
ket. Furthermore, the construction of the value-based longevity index has facilitated the
attribution of risk arising from retirement income portfolios into distinct longevity risk,
interest rate risk and in�ation risk components.

Key aspects have been drawn from the LBRWG's longevity basis risk quanti�cation frame-
work to demonstrate that hedges referencing the value-based longevity index generate
material reductions in basis risk relative to survivor swap instruments based on standard
mortality rate indices such as the Lifemetrics Index. Indeed, the minimisation and robust
quanti�cation of longevity basis risk represents a critical element in establishing the cred-
ibility of longevity-linked securities as viable risk management instruments for retirement
income providers in practice.

The third contribution is the comparison of the continuous-time multi-population mor-
tality modelling techniques introduced by Xu et al. (2019) to the discrete-time M7-M5
multi-population mortality model (Haberman et al., 2014) advocated by the LBRWG. De-
spite the di�ering approaches developed by these authors for modelling the relationship
between the mortality patterns of multiple populations, our analysis indicates that the
two frameworks suggest relatively similar outcomes when hedging retirement income port-
folios by means of index-based swap instruments. While, discrete-time multi-population
mortality models have been more widely used in the related literature and can be more
readily �tted due to not having to trial multiple combinations of initial parameter values
in estimation, the continuous-time framework has the advantage of being better integrated
with �nancial applications such as pricing and hedging, particularly when combined with
a�ne interest rate modelling frameworks.

Ultimately by making these contributions to the literature, our research has the potential
to support the transition towards index-based longevity hedging and has established a
framework for facilitating objective valuation of longevity-linked instruments. This is
of critical importance since index-based longevity hedging represents arguably the most
realistic prospect for a viable and liquid longevity risk transfer market, given all of the
complexities associated with indemnity-based longevity hedges.

The analysis in this paper is based on a static hedging framework, where the swap weight is
calibrated at the outset and thereafter does not require periodic rebalancing in response
to evolving �nancial or mortality experience. Given the structuring basis risk arising
from our forward-looking longevity index over the �nal year of the liability's maturity,
we implement the numerical optimisation hedge calibration framework proposed by the
LBRWG. Under this method, each required hedge weighting is estimated with respect to
a unique set of future mortality, interest rate and in�ation scenarios. However, since these
scenario sets must be conditionally simulated from the relevant time point onwards given
the experience already observed in each individual simulation path, it is computationally
much more practical to con�ne our analysis to static hedging strategies in which only a
single initial hedge weighting is required. An alternative hedging strategy to the LBRWG's
numerical optimisation framework is based on delta hedging and may be more suited to
dynamic analyses as demonstrated in Luciano et al. (2017) and De Rosa et al. (2017).

Our book population is constructed from a synthetic dataset under the assumption that
the aggregation of high income states su�ciently approximates the demographics of a
typical retirement income portfolio. Future research that is able to utilise authentic
retirement income portfolio mortality data would further enhance the credibility of index-

26



based longevity hedging as a viable long-term solution for the management of longevity
risk. One could also consider open-ended annuity portfolios with multiple di�erent co-
horts, as well as incorporating dependence between nominal and real bond yields into the
modelling framework.
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Appendix

A Kalman Filter for the Joint A�ne Term Structure Model for

Mortality

Xu et al. (2019) show that the measurement equation is

~µx,t = B ~Xt − ~A+ ~εt, ~εt ∼ N2k(~0, H),

where

~µx,t =



µ̄Rx,t(τ1)
...

µ̄Rx,t(τk)
µ̄Bx,t(τ1)

...
µ̄Bx,t(τk)


, B =


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φ1τ1
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0 1−e−φ3τ1

φ3τ1
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...
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1−e−φ1τk

φ1τk
0 1−e−φ3τk

φ3τk


, Xt =

CtRt

Bt

 ,

A =



1
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(1− e−2φiτ1)− 2(1− e−φiτ1) + φiτ1]

...
1

2τk

∑
i=1,2

σ2
i

φ3
i
[1
2
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(1− e−2φiτ1)− 2(1− e−φiτ1) + φiτ1]
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(1− e−2φiτk)− 2(1− e−φiτk) + φiτk]


.

Here, H is the (diagonal) covariance matrix of the normal error terms and k is the number
of ages in the mortality dataset.

The state transition equation is given by

~Xt = Ψ ~Xt−1 + ~ηt, ~ηt ∼ N3(~0, Q),
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where

Ψ =

e−ψ1 0 0
0 e−ψ2 0
0 0 e−ψ3

 , Q =


σ2

1

2ψ1
(1− e−2ψ1) 0 0

0
σ2

2

2ψ2
(1− e−2ψ2) 0

0 0
σ2

3

2ψ3
(1− e−2ψ3)

 .

B M7-M5 Model

The M7-M5 model is adopted as the discrete-time two population mortality model.

The M7 model (Cairns et al., 2009) is used for reference population component, that is

logit(qRx,t) = κRt,1 + (x− x̄)κRt,2 + ((x− x̄)2 − σ2
x)κ

R
t,3 + γRt−x,

where qRx,t is the year t age x mortality rate in the reference population, κRt,1, κ
R
t,2 and

κRt,3 are latent-time varying factors corresponding to the mortality curve's level, slope and
curvature respectively and γRt−x is the cohort e�ect for those born in year t− x. x̄ and σ2

x

denote the sample age mean and sample age variance respectively.

The di�erence between the book and reference population mortality rates is modelled as

logit(qBx,t)− logit(qRx,t) = κBt,1 + (x− x̄)κBt,2,

where qBx,t is year t age x mortality rate in the book population, κBt,1 and κBt,2 are latent-
time varying factors explaining the di�erence in logit mortality rates and x̄ is the sample
age mean.

To generate future mortality rate forecasts and simulations in the reference population,
the factors κRt,1, κ

R
t,2 and κ

R
t,3 are modelled as a multivariate random walk with drift

κRt,1κRt,2
κRt,3

 =

µR1µR2
µR3

+

κRt−1,1

κRt−1,2

κRt−1,3

+

εRt,1εRt,2
εRt,3

 ,
εRt,1εRt,2
εRt,3

 ∼ N3(~0,Σ),

where µR1 , µ
R
2 , and µR3 are the constant drift parameters and εRt,1, ε

R
t,2 and εRt,3 are error

terms that follow a multivariate normal distribution with a mean vector ~0 and a covariance
matrix Σ.

To generate future mortality rate projections for the book population, the factors κBt,1 and
κBt,2 are modelled as a �rst order vector auto-regression process, VAR(1)

[
κBt,1
κBt,2

]
=

[
φB1
φB2

]
+

[
φB1,1 φB1,2
φB2,1 φB2,2

] [
κBt−1,1

κBt−1,2

]
+

[
εBt,1
εBt,2

]
,

[
εBt,1
εBt,2

]
∼ N2(~0,Φ),

where φB1 , φ
B
2 , φ

B
1,1, φ

B
1,2, φ

B
2,1 and φB2,2 are constant parameters and εBt,1 and εBt,2 are error

terms that follow a multivariate normal distribution with a mean vector ~0 and a covariance
matrix Φ. We also assume independence between these error terms and those of the
reference population time series model.
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C Kalman Filter for the Dynamic Nelson-Siegel Model

The measurement equation is

~yNt = BN ~XN
t + ~εNt , ~εNt ∼ Nn(~0, HN),

where

~yNt =

y
N
t (τ1)
...

yNt (τn)

 , BN =
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− e−λN τ1
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λN τn

− e−λN τn

 , ~XN
t =

LNtSNt
CN
t

 ,

~εNt =

ε
N
t (τ1)
...

εNt (τn)

 ,
HN is the (diagonal) covariance matrix of the normal error terms and n = 11 observed
maturities.

The state transition equation is given by

[ ~XN
t − ~θN ] = κN [ ~XN

t−1 − ~θN ]− ~ηt, ~ηt ∼ N3(~0, QN),

where

~θN =

θNLθNS
θNC

 , κN =

e−κN1 ∆t 0 0

0 e−κ
N
2 ∆t 0

0 0 e−κ
N
3 ∆t

 ,

QN =


σ2

1(1−e−2κN1 ∆t)

2κN1
0 0

0
σ2

2(1−e−2κN2 ∆t)

2κN2
0

0 0
σ2

3(1−e−2κN3 ∆t)

2κN3


and ∆t = 1

12
(for monthly data).

D Numerical Optimisation

Following the approach in Li et al. (2017), the swap weight parameter w0 is chosen in
order to minimise the variance of the quantity

ω−x∑
i=1

lBx+i,t+i × PR(t, t+ i) + w0

ω−x−1∑
i=1

(Ix+i,t+i − Ifx+i,t+i)× PN(t, t+ i),

with respect to simulated future mortality, interest rate and in�ation experience.
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