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Abstract

Heterogeneity of a population in respect of mortality is due to differ-
ences among the individuals, which are caused by various risk factors.
Some risk factors are observable while others are unobservable. The
set of observable risk factors clearly depends on the type of population
addressed. The impact of observable risk factors on individual mor-
tality, in particular when they also constitute “rating factors” in the
calculation of premiums and other actuarial values, is usually expressed
approximately, according to some pragmatic approach. For example,
additive or multiplicative adjustments to the average age-specific mor-
tality are frequently adopted. Heterogeneity due to unobservable risk
factors can conversely be quantified by adopting the concept of in-
dividual “frailty”. However, individual frailty can be interpreted and
consequently modeled in several ways, according to the causes which
are considered as originating the frailty itself: congenital character-
istics, environmental features, lifestyle aspects, etc. It follows that
the individual frailty can, in particular, be assumed either constant or
variable throughout the lifetime.
In this paper, we provide a survey of scientific contributions on mor-
tality heterogeneity, focusing on modeling both observable and unob-
servable heterogeneity. We start with an overview of methodological
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at the Department of Mathematics, Stockholm University, on 18th April, 2018.
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contributions to heterogeneity and frailty modeling, coming from both
the demographical and the actuarial context. We then shift to contri-
butions analyzing the impact of frailty, in its various interpretations,
on the results (cash flows, profits, etc.) of life insurance and life annu-
ity portfolios and related risk profiles.

Keywords: Heterogeneity, Frailty, Risk factors, Force of mortality,
Mortality laws, Parametric models, Special-rate annuities
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1 Introduction and motivation
Heterogeneity of a population in respect of mortality is due to differences
among the individuals, which are caused by various risk factors. Some risk
factors are observable while others are unobservable. The set of observable
risk factors clearly depends on the type of population addressed. For exam-
ple, age, gender and geographical area of residence are observable risk factors
commonly accounted for when analyzing mortality in national populations.
Possibly, marital status and working vs retired position can constitute further
risk factors for national population analysis.

More risk factors can be observed and allowed for when referring to life
insurance and life annuity portfolios, e.g. occupation, past and current health
conditions, etc., while others are unobservable, e.g. individual attitude to-
wards health, some congenital personal characteristics, etc. It is worth noting
that, whatever the type of population or portfolio concerned, a residual het-
erogeneity inside each homogeneous “group” remains because of unobservable
factors.

The impact of observable risk factors on individual mortality, in particular
when they also constitute “rating factors” in the calculation of premiums and
other actuarial values, is usually expressed approximately, according to some
pragmatic approach. For example, additive or multiplicative adjustments to
the average age-specific mortality are frequently adopted.

Heterogeneity due to unobservable risk factors can conversely be quan-
tified by adopting the concept of individual “frailty”. However, individual
frailty can be interpreted and consequently modeled in several ways, accord-
ing to the causes which are considered as originating the frailty itself: congen-
ital characteristics, environmental features, lifestyle aspects, etc. It follows
that the individual frailty can, in particular, be assumed either constant or
variable throughout the lifetime.

A huge number of scientific and technical contributions in the field of
heterogeneity in respect of mortality have been proposed, in particular:

• in demography, e.g. to explain mortality deceleration at high ages in
terms of unobservable heterogeneity factors (a controversial issue!);

• in actuarial science, to represent the impact of observable heterogeneity
factors on individual mortality, aiming at the construction of appropri-
ate pricing and reserving models, and to assess the impact of unob-
servable heterogeneity factors on the risk profile of life insurance and
life annuity portfolios to determine solvency requirements and hence
capital allocation.
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This paper aims at providing some guidelines, hopefully useful in explor-
ing the complex network of contributions to the analysis of heterogeneity in
respect of mortality. The remainder of the paper is organized as follows.

In Sect. 2 we suggest an approach to reading and interpreting the ex-
tensive demographical and actuarial literature on mortality heterogeneity.
Sect. 3 focusses on some forerunners in the demographic and actuarial fields.
Formal approaches to heterogeneity are proposed in Sect. 4, while Sect. 5
addresses seminal contributions in the field of observable and unobservable
heterogeneity. More recent contributions are presented in Sect. 6. Allowing
for heterogeneity in actuarial calculations is discussed in Sect. 7, with specific
reference to pricing, product design, capital allocation and risk transfers; spe-
cial attention is placed on the impact of unobservable heterogeneity. Sect. 8
concludes the paper with some final remarks.

2 Exploring heterogeneity: a risk-oriented
approach

A key to the reading and interpretation of the extensive demographical and
actuarial literature on mortality heterogeneity can be provided, in line with
the ultimate focus of this paper, by the Risk Management (RM) logic, more
precisely by the phases of the RM process. We focus on the following phases
(see Fig. 1), and we specifically address heterogeneity issues in life insurance
and life annuity business.

 

Risk 
identification 

Risk 
assessment 

Analysis 
of actions Monitoring Choice  

of actions 

Impact 
assessment 

Objective  
setting 

Figure 1: The RM process

In the preliminary Objective setting phase, targets of the organization, an
insurance company in particular, must be specified. Among these, we find:
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profit, value creation, risk mitigation, solvency, market share (for details, see
e.g. Olivieri and Pitacco (2015)).

In the Risk identification phase, the risk causes, i.e. the causes of profits
gained or losses suffered by an organization are singled out. The awareness
of heterogeneity with respect to mortality is the first result, for an insurance
company, of the risk identification phase, while the second result consists
in recognizing that the heterogeneity may be due to both observable and
unobservable risk factors.

Risk 
assessment 

    

Risk 
identification 

Awareness of 
heterogeneity 

Risk factors 

Unobservable 

Observable 

Traditional models for 
observable risk factors 

Modelling approaches for 
unobservable risk factors 
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Mortality of 
disabled people 

Discrete-valued 
heterogeneity 

Real-valued 
heterogeneity 

Fixed individual 
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Age-dependent 
individual char. 

Cause of 
heterogeneity 

Modeling 
framework 

Figure 2: The biometric side: risk identification and risk assessment

Risk causes are expressed in quantitative terms via appropriate models
(viz probability distributions, or, at least, typical values, e.g. expected val-
ues) in the Risk assessment phase. This phase can rely on well established
approaches when observable risk factors are concerned. Indeed, a number
of mortality models, suggested by medical statistics, have been proposed
and implemented to express, in particular, the impact of health conditions.
Heterogeneity models suitable in this regard can be classified as individual
models, aiming at representing “differential mortality”.

Conversely, in order to formally modeling the overall impact of unob-
servable risk factors, collective models are needed. Different approaches can
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be adopted: discrete-valued or real-valued measures of heterogeneity can be
used, and different individual characteristics can be considered as causes of
heterogeneity. Thus, the risk assessment phase involves several biometric
issues.

Various aspects of the risk identification and the risk assessment phases
are sketched in Fig. 2.

The Impact assessment phase aims at quantifying the effect of risk causes
on results of interest (cash-flows, assets, profits, value creation, etc.) in terms
of probability distributions of the results themselves, and relevant typical
values (expected values, variances, etc.). The impact assessment phase con-
stitutes the preliminary step to the analysis and the choice of RM actions.
See Fig. 3.

The Analysis of actions consists in listing the available RM tools, then
comparing the relevant costs and benefits. In the insurance and annuity
business, actions can consist in:

• the product design and related pricing and reserving;

• risk hedging actions, i.e. capital allocation, reinsurance, Alternative
Risk Transfers (ARTs, that is, transfers via mortality-linked securities,
swaps, etc.).
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Traditional actions 
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Figure 3: The actuarial side: impact assessment and risk management actions
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The Choice of actions usually results in an appropriate mix of actions
(e.g. combining risk transfer and capital allocation).

Impact assessment, analysis of actions and choice of actions imply the use
of an appropriate actuarial toolkit.

The Monitoring phase should involve both the results achieved by the
organization and the assumptions about the scenario (e.g. mortality trends,
behavior of the capital markets, tax legislation, etc.) adopted when choosing
RM actions.

3 Heterogeneity: the awareness

3.1 Among the antecedents: Francis Corbaux

The presence of heterogeneity in respect of mortality is intuitive and sup-
ported by statistical evidence. Well known examples are given by male mor-
tality versus female mortality, by the impact of environmental features on
the age-pattern of mortality, etc.

Heterogeneity has been recognized since the early contributions in de-
mography and actuarial science. As Haberman (1996) notes, the earliest life
tables separately developed for males and females and based on annuitants’
mortality were constructed in 1740 by Nicholas Struyck.

In Corbaux (1833) we find: “The object of consideration . . . various classes
susceptible of being discriminated amongst any extensive population, . . . ”.
Corbaux proposed to split a population into five classes, relying on twelve
risk factors (or proxies), concerning health, lifestyle, environment, etc.

We note that schemes in which rating classes are defined on the basis of
several risk factors constitute a pillar in risk classification for life insurance
business; see Sect. 4.3.1, and in particular, among the earliest contributions,
Rogers and Hunter (1919). Recently, risk factors have also been adopted in
defining rating criteria for underwritten (or special-rate) life annuities; see
Sect. 7.4, and e.g. Rinke (2002) as regards rating criteria.

3.2 Wilfred Perks and the logistic models

As mentioned in Sect. 1, significant efforts have been devoted to explore
possible relationships between heterogeneity and mortality deceleration at
high ages, in particular mortality leveling-off. For a detailed survey, the
reader should refer to Olshansky (1998) and Olshansky and Carnes (1997);
a brief survey is provided by Pitacco (2016a).
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Several models have been proposed, that are strictly related each other
and share the purpose of representing a mortality leveling-off. In formal
terms, the common feature of these models consists in a horizontal asymptote
of the (instantaneous) force of mortality (or hazard function) µx. We note
that, in all the following logistic-type models, the numerator of the fraction
is given by a Makeham (or Gompertz) -type term (see Gompertz (1825),
Makeham (1867)).

In 1932 W. Perks, aiming at the graduation of population mortality data,
proposed two mortality laws; see Perks (1932). The first Perks law is as
follows:

µx =
α eβx + γ

δ eβx + 1
(1)

while the second Perks law has the more general structure:

µx =
α eβx + γ

δ eβx + ε e−βx + 1
(2)

The following law results from the approach to unobservable heterogeneity
proposed by Beard (1959) (as we will see in Sect. 5.2.1):

µx =
α eβx

δ eβx + 1
(3)

We note that the Beard law (3) can simply be obtained from the first Perks
law (1) by setting γ = 0.

Various models have been proposed more recently, still aiming at the
graduation of population mortality data. We first recall the law proposed by
Kannisto (1994):

µx =
α eβx

α eβx + 1
(4)

which can be obtained by setting γ = 0 and δ = α in the first Perks law.
Thatcher (1999) proposed the following expression for the force of mor-

tality:

µx =
ν α eβx

α eβx + 1
+ κ (5)

The simplified version of (5), used in particular for studying long-term trends
and forecasting mortality at very old ages, has ν = 1 and hence only three
parameters, namely α, β and κ:

µx =
α eβx

α eβx + 1
+ κ (6)

All the above models (together with other models) have been tested fitting
mortality data of diverse populations. As regards mortality at old ages, see
for example Thatcher et al. (1998) and references therein.
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3.3 Some forerunners in the Fifties

As mentioned in Sect. 3.2, Robert Eric Beard (1959) provided a seminal con-
tribution to the modeling of heterogeneity due to unobservable risk factors.
According to Beard’s approach, individual mortality is described by a Gom-
pertz or a Makeham law, with parameters depending on a specific longevity
factor (corresponding to what we currently call individual frailty), whose
presence in the population is described by a gamma distribution. It follows
that the mortality in the population follows a particular Perks law, hence
implying deceleration of mortality at high ages. The Beard’s contribution
constitutes the starting point of the fixed-frailty theory (see Sect. 5.2).

The contribution by Louis Levinson (1959) probably constitutes the first
attempt of modeling heterogeneity in a dynamic setting (see Sect. 5.3). The
approach adopted by Levinson relies, in modern terms, on a “multistate”
structure. Every population is heterogeneous in respect of mortality, and
even if split into groups (e.g. the group of insureds accepted as “normal
risks”, the group of “substandard risks”, etc.), each group is affected by some
degree of heterogeneity. Levinson proposed the concept of mortality strata:
each stratum consists of individuals with the same probability of death (re-
gardless of age). Individuals move from one stratum to another one, in
particular because of ageing, and in general because of health deterioration.
The ultimate purpose of Levinson’s work was the construction of life tables
allowing for strata, and the relevant application to US mortality.

Claudio de Ferra (1954), generalizing a previous contribution by de Finetti
and Taucer (1952), focused on a heterogeneous population split into a given
number of homogeneous groups. The age-pattern of mortality in each group
follows a Makeham law, with group-specific parameters. The population
structure is described by the distribution of the parameters. The paper ad-
dresses the calculation of the (non-Makeham) law which expresses the age-
pattern of mortality in the heterogeneous population, given the distribution
of the Makeham parameters, and the construction of a Makeham approxima-
tion to the above law. A specific application, which places this contribution in
the actuarial framework, refers to an insured population consisting of normal
risks and substandard risks, with different extra-mortality levels.

4 Heterogeneity: formal approaches
Looking at demographical and actuarial literature, we can recognize two basic
approaches to heterogeneity in mortality.
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4.1 An “intuitive” approach

A heterogeneous population can be considered as a (finite) set of (more or
less) homogeneous groups. The age-pattern of mortality in the population
can then be represented as a (finite) mixture of the age-patterns of mortality
in the various groups.

Formally, refer to a biometric function f ; for example:

• the (instantaneous) force of mortality, or mortality intensity, or hazard
function µ;

• the annual probabilities of dying q;

• the survival function, i.e. the expected number ` of survivors in a
cohort, or the probability of survival S;

• the life expectancy (e.g. at the birth) e.

For a population split into m groups, the function f is then expressed
as a mixture of the functions f (i), i = 1, . . . , m, pertaining to the various
groups:

f = w1 f (1) + w2 f (2) + · · ·+ wm f (m) (7)
Several specific models can be placed in the framework described by Eq. (7).
For example:

• the functions f (i), i = 1, . . . , m, can be suggested by various risk factors
(e.g. individual health status, individual occupation, geographical area,
etc.), and may be either known or unknown, depending on information
available about the age-pattern of mortality inside each group;

• the weights wi, i = 1, . . . , m, may be either known or unknown, de-
pending on information available about the (relative) group sizes;

• the individual age-pattern of mortality over lifetime may be either fixed,
i.e. each individual remains lifelong in a given group, or variable, i.e.
each individual can move from one group to another one.

Remark

The construction of a uni-gender life table (requested by the European
legislation for pricing insurance products) can be seen as a particular
implementation of the scheme described by Eq. (7) with m = 2. We
also note that the relative sizes w1 and w2 have to be assessed according
to previous portfolio experience, but must be looked at as random
quantities when referring to the future portfolio composition.

We note that Eq. (7) represents a discrete (finite) approach to hetero-
geneity in mortality.
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4.2 Parametric representation: a (rather) general
setting

A rather general setting, suggested by models developed in demography and
in actuarial sciences, can be defined by adopting a parametric approach. In
formal terms:

• choose a biometric function f to represent the “standard” (e.g. aver-
age) age-pattern of mortality in a given population (e.g. the general
population in a country, the members of a pension fund, the insureds
in a portfolio, etc.);

• express a “specific” age-pattern of mortality (in particular, mortality of
people in poorer or better conditions than the average) as a transform
Φ of f , involving various parameters.

Examples of function f have been given in Sect. 4.1. Referring to the force of
mortality, µ, a specific age-pattern of mortality can be expressed as follows:

µ
[spec]
x,t = Φ

[
µ[x]+s+t; ρ

(1)
x,t , . . . , ρ

(r)
x,t; zx,t

]
(8)

where:

x is a given age;

t is the past duration, that is, the time elapsed since a given event
(occurred at age x); thus, x + t is the current age;

µ[x]+s+t denotes (according to the traditional actuarial notation) the
standard select force of mortality at age x + s + t, where s is the
“years-to-age” addition, also called “age-shift” parameter, summarizing
the impact of some observable risk factors; we note that µ[x]+s+t is a
function of the two variables x and s + t separately;

ρ
(j)
x,t represents the impact of the observable risk factor j, j = 1, . . . , r;

zx,t denotes the overall impact of unobservable risk factors.

As regards the meaning of x, we note what follows:

• x can denote the age at policy issue; hence the model (8) is an issue-
select model, expressing the “duration-since-initiation” dependence;

• x can represent the age at disability inception; the model (8) is then an
inception-select model, which expresses the “duration-in-current-state”
dependence;
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• x = 0 can be assumed in a demographical analysis, addressing e.g. the
age-pattern of mortality over the whole life span; in this case, µ[x]+s+t

will simply be replaced by µt.

4.3 Parametric representation: examples

Some examples of parametric representation follow, referring to either ob-
servable or unobservable risk factors.

4.3.1 Observable risk factors (disregarding unobservable risk fac-
tors)

In the context of life insurance technique, assessing the impact of observable
risk factors fits into the framework of risk classification (see e.g. Haberman
and Olivieri (2014)).

We consider the following (rather) general model:

µ
(h)
x,t = A

(h)
x,t µx+s(h)+t + B

(h)
x,t ; A

(h)
x,t , B

(h)
x,t , s

(h) ≥ 0 (9)

where:

x is the age at policy issue, or the age at disability inception, while
x + t is the current age;

µ denotes the standard force of mortality;

h denotes a “group”, i.e. a rating class;

A
(h)
x,t , B

(h)
x,t , s

(h) summarize the impact of the observable risk factors ρ
(j)
x,t,

j = 1, . . . , r, (see formula (8)) by assigning the individual risk to the
group h;

the past-duration effect is accounted for via parameters A
(h)
x,t and B

(h)
x,t .

The model described by Eq. (9) encompasses several simpler formulae
adopted in the actuarial practice. In several implementations, the annual
probabilities of death q are referred to, instead of the force of mortality µ.
We focus on the following examples.

1. The traditional risk classification scheme in life insurance splits the in-
sured population into standard risks and sub-standard risks, for which
an extra-mortality is detected. Simple models for the mortality of
sub-standard lives belong to the actuarial tradition, and are currently
adopted for term insurance rating and, more recently, for underwritten
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life annuities rating (see, for example, Ainslie (2000)). Disregarding, in
particular, the past duration effect, we find the so-called linear model:

µ
(h)
x+t = A(h) µx+t + B(h); A(h) ≥ 1, B(h) ≥ 0 (10)

where h denotes the substandard category. Simplified implementations
are as follows:

µ
(h)
x+t = A(h) µx+t (11)

µ
(h)
x+t = µx+t + B(h) (12)

respectively called multiplicative model and additive model. If µx+t

is (as usual) an increasing function of the attained age x + t, then
Eq. (11) expresses an increasing extra-mortality, while a constant extra-
mortality is expressed by Eq. (12).
Mortality of substandard lives can also be represented via the age-shift
model, frequently used in the life insurance practice:

µ
(h)
x+t = µx+s(h)+t (13)

where the ageing parameter s(h) > 0 summarizes the impact of ob-
servable risk factors via the substandard category h. If the standard
mortality follows the Gompertz law, i.e. µx+t = α eβ (x+t), then the
mortality pattern expressed by Eq. (13) coincides with that expressed
by the multiplicative model (11) with A(h) = eβ s(h) .

2. The use of the above models calls for criteria to assess the parameter
values. In particular, referring to the multiplicative model (11), the
impact of the relevant risk factors can be quantified via the Factor
formula of the “Numerical rating system”, proposed by Rogers and
Hunter (1919) (see also Hunter (1917)), and originally adopted by the
New York Life Insurance in 1919. A set of r risk (and rating) factors
is referred to, and the individual specific mortality is then expressed as
follows:

q
[spec]
x+t = qx+t

(
1 +

r∑
j=1

ρ(j)
)

(14)

where qx+t represents the standard mortality pattern, and, of course:

−1 <

r∑
j=1

ρ(j) <
1

qx+t

− 1

We note that formula (14) constitutes a particular implementation of
(8), in terms of q instead of µ and, of course, disregarding the impact
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z of unobservable risk factors.
Each parameter ρ(j) in (14) can take either a positive value (then ex-
pressing a “debit”) or a negative value (“credit”). The total effect of
the parameters leads to a higher or lower death probability for the
individual with respect to the standard probability qx+t. This way, for-
mula (14) can also represent the mortality patterns of risks better than
the standard ones, i.e. the so-called preferred risks (see, for example:
Hughes (2012), Munich Re (1999), and Werth (1995)). Hence, the more
detailed classification follows:

• preferred risks:

• standard risks;

• sub-standard risks.

For more details, see: Cummins et al. (1983); an alternative criterion
for risk classification is discussed by Ingle (2013).

3. The mortality pattern of annuitants, who purchased a standard life
annuity and are hence supposed in very good health conditions, can be
expressed, via a multiplicative adjustment, as follows:

µ
[ann]
x,t = Ax,t µx+t (15)

where:

µx+t denotes the (projected) population mortality, or the mortality
of pensioners who are members of an occupational pension plan;

x is the age at policy issue, while x + t is the current age;

Ax,t (0 < Ax,t ≤ 1) is an increasing function of the policy past
duration t, expressing a self-selection whose impact on the an-
nuitant’s mortality is assumed strong at policy issue and then
decreasing.

4. Mortality of disabled people is a key input item in actuarial calculations
for many life and health insurance products, in particular disability
annuities providing income protection and Long-term Care (LTC) in-
surance products paying annuities to the elderly who need assistance.
See, for example: Pitacco (2014).
According to statistical evidence, the extra-mortality of a disabled in-
dividual has a peak immediately after the disability inception, then
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decreases. Following, for example, the approach proposed by Venter
et al. (1991), we set:

q
[disab]
[x]+t = a + (qx+t)

b f(t) (16)

where x is the age at disability inception, q
[disab]
[x]+t is the inception-select

probability of death, qx+t is the standard probability of death, and f(t)
(f(t) ≥ 1) is a definitely decreasing function of t. Specific statistical
data concerning US disabled workers suggested the simpler model:

q
[disab]
[x]+t = qx+t f(t) (17)

which provides an example of simplified implementation of the model
(9), in terms of the probabilities q.

5. A formula with additive extra-mortality, applied to the q’s (instead of
the µ), has been proposed by Rickayzen and Walsh (2002) for modeling
themortality of LTC-disabled people; see also Rickayzen (2007), and the
sensitivity analysis in Pitacco (2016b).
The mortality pattern is expressed as follows:

q
(h)
x+t = qx+t + ∆(x + t; α, h) (18)

with:
∆(x + t; α, h) =

α

1 + 1.150−(x+t)

max{h− 5, 0}
5

(19)

where:

• the parameter h expresses the LTC severity category summarizing
the risk factors ρ

(j)
x,t, j = 1, . . . , r, according to the UK OPCS scale;

in particular:

0 ≤ h ≤ 5 denotes less severe LTC states, with no significant
impact on mortality;
6 ≤ h ≤ 10 denotes more severe LTC states, implying an
extra-mortality;

• the parameter α is chosen according to the type of the standard
mortality q (e.g. population mortality versus insured lives mor-
tality).

Also Eq. (18) provides an example of simplified implementation of the
general model (9).
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4.3.2 Unobservable risk factors (disregarding observable risk fac-
tors)

Assume, for simplicity of notation, that µ (or q, etc.) refers to a group of
individuals which is homogeneous in respect of the observable risk factors.

Then, disregarding the past-duration effect on the standard force of mor-
tality µ, Eq. (8) reduces to:

µ
[spec]
x,t = Φ

[
µx+t; zx,t

]
(20)

Eq. (20) encompasses a number of models. In particular, two basic assump-
tions can be adopted in relation to the impact of unobservable risk factors
on individual mortality, the choice depending, to a large extent, on what
individual characteristics are considered as causes of heterogeneity.

The assumption zx,t = zx (where x denotes a given age, e.g. x = 0)
expresses an impact independent of the attained age. For example, we can
set:

µ
[spec]
x+t = µx+t zx (21)

where issue-select and inception-select effects are disregarded. Fixed-frailty
models implement this assumption (see Sect. 5.2).

Conversely, if we assume zx,t = zx+t, then the impact of unobservable
heterogeneity depends on the attained age x+ t and hence can vary over the
individual lifetime. Variable-frailty models implement this assumption (see
Sect. 5.3).

Further, the variable zx,t expressing the impact can either be real-valued
or can take a finite set of values. The above possible settings are sketched in
Fig. 2; several examples are provided in the following Sections.

5 Seminal contributions
A survey on seminal contributions to the modeling of observable and unob-
servable heterogeneity is provided in this Section.

5.1 Discrete approaches to heterogeneity and frailty

5.1.1 One-year mortality: a range of settings

A population of Bernoulli risks is addressed in an interesting paper by A. H.
Pollard (1970). For each risk, a given event (e.g. the individual’s death) may
either occur or not in a one-year period. All individuals are assumed aged x;
qx generically denotes the probability of the event.
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According to Pollard (1970): “The population value of qx may be con-
sidered as the weighted sum of the rates of mortality of groups of persons
suffering from particular disabilities. If there is any variation in the propor-
tion suffering, for example, from particular heart conditions or if there is any
variation in the degree of such impairments then variations in the population
value of qx must be expected in addition to the random variations which occur
in the observed rate of mortality when qx is constant.”

Two aspects in particular emerge: (1) the population can be split into
(homogeneous) groups; (2) (possible) “uncertain” features are allowed for, in
particular concerning the (relative) size of the groups and the impact of risk
factors on the event probability within some groups.

Various settings are considered by Pollard (1970):

1. The population consists of one group of independent risks, and the
same probability qx affects all the individuals; hence, the number of
events follows a binomial distribution.

2. The population is split into m groups of independent risks, each one
with given size n(i) and given probability q

(i)
x . This setting expresses a

situation of “known” heterogeneity. It can be proved that the variance
of the total number of events is lower than in case 1.

3. The population consists of one group, and a random qx, with given
expected value and variance, affects all the individuals; the risks are
assumed independent conditionally on any possible outcome of qx. The
variance of the total number of events is higher than in case 1.

4. Combining features of case 2 and case 3 leads to a variance of the total
number of events which, compared to case 1, is lowered because features
of 2 and increased because features of 3.

5. The population is split into m groups of independent risks, each group
with random size n(i) but given probability q

(i)
x . This setting expresses a

situation of “unknown” heterogeneity. The variance of the total number
of events, compared to case 1, is lowered thanks to the splitting into
groups but increased because their random sizes.

6. The population is split into m groups, each one with random size n(i)

and random probability q
(i)
x . Also this setting expresses a situation of

“unknown” heterogeneity. Cases 1 to 5 can be recognized as particular
implementations of this general setting.
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We note that all the above cases can be traced back to the scheme defined
by Eq. (7), referred, for example, to one-year mortality.

The above model can be generalized. In particular, distributional hy-
potheses (not considered by Pollard (1970)) can be assumed for the unknown
qx and the random sizes n(i). Further, frailty assumptions can be adopted
for the individual probability of death. See Pitacco (2018).

5.1.2 Other discrete models

According to Redington (1969), a heterogeneous population can be split into
a given number of homogeneous groups (i.e. subpopulations). The mortality
in each group is described by a Gompertz law with group-specific parameters.
The distribution of the two Gompertz parameters is assumed symmetric.
Then, the average force of mortality in the population can be calculated and
compared to the “central” force of mortality obtained by assigning to the
parameters their modal values. Because of heterogeneity, the average force
of mortality is expected to be lower than the central one, especially when old
ages are addressed. A similar result is obtained in a continuous model, as we
will see in Sect. 5.2.1.

The approach proposed by Keyfitz and Littman (1979) leads to a very
simplified model, anyhow valuable because it marks some significant features
of heterogeneity in mortality. A heterogeneous population can be split into
a given number of homogeneous groups but the relative sizes of the groups
are unknown because of unobservable heterogeneity. The paper in particu-
lar focusses on the impact of heterogeneity on the average expected lifetime,
concluding that, if the presence of heterogeneity is disregarded, an under-
estimation of the average expected lifetime follows. This result constitutes
an important issue in the management of life annuity portfolios and pension
plans.

5.2 Unobservable heterogeneity: fixed-frailty models

5.2.1 The basic fixed-frailty model

The fixed-frailty approach was first proposed by Beard (1959), but formally
defined by Vaupel et al. (1979).

Assume that:

• the heterogeneity due to unobservable risk factors is expressed by the
individual frailty ;

• the individual frailty (an unknown positive real number) remains con-
stant over the whole life span.
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Let denote by µy(z) the (conditional) force of mortality of a person current
age y, with a generic frailty level z (z > 0). Further, let define the standard
force of mortality µy, in a given cohort, as the force of mortality conditional
on a given frailty level z∗. Assuming, as usual, z∗ = 1 we have:

µy = µy(1) (22)

Let denote by gy(z) the probability density function (pdf) of the frailty
distribution in the cohort at age y. Then the average force of mortality in
the cohort is given by:

µ̄y =

∫ +∞

0

µy(z) gy(z) dz (23)

Specific models and results rely on:

1. the model for the standard force of mortality µy;

2. the relation between µy(z) and µy;

3. the pdf of the frailty distribution at a given age x, e.g. x = 0: g0(z).

In particular, combining:

1. the Gompertz law for the individual standard force of mortality, that
is: µy = α eβ y,

2. the multiplicative model for the force of mortality:

µy(z) = z µy (24)

3. the Gamma distribution of the frailty, e.g. at age x = 0, with parame-
ters δ, θ,

we obtain:

µ̄y =
α′ eβy

δ′ eβy + 1
(25)

We note what follows.

• Eq. (24) expresses the so called proportional frailty, and constitutes a
simple implementation of model (20), with x + t = y and zx,t = const.

• The above model, usually named the Gompertz - Gamma model, leads
to the Beard law (25) (see also Eq. (3)), that is, a particular case of
the first Perks law (see Eq. (1)), with parameters α′, δ′ depending on
the parameters δ, θ of the frailty distribution.
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• The Beard law belongs to the logistic class, and hence implies a decel-
eration in the cohort mortality (see Sect. 3.2).

Hence, deviations of the individual mortality from the cohort mortality is a
straightforward consequence of the assumed heterogeneity inside the cohort.

As noted by Vaupel and Yashin (1985), “. . . the deviation of individual
death rates from population rates implies some surprising and intriguing re-
sults”, among which: “Death rates for individuals increase more rapidly than
the observed death rate for cohort”.

For a formal presentation of the above results, see, for example: Haber-
man and Olivieri (2014), Pitacco et al. (2009).

5.2.2 An intuitive interpretation of the logistic shape

Assume that a cohort only consists of low-frailty individuals; mortality obser-
vation then leads to estimate the force of mortality µy(z1), and to determine
the maximum attained age ω(z1), where z1 represents the (hypothetical)
frailty level.

Assume, conversely, that a cohort only consists of medium-frailty (high-
frailty) individuals; mortality observation then leads to estimate the force of
mortality µy(z2) (µy(z3)), and to determine the maximum attained age ω(z2)
(ω(z3)), where z2 (z3) represents the (hypothetical) frailty level inside the
cohort. The results of the above hypothetical observations are sketched in
Fig. 4.

    

Force of 
mortality 

 

�(z1) 
�(z2) �(z3) 

z = z1 
z = z2 z = z3 

Age   

Figure 4: A set of forces of mortality depending on the parameter z

Real mortality observations address, of course, multi-frailty cohorts. Then,
an “average” force of mortality can only be estimated. The average force of
mortality, i.e. the cohort force of mortality, progressively moves towards
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Figure 5: The average force of mortality in the cohort

low-frailty individual forces as the average frailty level decreases, and, as a
consequence, the increase in the average force of mortality slows down. See
Fig. 5, in which the idea of decelerating force of mortality is sketched; a
numerical example is conversely provided by Fig. 6.
    

The pdf of the frailty distribution The force of mortality 

Gompertz 
Perks 

Figure 6: The Gompertz-Gamma model (Source: Pitacco et al. (2009))

5.2.3 Implementing and generalizing the basic model

A number of contributions followed the seminal proposals described in Sect.
5.2.1. See, in particular, Hougaard (1984, 1986), Manton et al. (1986), Stein-
saltz and Wachter (2006), Yashin et al. (1985) and Yashin and Iachine (1997).
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A compact review is provided by Haberman and Olivieri (2014). It is worth
noting that several generalizations have been proposed; for example:

• the force of mortality expressed by the Makeham law (Beard (1959)),
or the Weibull law (Manton et al. (1986));

• the frailty distribution given by the inverse Gaussian (Hougaard (1984,
1986), Manton et al. (1986), Butt and Haberman (2004, 2002)), the
shifted Gamma distribution (Martinelle (1987)), the generalized Gamma
distribution (which includes, as particular cases, the lognormal and the
Weibull distributions; see e.g. Balakrishnan and Peng (2006)).

For a more general framework, the reader should refer to: Duchateau and
Janssen (2008) and Wienke (2003).

Among the most recent implementations of the Beard law, see Dodd et al.
(2018); see also the references therein.

5.3 Unobservable heterogeneity: variable individual
frailty

As noted in Sect. 1, individual frailty can be interpreted in several ways,
according to the causes which are considered as originating the frailty itself.
It follows that the individual frailty can be assumed either constant or vari-
able (in particular age-dependent) throughout the lifetime. The modeling
framework proposed by Beard (1959) and Vaupel et al. (1979) (see Sect.5.2)
relies on the assumption of constant individual frailty.

An influential contribution to the modeling of age-dependent frailty was
provided by Hervé Le Bras (1976). The contribution can be placed in the
framework of mortality modeling aiming to define the limit age. According
to the proposed approach, a mortality law must be the result of assumptions
on the structure of a process describing the evolution of individual mortality
throughout the whole life. The following basic assumptions were considered
by Le Bras (1976):

1. each individual has an “initial frailty” (denoted as “faute”);

2. the “transition” probabilities, i.e. the probabilities of increase in frailty
(“nouvelle faute”) and the probability of death, are proportional to the
current frailty level.

The resulting mortality law approximately follows the Gompertz age-pattern
up to some age, then tending to a limit, and hence resulting in a logistic-like
shape.

We note that:
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• according to assumption 2, the individual frailty is modeled as a Markov
process;

• an implementation of model (20) can be recognized, in terms of annual
probabilities q (instead of the force of mortality µ).

6 Some recent contributions
A strengthened interest in heterogeneity modeling has recently emerged both
in demography and in actuarial science as well. Heterogeneity due to unob-
servable risk factors has been invoked as a possible cause of mortality decel-
eration at high ages (although the relation between heterogeneity and mor-
tality deceleration constitutes a controversial issue; see for example Pitacco
(2016a), and references therein).

In the actuarial technique, the assessment of the portfolio risk profile in
presence of heterogeneity calls for appropriate stochastic models (see Sects.
7.1 to 7.3). Further, an appropriate modeling of observable heterogeneity
underpins the design and pricing of underwritten (or “special-rate”) annuity
products (see Sect. 7.4).

6.1 The Markov framework

The Markov modeling framework, originally proposed by Le Bras (1976),
has been adopted by many Authors. Interesting applications in the actuarial
field will be cited in Sect. 7. Here we only refer to two papers based on the
ideal of physiological age.

In Lin and Liu (2007) a finite-state Markov process is adopted to model
human mortality. The individual health status is represented by the physi-
ological age, and modeled by the Markov process, each state of the process
representing a possible outcome of the physiological age. The random time of
death then follows a phase-type distribution. Hence, the frailty is measured
by the physiological age, and is distributed according to the distribution of
individuals among age classes.

The model proposed by Lin and Liu (2007) has been generalized by Liu
and Lin (2012). Uncertainty in mortality has been introduced, and the gen-
eralization results in a subordinated Markov model.
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6.2 Splitting a heterogeneous population into
(homogeneous) subpopulations

Avraam et al. (2013) note that deviations from the Gompertz age-pattern
of mortality can be observed in any population, and these deviations are
particularly significant at very low ages and at highest ages. How to ex-
plain deviations from the Gompertz pattern? Heterogeneity with respect to
mortality is considered as an important cause of deviations. The Authors’
proposal then consists in splitting a generic population into homogeneous
groups, i.e. subpopulations, and assessing the mortality of each group by
adopting a Gompertz law with specific parameters. Referring to mortal-
ity data of the Swedish and US populations, deviations from the Gompertz
pattern are explained by both heterogeneity and stochastic effects, the latter
having an important impact particularly when the number of deaths is small,
that is in early- and late-life age intervals.

We note that the modeling framework proposed by Avraam et al. (2013)
can be traced back to the general structure defined by Eq. (7).

Generalizations of the previous model have been proposed by Avraam
et al. (2014, 2016), by allowing for evolution of the parameters over time, so
that a mortality trend can be represented.

6.3 From Gompertz to Makeham: a frailty-based
interpretation

As is well known, Makeham (1867) generalized the Gompertz law by adding
a constant term, that is, a term independent of the attained age. Makeham’s
generalization can be interpreted in terms of a “shock” model (see, for exam-
ple, Doray (2008)). Assume that: (a) the random lifetime T of a person has
a Gompertz distribution, (b) the random time Y to a fatal accident has an
exponential distribution, and (c) T and Y are independent; then, the random
variable min{T, Y } has a Makeham distribution.

An interesting alternative interpretation of Makeham’s generalization has
been provided by Lindholm (2017), which can be summarized as follows.
Assume that all the individuals in a cohort follow a common baseline force of
mortality µy = eβ y, that is, a particular case of the Gompertz law, combined
with an individual proportional frailty Z, which follows a specific translated
gamma distribution. Then, the force of mortality in the cohort is given by the
Makeham law, µy = γ + α eβ y, whose parameters depend on the parameters
of the translated gamma distribution.
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7 Heterogeneity in actuarial evaluations
The actuarial models for all life insurance products (and, more generally, for
all products in the area of the insurances of the person, that is, including e.g.
health insurance products) call for assumptions about the insureds’ or an-
nuitants’ mortality. Hence, both observable and unobservable heterogeneity
should be taken into account.

The assessment of observable heterogeneity belongs to the actuarial tra-
dition, as far as pricing and reserving for insurance products providing death
benefits (in particular, term assurances) are concerned. Simple formulae are
commonly adopted, for example, to express extra-mortality of substandard
lives or disabled insureds (see Sect. 4.3.1).

Of course, the longer the duration of the insurance contract, the higher the
impact of mortality assumptions may be. It follows that particular attention
should be placed on these assumptions when implementing actuarial models
for life annuities, and specifically when assessing the risk profile of an annuity
portfolio.

Allowing for observable risk factors when pricing life annuities is a re-
cent issue in the life insurance context. The premiums for underwritten (or
special-rate) life annuities are actually based on the applicant’s health status,
assessed via observable risk (and rating) factors. Conversely, analyzing the
impact of unobservable heterogeneity constitutes a lively topic in the current
research work.

In what follows, we focus on mortality heterogeneity in life annuities.
Table 1 summarizes the main topics addressed in the next sections, which,
from a Risk Management perspective, can be interpreted as “actions” in the
management of a life annuity portfolio.

Table 1: RM Objectives & Actions

Objectives Actions

Profit, value creation Product design, PricingMarket share

Solvency Capital allocation, Reinsurance, ART

25



7.1 Pricing and reserving

Does disregarding (unobservable) heterogeneity in a life annuity portfolio
leads to wrong pricing and reserving? This problem has been attacked by
Olivieri (2006). A portfolio of life annuities is referred to; all the annuitants
are assumed initially aged x = 65; the portfolio is closed to new entrants, and
death is the only cause of decrement. The same annual benefit b is paid to all
the annuitants. Mortality in the portfolio is alternatively described by the
Gompertz law and the Beard law (that is, according to the Gompertz-Gamma
model, a fixed individual frailty is assumed; see Sect. 5.2.1). The Gompertz
parameters are assessed so to represent a best-estimate pattern of mortality
in a life annuity portfolio. According to the main achievements, disregarding
heterogeneity in the portfolio (that is, assuming the best-estimate Gompertz
mortality pattern) leads to:

• underestimation of the actuarial values and hence, in particular, of
premiums and policy reserves;

• underestimation of the (relative) riskiness in the portfolio (expressed
by the coefficient of variation of the net present value of benefits), and
hence underestimation of the adequacy requirements, in terms of risk
margin and/or solvency capital.

A portfolio of life annuities is also referred to by Su and Sherris (2012).
Various mortality assumptions have been considered. In particular, the fol-
lowing heterogeneity models have alternatively been adopted:

• fixed individual frailty, Gamma distributed or inverse Gaussian dis-
tributed;

• variable frailty, according to the Markov ageing model proposed by Lin
and Liu (2007).

The Authors note that life annuity rates are usually stated assuming a signif-
icant annuitants’ self-selection, with a negative impact on the annuitization
propensity. The above models are used to illustrate the financial impact of
heterogeneity on the probability distribution of life annuity values. Both
the models for heterogeneity have implications for annuity markets, and the
results show clearly that heterogeneity needs to be taken into account if a
viable life annuity market is to be developed.
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7.2 Capital allocation

What is the appropriate capital allocation in face of a heterogeneous life an-
nuity portfolio? Solvency requirements, and in particular capital allocation,
should allow for all the risk components which affect the results (cash flows,
profits, etc.) of a life annuity portfolio.

In Sherris and Zhou (2014) all the biometric risk components are taken
into account:

1. the idiosyncratic longevity risk, that is, the risk of random fluctuations
around the relevant expectations;

2. the aggregate longevity risk, that is the risk of systematic deviations
from the relevant expectations;

3. the risk originated by unobservable mortality heterogeneity among the
annuitants.

As is well known, the aggregate longevity risk cannot be diversified via pool-
ing, while the idiosyncratic risk can be diversified thanks to appropriate pool
sizes. However, the unobservable heterogeneity weakens the diversification
of the idiosyncratic risk, and hence should not be disregarded when assessing
the portfolio risk profile and the related solvency requirements. Sherris and
Zhou (2014) represent mortality heterogeneity using both the fixed frailty
and the variable frailty model, and show that, when a mortality model also
includes systematic risk, a larger pool size results in a heavier tail risk, and
then in a higher capital requirement. This effect is not captured by standard
models of heterogeneity.

7.3 ART

Alternative Risk Transfers (swaps, mortality-linked securities, etc.) must be
implemented in order to hedge biometric risks which are non-diversifiable via
pooling. As specifically regards the longevity risk, longevity bonds transfer
this risk from annuity providers to capital markets. In order to evaluate and
price mortality-linked securities, appropriate mortality models are required,
allowing for all the risk components.

Liu and Lin (2012) adopt a subordinated Markov model for modeling
stochastic mortality. In particular, the aging process of an individual is
assumed to follow a finite-state Markov process, while the stochasticity of
mortality is governed by a subordinating gamma process. Finally, a valuation
framework for pricing longevity bonds is proposed, based on the above model
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7.4 Product design: the underwritten annuities

Can mortality heterogeneity in a population of potential annuitants suggest
rating procedures in order to enlarge life annuity portfolios? A positive re-
sponse relies on the possibility of implementing annuity products which, un-
like the standard immediate annuities, can also attract people in non-optimal
health conditions.

To this purpose, underwritten annuities (or special-rate annuities, or sub-
standard annuities) have been defined, i.e. life annuities with lower premiums
for individuals in non-optimal health conditions (see, for example, Pitacco
(2017) and references therein). An underwriting procedure is required in
order to assess the applicant’s health status.

As noted by Meyricke and Sherris (2013), standard life annuities are
priced assuming above-average longevity (as regards the related mortality
assumption, see point 3 in Sect. 4.3.1), whereas underwritten annuity rates
can reflect individual risk factors based on underwriting results. Of course,
mortality risk still varies within each rating class due to unobservable in-
dividual risk factors, that is, because of individual frailty. Meyricke and
Sherris (2013) quantify the impact of heterogeneity due to underwriting fac-
tors and frailty on the values of both standard and underwritten annuities,
and propose a method to adjust annuity rates in order to allow for frailty.

Classification systems for underwritten annuities are addressed by Gatzert
et al. (2012). The Authors propose a theoretical model to determine the
optimal classification system, aiming at the maximization of the insurer’s
profits. In the optimization model, the following features are accounted for:

• the interactions between annuity price and demand;

• the classification costs;

• the underwriting risk, expressed by the cost of “insufficient” risk assess-
ment, which can result in assigning applicants to the “wrong” rating
classes.

Olivieri and Pitacco (2016) refer to a portfolio consisting of both stan-
dard annuities and underwritten annuities. Heterogeneity is expressed by
the individual fixed frailty model. The underwriting process aims at provid-
ing, for each applicant, an estimate of his/her frailty level. Looking at the
effects of portfolio enlargement, on the one hand, the larger portfolio size
contributes to lower the variance in portfolio results (as regards the idiosyn-
cratic risk, i.e. the risk of random fluctuations), on the other heterogeneity in
the combined portfolio contributes to raise the variance in portfolio results.

28



Besides the heterogeneity among subportfolios, actually some degree of resid-
ual heterogeneity affects each subportfolio, because of residual unobservable
risk factors: indeed, the underwriting process only provides a proxy for the
health status assessment. What about the “balance” between improvement
and worsening of the portfolio risk profile? Numerical examples show that
an appropriate definition of the rating classes can provide a net improvement
of the portfolio risk profile.

8 Concluding remarks
Heterogeneity in mortality is due to both observable and unobservable risk
factors. The awareness of heterogeneity due to observable risk factors can
be traced back to the mid of the Eighteenth century, as noted in Sect. 3.1.
Conversely, the effect of unobservable risk factors has later been taken into
account: early models for unobservable heterogeneity indeed date back to
the mid of the Twentieth century (see Sects. 3.2 and 3.3).

Different modeling approaches are required when addressing observable
or unobservable risk factors respectively (although a formal representation
of the joint impact of all the factors is in principle conceivable, as seen in
Sect. 4.2). It follows that, usually, practicable models only focus on either
observable or unobservable factors.

Nevertheless, significant efforts have recently been devoted to analyze the
combined effect of observable and unobservable risk factors on the mortal-
ity pattern. The term “inequality” has commonly been used, especially in
the socio-economic framework, to encompass the set of causes which can be
considered as determinants of mortality (income, education, access to health
care, home and living environment, social connections, etc.).

Although the topic of inequality is outside the scope of this survey, some
bibliographic references can help the reader in understanding the main as-
pects of this field of research. Interesting results of a statistical analysis at an
international level are presented and discussed by Rodgers (1979). Among
more recent contributions, the reader can refer, for example, to Daly and
Wilson (2013) and Deaton and Paxson (2001) (focussing on dynamic aspects
of income inequalities and mortality patterns), and Scharf and Shaw (2017)
(addressing inequalities at high ages). All the cited papers also provide ex-
tensive lists of references.

Back to actuarial implications of heterogeneity, specifically due to unob-
servable risk factors, we stress that special attention should be devoted to
the risk profile of heterogeneous portfolios, particularly when life annuities
are concerned. Indeed, assessing and hedging biometric risks (and tail risk
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in particular) constitutes a complex setting in which all the risk components
(heterogeneity included) should be accounted for.
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