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Abstract

We present a numerical approach to the pricing of guaranteed minimum maturity benefits
embedded in variable annuity contracts in the case where the guarantees can be surrendered
at any time prior to maturity that improves on current approaches. Surrender charges are
important in practice and are imposed as a way of discouraging early termination of variable
annuity contracts. We formulate the valuation framework and focus on the surrender option
as an American put option pricing problem and derive the corresponding pricing partial
differential equation by using hedging arguments and Itô’s Lemma. Given the underlying
stochastic evolution of the fund, we also present the associated transition density partial
differential equation allowing us to develop solutions. An explicit integral expression for the
pricing partial differential equation is then presented with the aid of Duhamel’s principle.
Our analysis is relevant to risk management applications since we derive an expression for
the sensitivity of the guarantee fees with respect to changes in the underlying fund value
(called the “delta”). We provide algorithms for implementing the integral expressions for
the price, the corresponding early exercise boundary and the delta of the surrender option.
We quantify and assess the sensitivity of the prices, early exercise boundaries and deltas to
changes in the underlying variables including an analysis of the fair insurance fees.
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1 Introduction

A variable annuity is a contract between a policyholder and an insurance company where the

policyholder agrees to pay either a single premium or a stream of periodic premium payments

during the accumulation phase in return for minimum guaranteed payments from the insurer

during the annuitization phase. Variable annuities are long-term insurance contracts designed to

meet retirement and other long-range goals. The guarantees embedded in these contracts offer

protection against the possibility of the policyholders outliving their assets. These guarantees

exhibit financial option-like features. There are two major classes of guarantees: guaranteed

minimum death benefits (GMDBs) and guaranteed minimum living benefits (GMLBs).

GMDBs are usually offered during the accumulation phase and they provide guaranteed pay-

ments of the accumulated value of premiums to beneficiaries in the event of untimely death of the

policyholder. GMLBs provide principal and/or income guarantees to protect the policyholder’s

income from declining during the annuitization phase. GMLBs can be further categorized into

three subclasses, namely, GMxB, where “x” stands for maturity (M), income (I) and withdrawal

(W). A GMMB guarantees the return of the premium payments made by the policyholder or

a higher stepped-up value at the end of the accumulation period. On the other hand, a GMIB

guarantees a lifetime income stream when a policyholder annuitizes the GMMB regardless of

the underlying investment performance. A GMWB guarantees a stream of income payments,

regardless of the contract account value and payments can be guaranteed for a specified period

or for the lifetime of the policyholder.

Insurance companies usually charge proportional fees on variable annuity contracts as a way of

funding the guarantees. If such fees are too high relative to the performance of the fund, the

policyholder has an incentive to surrender the contract, or the guarantee, prior to maturity in

return for a surrender benefit. The benefits are usually net of surrender/penalty charges which

is a way of discouraging early termination of the contracts. In this paper we will focus on the

valuation of the GMMB rider embedded in a variable annuity contract in the case where the

guarantee can be surrendered anytime prior to maturity. This valuation problem has received

little attention in the literature. Shen and Xu (2005) consider the fair valuation of equity-linked

policies with interest rate guarantees in the presence of surrender options using the partial

differential equation approach. The valuation problem is reduced to a free boundary problem
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which can be solved using a variety of numerical techniques such as finite difference schemes.

The authors also derive explicit Black-Scholes type solutions (see also Black and Scholes (1973))

for the case where there are no surrender options. Constabile et al. (2008) consider a similar

valuation problem and devise a binomial tree approach to determine fair premium values.

Bauer et al. (2008) provide a general framework for consistent pricing of various types of guar-

antees embedded in variable annuities which are currently traded in the market. They present

an extensive analysis of the guarantees by incorporating the possibility of surrendering the con-

tracts anytime prior to maturity. Bacinello (2013) considers the pricing of participating life

insurance policies with surrender options using a recursive binomial tree approach. Bernard

et al. (2014) use techniques developed in Carr et al. (1992) to derive the representation of the

optimal surrender strategy for a variable annuity contract embedded with guaranteed minimum

accumulation benefits (GMAB). In deriving the pricing framework, Bernard et al. (2014) treat

the entire variable annuity contract (the mutual fund plus the GMAB) as a single underlying

asset and then derive the corresponding pricing formulas. Advances in the valuation of GMWBs

embedded in variable annuities and surrender options in participating life insurance policies are

also found in Milevsky and Salisbury (2006), Hyndman and Wenger (2014), Siu (2005) and

references therein.

In this paper, we provide new and alternative derivations and representations of the GMMB

embedded in a variable annuity contract where the policyholder can surrender the guarantee

anytime prior to maturity. In contrast to the approach used in Bernard et al. (2014), who treat

the variable annuity contract as a single product, we decompose the annuity contract into a

mutual fund and a guarantee. We then focus on valuing the guarantee, and in so doing, the

impact of various parameters on the GMMB can be explicitly assessed. We then provide a

detailed numerical analysis of the guarantee and compare it with American put options. This

approach readily allows insurance companies and annuity providers to compare variable annuity

contracts with traditional mutual funds.

The early exercise feature on the GMMB makes the valuation problem similar to that encoun-

tered in American put option pricing. This leads us to presenting the valuation problem of the

option embedded in the GMMB as an optimal stopping time problem. Using well established

arguments developed in Jacka (1991), Myneni (1992) and El Karoui and Karatzas (1993), we

3



transform the optimal stopping time problem into a free-boundary problem leading to an equiv-

alent representation in Shen and Xu (2005). By incorporating Jamshidian (1992)’s techniques

for transforming the free-boundary problem to a non-homogeneous partial differential equation

(PDE), we derive the general integral solution of the PDE with the aid of Duhamel’s principle.

This differs from the probabilistic approach adopted by Bernard et al. (2014). We can readily

derive expressions for the corresponding early exercise boundary and the delta, which is the

sensitivity of the option price with respect to changes in the fund value.

Numerical results quantifying the early exercise boundary profiles, premiums to be charged per

guarantee and the corresponding delta profiles are presented, in contrast to Bernard et al. (2014)

where only the optimal exercise boundary and fair insurance charges are given in their numerical

examples.

We confirm that when surrender charges are relatively high, it is optimal to delay exercising

the guarantee early as a significant amount of surrender benefits can be consumed by early ter-

mination charges. We perform numerical comparisons between standard American put options

and surrender options by assessing the impact of continuously compounded insurance charges

and surrender fees on the premium to be levied on guarantees. We quantify the extent that

premium values for surrender options are consistently higher than the corresponding American

put option prices reflecting the effects of surrender charges and the fees levied for providing

variable annuities. This highlights the higher premiums that insurers can earn from the sale of

variable annuity contracts as compared to premium proceeds from selling standard American

put options.

The rest of the paper is structured as follows. Section 2 sets up the model dynamics and

relates the valuation of GMMB to American option pricing. The general integral solution of

the valuation problem is presented in Section 3 together with expressions for the corresponding

early exercise boundary and delta of the option. Algorithms for numerically implementing

the valuation expressions are presented in Section 4. Numerical results are then presented in

Section 5 followed by concluding remarks in Section 6. Lengthy derivations and proofs have

been relegated to the Appendices.
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2 Problem Statement

Let [0, T ] be a finite horizon and (Ω,F ,Q) be a probability space carrying a one-dimensional

standard Brownian motion W = (Wt)0≤t≤T . Here, Q is the risk-neutral probability measure.

Throughout this paper, we denote by E[·] the expectation under Q. Let F = (Ft)0≤t≤T be the

natural filtration which is generated by the standard Brownian motion W and satisfies the usual

conditions. We consider a variable annuity contract embedded with a guaranteed minimum

maturity benefit (GMMB) rider where the policyholder can choose to surrender the guarantee

anytime prior to maturity. The policyholder’s premium is invested in a fund consisting of units

of an underlying asset, S = (St)0≤t≤T , whose risk-neutral evolution is governed by a geometric

Brownian motion model as

dSt = rStdt+ σStdWt, (1)

where r > 0 and σ > 0 are the risk-free interest rate and the volatility of the underlying asset,

respectively. The fund value at time t is denoted as

Ft = e−ctSt, (2)

where c is the continuously compounded insurance charge levied on the fund value by the variable

annuity provider (see Milevsky and Salisbury (2001)). It can be shown that the risk-neutral

dynamics of the fund value, F = (Ft)0≤t≤T , satisfies

dFt = (r − c)Ftdt+ σFtdWt. (3)

Using the risk-neutral arguments, initial value of the variable annuity contract, X0, net of initial

expense charges can be represented as the expected discounted value of the terminal payoff, that

is

X0 = E
[
e−rT max(GT , FT )

]
= E

[
e−rTFT

]
+ E

[
e−rT max(GT − FT , 0)

]
, (4)

where FT is the fund value at maturity time T , given that the insurance fee charged during

t ∈ [0, T ] is equal to c, and GT is the guaranteed value at maturity of the contract Equation (4)

is made up of two components: the first being the expected discounted value of the terminal
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fund value and the second being a put option which is equivalent to a guarantee rider to be

exercised only if the terminal fund value is below the guaranteed amount, GT .

Remark 2.1. Bernard et al. (2014) are concerned with finding the fair insurance charge c∗

such that the pricing equation F0 = E
[
e−rT max(GT , F

c∗
T )

]
, where F c∗

T denotes the fund value

at T when the insurance charge is c∗, is fulfilled. Our paper focuses on calculating the price of

the variable annuity contract for a given insurance charge c. Indeed, the problem of finding the

fair insurance charge can be nested in the framework of our paper. That is, setting X0 ≡ F0 in

equation (4), we can determine the fair insurance charge endogenously similar to determining

implied volatility from option price data.

Whilst equation (4) is akin to a standard European put option, the policyholder may find it

optimal to exercise the guarantee prior to maturity. Among such events include the guarantee

being deep out-of-the-money. In such a case, the policyholder will be better off not to hold the

guarantee as the probability of it ending up in-the-money will be very low. The second case is

when the continuation value of the guarantee is equal to the immediate exercise value prior to

maturity. In the event of the guarantee being exercised prior to maturity, early termination/

surrender charges will be applied such that the fund value to be used for computing premiums

for the guarantee reduces to

(1− κt)Ft, (5)

with κt being the penalty percentage charged for exercising the guarantee at time t. Milevsky

and Salisbury (2001) interpret κt as an incentive to remain in the variable annuity contract

and as a mechanism for funding the guarantee. As in Bernard et al. (2014), we assume that κt

is exponentially decreasing and is equal to 1 − e−κ(T−t). This implies that if the policyholder

surrenders the guarantee at t ∈ [0, T ], the resulting benefits can be represented as

e−κ(T−t)Ft. (6)

For optimality in exercising the guarantee (surrender option) early, we will assume that the

inequality κ < c < r holds otherwise the option will be held to maturity. As will be explained

below, this inequality ensures that the surrender charges will not exceed/erode the benefits of

exercising the option early. From equation (4), the variable annuity account at maturity can be
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represented as

FT +max(GT − FT , 0), (7)

and at any time prior to maturity1, this can be represented as

Xt = e−r(T−t)E [FT |Ft] + ess sup
t≤τ∗≤T

e−r(τ∗−t)E
[
max(GT − e−κ(T−τ∗)Fτ∗ , 0)|Ft

]
, (8)

where the supremum is taken over all stopping times, τ∗, over [t, T ]. The first component on the

right-hand side of equation (8) is the discounted expectation of the maturity value of the fund

which can be trivially solved since the dynamics of F is governed by the GBM as presented in

(3). The second component is a typical American put option which we reproduce here as

P (t, F ) = ess sup
t≤τ∗≤T

e−r(τ∗−t)E
[
max(GT − e−κ(T−τ∗)Fτ∗ , 0)|Ft

]
. (9)

The valuation problem in equation (9) is essentially an optimal stopping time problem.

Proposition 2.2. The fair value of the American put option in (9) is a unique strong solution

of the free boundary problem

∂P

∂t
+ (r − c)F

∂P

∂F
+

1

2
σ2F 2∂

2P

∂F 2
− rP = 0, (10)

where Bt < e−κ(T−t)F < ∞ with Bt being the optimal early exercise boundary below which the

put option will be exercised. The partial differential equation (PDE) (10) is solved subject to the

boundary and terminal conditions

P (T, F ) = max(GT − F, 0), (11)

lim
F→∞

P (t, F ) = 0, t ∈ [0, T ], (12)

P (t, Bt) = GT −Bt, t ∈ [0, T ], (13)

lim
F→Bteκ(T−t)

∂P

∂F
= −e−κ(T−t), t ∈ [0, T ]. (14)

Proof. Refer to the proof of Proposition 2.7 in Jacka (1991). Also, the PDE can be derived by

applying standard hedging arguments and Itô’s Lemma to a portfolio consisting of a put option,

P (t, F ), and optimal units of the underlying fund, F , using the arguments presented in Black

and Scholes (1973) where dynamics of F is governed by the SDE presented in equation (3).

1Due to the possibility of surrendering the contract early.
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The underlying asset domain for the PDE (10) is bounded below by the early exercise boundary,

Bt. Jamshidian (1992) shows that one can consider an unbounded domain for the underlying

asset by noting that at any time, t ∈ [0, T ], below the early exercise boundary

P (t, F ) = GT − e−κ(T−t)Ft, (15)

implying that the following equation holds

∂P

∂t
+ (r − c)F

∂P

∂F
+

1

2
σ2F 2∂

2P

∂F 2
− rP = (c− κ)e−κ(T−t)F − rGT . (16)

Above the early exercise boundary, the option will be held and the option price will satisfy equa-

tion (10). Combining equations (10) and (16), and using the fact that P (t, F ) is a continuously

differentiable function in F at Bt yield

∂P

∂t
+ (r − c)F

∂P

∂F
+

1

2
σ2F 2∂

2P

∂F 2
− rP + 1{F≤Bteκ(T−t)}

[
rG− (c− κ)e−κ(T−t)F

]
= 0, (17)

where 1{x≤B} is an indicator function which is equal to one if x ≤ B or zero otherwise. Equation

(17) is defined on the domain 0 < F < ∞ and this motivates the solution approach we present

below. For notational convenience, we have suppressed the dependance of the guarantee on

maturity time T in (17). In the rest of the paper, we will also write G ≡ GT unless stated

otherwise.

We now explain the economic intuition of the inhomogenous term in equation (17). Suppose that

at time t, e−κ(T−t)Ft < G implying that it is optimal to exercise the option. If the option is not

exercised now, it can still be exercised at the next instant t+dt because the fund value function

is a continuous-time process. By not exercising now, the policyholder will lose the instantaneous

interest rGdt, but would save on the early termination charges (c− κ)e−κ[T−(t+dt)]Ft+dtdt such

that the total net loss would be

[rG− (c− κ)e−κ[T−(t+dt)]Ft+dt]dt. (18)

However if the variable annuity provider were to compensate the policyholder with an equiva-

lent amount, then the policyholder will be indifferent to delaying exercise to the next instant.

Suppose that the two counterparties agree to prohibit exercise until maturity, and in return, the

policyholder is continuously compensated by the amount equivalent to equation (18) for delaying

optimal exercise when it is optimal to do so. Whenever e−κ(T−t)Ft is above the early exercise
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boundary, the compensation will be zero since exercising is not optimal. This leads to the con-

clusion that the guaranteed minimum maturity benefit embedded in a variable annuity with a

surrender option is a typical American put option consisting of a European option component

plus a contract that pays a continuous cashflow presented in equation (18). An equivalent quan-

tity to the continous cashflow in Jamshidian (1992) is termed the “cost-of-carry” of an option,

which is compensation for delayed exercise.

In what follows, we let τ = T−t denote the time-to-maturity. Associated with the SDE (3) is the

corresponding transition density function denoted here as H(τ, F ;F0). This function represents

the probability of passage from state F at time-to-maturity, τ , to state F0 at maturity of the

variable annuity contract. The transition density function satisfies the backward Kolmogorov

PDE

∂H

∂τ
= (r − c)F

∂H

∂F
+

1

2
σ2F 2∂

2H

∂F 2
, (19)

where 0 ≤ F < ∞. Equation (19) is solved subject to the terminal condition

H(0, F ;F0) = δ(F − F0), (20)

where δ(·) is a Dirac delta function.

Now let F = ex and P (τ, ex) ≡ V (τ, x) such that the PDE in (17) transforms to

∂V

∂τ
= ϕ

∂V

∂x
+

1

2
σ2∂

2V

∂x2
− rV + 1{x≤lnB+κτ}

[
rG− (c− κ)e−κτex

]
, (21)

where ϕ = (r − c− 1
2σ

2).

Applying similar transformations to the transition density PDE and letting H(τ, ex) ≡ U(τ, x)

equation (19) becomes

∂U

∂τ
= ϕ

∂U

∂x
+

1

2
σ2∂

2U

∂x2
. (22)

Equation (22) is solved subject to the terminal condition

U(0, x;x0) = δ(x− x0), (23)

where x0 = lnF0.
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3 Main Results

Having outlined the problem statement in Section 2, we now present the integral representa-

tions of premium values of surrender options and the corresponding early exercise boundary

which needs to be determined as part of the solution. We also present the delta expression for

the surrender option which quantifies the sensitivity of the premium values to changes in the

underlying fund.

Proposition 3.1. The general solution of equation (21) can be represented as

V (τ, x) = VE(τ, x) + VP (τ, x), (24)

where

VE(τ, x) = e−rτ

∫ ∞

−∞
(G− ew)+U(τ, x;w)dw, (25)

and

VP (τ, x) =

∫ τ

0
e−r(τ−ξ)

∫ lnBξ+κ(τ−ξ)

−∞
[rG− (c− κ)e−κ(τ−ξ)ew]U(τ − ξ, x;w)dwdξ. (26)

The first term on the right hand side of equation (24) is the European option component and the

second term is the early exercise premium component. The function, U(τ, x;w) is the univariate

normal transition density function, that is

U(τ, x;w) =
1

σ
√
2πτ

exp

{
−(x− w + ϕτ)2

2τσ2

}
, (27)

which is a solution to the transition density function PDE (22).

Proof. The proof proceeds by substituting equation (24) into the the PDE (21) and using

Duhamel’s principle, and then proceeding as detailed in Appendix B of Chiarella and Ziveyi

(2014).

Proposition 3.2. The explicit solution of equation (24) can be represented as

V (τ, x) = VE(τ, x) + VP (τ, x), (28)

where

VE(τ, x) = Ge−rτN (−d2(τ, x,G))− exe−cτN (−d1(τ, x,G)), (29)
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and

VP (τ, x) = rG

∫ τ

0
e−r(τ−ξ)N

(
−d2

(
τ − ξ, x,Bξe

κ(τ−ξ)
))

dξ

− (c− κ)ex
∫ τ

0
e−(c+κ)(τ−ξ)N

(
−d1

(
τ − ξ, x,Bξe

κ(τ−ξ)
))

dξ, (30)

with N (d) being a cumulative normal distribution function and

d1(τ, x,G) =
x− lnG+ (r − c+ 1

2σ
2)τ

σ
√
τ

, d2(τ, x,G) = d1(τ, x,G)− σ
√
τ . (31)

Proof. Refer to Appendix A.1.

The early exercise premium component in equation (30) is implicitly dependent on the early

exercise boundary, Bτ , and hence needs to be determined as part of the solution. By using the

value-matching condition presented in equation (13), the early exercise boundary is the solution

to the implicit Volterra integral equation

G−Bτ = Ge−rτN (−d2(τ, lnBτ + κτ,G))−Bτe
−(c−κ)τN (−d1(τ, lnBτ + κτ,G))

+ rG

∫ τ

0
e−r(τ−ξ)N

(
−d2

(
τ − ξ, lnBτ + κτ,Bξe

κ(τ−ξ)
))

dξ (32)

− (c− κ)Bτe
κτ

∫ τ

0
e−(c+κ)(τ−ξ)N

(
−d1

(
τ − ξ, lnBτ + κτ,Bξe

κ(τ−ξ)
))

dξ.

Proposition 3.3. The exercise boundary at maturity is

B0 = min

(
1,

r

c− κ

)
G. (33)

Proof. Refer to Appendix A.2

From our earlier assumption that κ < c < r, it turns out that

B0 = G, (34)

which is the guaranteed fund value at maturity. At every other instant prior to maturity the

early exercise boundary is determined by solving equation (32) recursively.

The sensitivity of the guarantee premium values to changes in the underlying factors is crucial

when dealing with variable annuities. In option pricing, a family of such sensitivities is termed

“Greeks”. The most commonly used Greek in option pricing is the delta, which measures the
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degree to which an option is exposed to shifts in the price of the underlying asset. In our current

situation, we will interpret the delta as the sensitivity of the premium values to changes in the

fund value. A negative delta implies that the guarantee fee decreases for every dollar increase

in the fund value, so one is effectively short the fund through a long put option position. Delta

works best for short-term options and does not tell the probability of how often the fund will hit

the early exercise boundary before expiration time, but merely the probability that it expires in

the money. We present the delta expression in the next proposition.

Proposition 3.4. The delta of the surrender option can be represented as

D(τ, x) = DE(τ, x) +DP (τ, x), (35)

where

DE(τ, x) = −e−cτN (−d1(τ, x,G)), (36)

and

DP (τ, x) = − rG

σex

∫ τ

0
e−r(τ−ξ)n

(
−d2

(
τ − ξ, x,Bξe

κ(τ−ξ)
)) 1√

τ − ξ
dξ

− (c− κ)

∫ τ

0
e−(c+κ)(τ−ξ)N

(
−d1

(
τ − ξ, x,Bξe

κ(τ−ξ)
))

dξ

+
c− κ

σ

∫ τ

0
e−(c+κ)(τ−ξ)n

(
−d1

(
τ − ξ, x,Bξe

κ(τ−ξ)
)) 1√

τ − ξ
dξ. (37)

with n(d) being a density function of the standard normal distribution.

Proof. Refer to Appendix A.3.

4 Numerical Implementation

Having formulated the guarantee equations as presented in (29) and (30), together with the

early exercise boundary equation in (32) and the corresponding delta in (35) , we now outline

numerical techniques for solving this system of equations.

We adopt the numerical integration techniques developed in Huang et al. (1996) who implement

the American put option pricing framework developed in Kim (1990). Similar techniques have

also been employed in Chiarella and Ziveyi (2014) when pricing American spread call options
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where the dynamics of the underlying assets evolve under the influence of geometric Brownian

motion processes.

The European option component VE(τ, x) involves a cumulative normal distribution function

which can be easily handled by a variety of in-built software packages. However, such software

packages cannot be readily applied to the early exercise premium component, VP (τ, x), as this

term involves the entire history of the early exercise boundary, Bτ , which needs to be iteratively

solved at each instant.

The early-exercise premium component also involves an integral with respect to the running

time-to-maturity, ξ, which also makes use of the entire history of the early exercise boundary at

each point in time.

To implement equations (29), (30), (32) and (35), we first discretise the time domain, τ , into M

equally spaced subintervals of length h = T/M and apply the extended Simpson’s rule.

The numerical algorithm is initiated at maturity, τ0 = 0 where the exercise boundary is equal

to the guarantee value presented in equation (34). This serves as the starting value for tracking

the early exercise boundary backwards in time. We denote the time-steps as τm = mh, for

m = 1, 2, · · · ,M . The discretised version of the variable annuity guarantee is then represented

as

V (mh, x) = VE(mh, x) + VP (mh, x), (38)

where

VE(mh, x) = Ge−r(mh)N (−d2(mh, x,G))− exe−c(mh)N (−d1(mh, x,G)), (39)

and

VP (mh, x) = hrG

m∑
j=0

e−r(m−j)hN
(
−d2

(
(m− j)h, x,B(mh)eκ(m−j)h

))
wj

− h(c− κ)ex
m∑
j=0

e−(c+κ)(m−j)hN
(
−d1

(
(m− j)h, x,B(mh)eκ(m−j)h

))
wj . (40)

Here, wj are the weights of Simpson’s rule for integration in the ξ direction while h is the

corresponding step size. At each time step, we need to implicitly determine the early exercise

boundary B(mh) which also depends on its entire history up to the current time step. Root
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finding techniques are employed to accomplish this task. The discretised version of the value-

matching condition equation can be shown to be

B(mh) = G− V (mh, x), (41)

where V (mh, x) is presented in equation (38). Likewise, the discretised version of the delta

presented in equation (35) can be represented as

D(mh, x) = DE(mh, x) +DP (mh, x), (42)

where

DE(mh, x) = −e−c(mh)N (−d1(mh, x,G)), (43)

and

DP (mh, x) = −hrG

σex

m∑
j=0

e−r(m−j)hn
(
−d2

(
(m− j)h, x,B(mh)eκ(m−j)h

)) 1√
(m− j)h

wj

− h(c− κ)

m∑
j=0

e−(c+κ)(m−j)hN
(
−d1

(
(m− j)h, x,B(mh)eκ(m−j)h

))
wj (44)

+
h(c− κ)

σ

m∑
j=0

e−(c+κ)(m−j)hn
(
−d1

(
(m− j)h, x,B(mh)eκ(m−j)h

)) 1√
(m− j)h

wj .

5 Numerical Results

We now present numerical results obtained from implementing the framework presented in

Section 4. For all numerical experiments that follow, we use the parameter set presented in

Table 1 unless stated otherwise. Our choice of parameters is consistent with those used in

Bernard et al. (2014) for their numerical experiments. Numerical experiments help in shedding

light on the sensitivities of the early exercise boundary and guarantee fees to changes in the

underlying variables. The time domain has been discretised into 100 time steps, implying that

h = 0.15 years when τ = 15.

Figure 1 shows the impact of varying the surrender charge, κ, on the early exercise boundary.

We note that the early exercise boundary increases as the level of κ increases. Increasing levels

of κ result in higher guarantee fees, making it prohibitively expensive to surrender the guarantee

early as further revealed in Table 2. From this table, we note that when c = 3% for instance,

14



Parameter G τ σ r c κ

Value 100 15 0.20 0.05 0.03 0.01

Table 1: Parameters for the GMMB Rider.

varying the surrender charges from κ = 0 to κ = 3% (last three columns of the table) results

in a gradual increase of guarantee fees. Hence, when surrender charges are relatively high, it is

advisable to delay exercising the guarantee early as a significant amount of surrender benefits

may end up being used to settle for the early termination charges.

τ

0 3 6 9 12 15

B
τ

60

70

80

90

100
κ=0
κ=0.005
κ=0.01
κ=0.02

Figure 1: The impact of varying the surrender charges on the early exercise boundary.

We next assess the impact of varying the guarantee level on the early exercise boundary and

the corresponding effects on the premiums to be charged for provision of such guarantees in

Figure 2. In this figure, we vary the guarantee level and keep all other parameters constant as

presented in Table 1. Increasing the guarantee levels result in higher early exercise boundaries

as revealed in Figure 2(a), that is, when the guarantee level is increased, the corresponding

exercise boundary is shifted upwards. Likewise, as the minimum guarantee level increases, the

associated premiums also increase as presented in Figure 2(b). It naturally makes sense for

insurers to charge higher premiums for increasing levels of minimum guarantees so that they

can use the proceeds to devise appropriate hedging strategies. Such strategies can be used to

offset the increased exposure levels in the event of the guarantees ending up being exercised by

the policyholders.
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(a) Assessing how the early exercise boundary

changes by varying the minimum guarantee.
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(b) Assessing the effects of varying the guar-

antee level on the premium values

Figure 2: Assessing the impacts of varying the guarantee levels on the early exercise boundary

and premium values. All other parameters are as provided in Table 1

One of the most important concepts when trading options is volatility. Volatility measures how

fast and how much prices of the underlying asset move. As such it is important to understand

how premiums to be levied on guarantees respond to changes in volatility. Figure 3 shows

the effects of increasing volatility on the early exercise boundary and the premium values. We

note from Figure 3(a) that as volatility increases, the corresponding early exercise boundary

decreases. In option pricing theory, it is also well established that an increase in volatility

results in an increase in option prices. This is depicted in Figure 3(b) where premium values for

near in-the-money and out-of-the-money guarantees increase with increasing levels of volatility.

On the other hand, since the option is more valuable as volatility increases, the early exercise

boundary will be decreased so that the proceed brought from the early termination, i.e. G−Bτ

can compensate for the higher option value.

It is also of interest to investigate how the early exercise boundary and the corresponding

guarantee premiums respond to changes in interest rates. From Figure 4(a) we note that as

the level of interest rates is increased, early exercise boundary also increases. The rule of

thumb when trading put options is that higher risk free interest rates mean cheaper put option

prices, all things being equal. This is revealed in Figure 4(b) where we note a decrease in

premiums as interest rates gradually increase from 3% to 5% for near at-the-money and out-of-

the-money options. The interest rates are fully priced for deep in-the-money guarantees hence

the convergence of premiums as depicted in the figure. Contrary to the case of volatility as
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(a) The impact of varying the volatility level

on the early exercise boundary.
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(b) Surrender option premiums for varying σ.

Figure 3: The effects of varying the volatility on the early exercise boundary and premium

values. All other parameters are as presented in Table 1

shown in Figures 3(a) and 3(b), the decreased option value will lead to the increased early

exercise boundary (see Figure 4(a)) as interest rate is increased.
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(a) The impact of varying interest rates on the

early exercise boundary.
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(b) The impact of varying interest rates on

guarantee premiums.

Figure 4: The effects of varying interest rates on the early exercise boundary and premium

values. All other parameters are as presented in Table 1

It is of interest to analyze the premium differences between the surrender option and a standard

American put option. The formula for a standard put option on a non-dividend paying stock

can be recovered by setting κ and c equal to zero in equation (28). In our analysis we subtract

the implied standard American put option values from the associated guarantee values obtained

by using the parameter set in Table 1. The standard American put option prices have been
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generated by implementing the algorithm devised in Kallast and Kivinukk (2003). The results

of this analysis are presented in Figure 5. We note that at-the-money guarantee premiums

are consistently higher than the corresponding standard American put option prices under the

Black and Scholes (1973) framework. Surrender options are more expensive than standard

American put options, reflecting the effects of surrender charges and continuously compounded

insurance charges levied on the fund value. This quantifies the extent that insurers realize higher

premiums from selling variable annuity contracts as compared to premiums from equivalent

standard American put options traded in the financial markets.

In Table 2 we further elaborate how premium values change for various combinations of κ and c.

As pointed above, we note that prices corresponding to the standard American put option case

(c = 0 & κ = 0) are consistently lower than cases where we have non-zero fees and surrender

charges.
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Figure 5: Premium Differences which is equal to the surrender option value minus the standard

American call option value.

In Table 3, we present the sensitivities of guarantee premiums to changes on the underlying

fund value for maturities ranging from 6 months to 15 years. We note that deltas for deep

in-the-money guarantees with shorter maturities are very close to -1 implying that for every $1

increase in the fund value, the guarantee premium will decrease by $1. For deep-in-the-money

guarantees, the deltas gradually drift from -1 with increasing maturities. This behaviour is

reversed for out-of-the-money guarantees whose deltas become more negative with increasing
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maturities. The negative delta predicts how much value the insurers will gain in guarantee

premiums if the fund value falls a dollar in value. This implies that insurers will collect more

premiums when selling guarantees with deltas close to -1 and less for deltas close to zero.

Table 2: Premium values when G = 100 with all other parameters as presented in Table 1.

Fund Value c = 0, κ = 0 c = 0.01, κ = 0.01 c = 0.03, κ = 0 c = 0.03, κ = 0.02 c = 0.03, κ = 0.03

40 60 65.2470 60 70.2339 74.7314

50 50 56.6159 50 62.8030 68.4884

60 40 47.7468 40 54.8843 61.6104

70 30 38.5665 30.9631 46.3405 53.8201

80 21.3315 29.6139 24.5171 37.7474 45.2010

90 15.6349 22.5599 19.8098 30.6772 37.2821

100 11.7707 17.5265 16.2646 25.2593 31.0000

110 9.0604 13.8665 13.5269 21.0425 26.0470

120 7.1019 11.1369 11.3704 17.7024 22.0809

130 5.6521 9.0587 9.6440 15.0185 18.8631

140 4.5569 7.4486 8.2431 12.8354 16.2234

150 3.7152 6.1828 7.0934 11.04101 14.0371

160 3.0588 5.1749 6.1406 9.5526 12.2110

To sum up this section, we report the fair insurance charge c∗ implied by the pricing equation

(8) for the variable annuity as in Remark 2.1. As reported in Table 4, for given levels of the

surrender charge, κ, and volatility, σ, the fair fee decreases with increasing maturity. Also the

fair insurance fee increases with the increasing level of volatility. However, as the level of κ is

gradually increased from zero, the fair insurance fee decreases. This quantifies how the surrender

charges and insurance charges received by the insurer interact.

Finally, in Table 5 we compare the accuracy of the fair insurance charges obtained using our

approach and that in Bernard et al. (2014). When κ = 0, r = 0.03, σ = 0.20 and T = 15,

the fair insurance charge reported in Bernard et al. (2014) is c∗ = 0.0091. With all parameters

being the same as those of Bernard et al. (2014), the fair insurance charge from our approach is

c∗ = 0.014082. By substituting the values of c∗ into equation 8 and set t = 0, it is shown in Table

5 that the corresponding fund value is X0 = 105.1758 when c∗ = 0.0091, while X0 = 100.0053

when c∗ = 0.014082. The fair insurance fees computed using our approach differ from those in
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Table 3: Delta values when G = 100 with all other parameters as presented in Table 1.

Fund Value T = 0.5 T = 1 T = 5 T = 10 T = 15

20 -0.99484791 -0.989725298 -0.949623193 -0.897362991 -0.845196661

40 -0.99484791 -0.989723709 -0.943734302 -0.892194197 -0.853653871

60 -0.994806799 -0.988795379 -0.952461492 -0.926987922 -0.903160608

80 -0.994181179 -0.945265697 -0.734921426 -0.691619866 -0.686952558

100 -0.456332196 -0.440967322 -0.397656989 -0.38784721 -0.39079854

120 -0.076696552 -0.135035882 -0.21952068 -0.233500335 -0.241847212

140 -0.005844514 -0.029891602 -0.122438974 -0.147318762 -0.158547139

160 -0.000263757 -0.005346292 -0.068960555 -0.096189125 -0.108387754

Bernard et al. (2014) but since the resulting X0 should be close to 100, provide more accurate

numerical computations. Also, we note from Table 4 that the resulting guarantee premium (a

portion of the variable annuity used to fund the GMMB) is higher using our approach2.

Table 4: Fair insurance charges for varying κ, σ and T .

T = 10 T = 15

κ σ c∗ κ σ c∗

0

0.20 0.020340

0

0.20 0.014082

0.25 0.028939 0.25 0.020147

0.30 0.038128 0.30 0.026602

0.005

0.20 0.019009

0.005

0.20 0.013203

0.25 0.027330 0.25 0.019066

0.30 0.036337 0.30 0.025454

0.01

0.20 0.017855

0.01

0.20 0.012419

0.25 0.025885 0.25 0.018125

0.30 0.034685 0.30 0.024369

2This is computed from equation (38) with c∗ = 0.014082 and also using c∗ = 0.0091 as reported in Bernard

et al. (2014)
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Table 5: Accuracy of fair insurance charges

Bernard et al. (2014) Our Approach

c∗ 0.0091 0.014082

X0 105.1758 100.0053

Premium 17.93514 19.0465

6 Conclusion

In this paper we have presented an approach to valuing the surrender option in a guaranteed

minimum maturity benefit (GMMB) rider embedded in a variable annuity contract using numer-

ical integration techniques. Our approach differs from and improves on those currently used. It

formulates the valuation problem as an optimal stopping problem and then presented a system-

atic approach to transforming the optimal stopping time problem into a free-boundary problem.

We employ Jamshidian (1992)’s techniques to transform the homogenous free-boundary problem

to a non-homogeneous partial differential equation (PDE) whose general integral solution can

readily be found by using Duhamel’s principle. Semi-closed form integral expressions for the

guarantee premium, the early exercise boundary and the corresponding delta of the GMMB are

derived and implemented using Simpson’s rule.

We present numerical results that quantify the impact of surrender fees and insurance charges on

the guarantee premiums, the free-boundary and the delta of the underlying surrender option. We

also analyze the behaviour of the fair insurance charges for varying levels of surrender charges,

volatility and time to maturity for the guarantee. Numerical comparisons are provided between

the surrender option value and that for valuing standard American put options as presented in

Kallast and Kivinukk (2003). Surrender fees and charges result in premiums for GMMBs that

are higher than for standard American put options.

This paper has focused on valuing the guarantee component of a variable annuity contract and

presenting a comprehensive analysis of this option value. This differs from the work presented in

Bernard et al. (2014) who present their results for the full variable annuity contract as a single

product. By taking this approach, the impact of the GMMB in a variable annuity contract
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is explicitly assessed in terms of its price, delta, the insurance charge and the surrender fee.

This provides clearer guidance to practitioners for the risk management of these guarantees. In

particular analysis of the delta receives little attention in the valuation of embedded options for

annuity and insurance products.

The theoretical and numerical results, particularly for the risk management of these guarantees

where the delta is important, is an important new contribution in the analysis of the GMMB

rider benefit for variable annuities. We also provide a numerical methodology that allows the

study of sensitivity of other guarantees in these insurance contracts with respect to underlying

risk factors.
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A Appendices

A.1 Proof of Proposition 3.2

We first derive the explicit form of the European option component, VE(τ, x), as follows

VE(τ, x) = e−rτ

∫ ∞

−∞
(G− ew)+U(τ, x;w)dw

=
e−rτ

σ
√
2π

∫ lnG

−∞
(G− ew) exp

{
− [x− w + ϕτ ]2

2σ2τ

}
dw

≡ A1(τ, x)−A2(τ, x), (A1)

where

A1(τ, x) =
e−rτ

σ
√
2π

∫ lnG

−∞
G exp

{
− [x− w + ϕτ ]2

2σ2τ

}
dw, (A2)

and

A2(τ, x) =
e−rτ

σ
√
2π

∫ lnG

−∞
ew exp

{
− [x− w + ϕτ ]2

2σ2τ

}
dw. (A3)

In simplifying A1(τ, x), we let y = x−w+ϕτ
σ
√

τ
such that dw = −σ

√
τdy. Also

w = lnG ⇒ y =
x− lnG+ ϕτ

σ
√
τ

and w = −∞ ⇒ y = ∞.

Equation (A2) then becomes

A1(τ, x) =
e−rτ

√
2π

∫ ∞

−d2

Ge−
y2

2 dy = Ge−rτN (−d2 (τ, x,G)) , (A4)

where N (−d2 (τ, x,G)) is a cumulative Normal distribution function with

d2(τ, x,K) =
x− lnG+ ϕτ

σ
√
τ

. (A5)

The second component, A2(τ, x) is simplified by first re-writing it as follows

A2(τ, x) =
e−rτ

σ
√
2πτ

∫ lnG

−∞
exp

{
w − (x− w + ϕτ)2

2σ2τ

}
dw.

By completing the square and simplifying the above equation we obtain

A2(τ, x) =
e−rτ

σ
√
2πτ

∫ lnG

−∞
exp

{
[x+ ϕτ ]2

−2σ2τ

}
exp

{
w2 − 2w[x+ {r − c+ 1

2
σ2}τ ]

−2σ2τ

}
dw, (A6)

which can also be represented as

A2(τ, x) =
e−rτ

σ
√
2πτ

∫ lnG

−∞
exp

{
[x+ ϕτ ]2

−2σ2τ

}
exp

{
[x+ (r − c+ 1

2
σ2)τ ]2

2σ2τ

}
exp

{
[x− w + (r − c+ 1

2
σ2)τ ]2

−2σ2τ

}
dw

=
e−rτ

σ
√
2πτ

∫ lnG

−∞
ex+(r−c)τ exp

{
[x− w + (r − c+ 1

2
σ2)τ ]2

−2σ2τ

}
dw

=
e−cτex

σ
√
2πτ

∫ lnG

−∞
exp

{
[x− w + (r − c+ 1

2
σ2)τ ]2

−2σ2τ

}
dw. (A7)

Now, we let

y =
x− w + (r − c+ 1

2
σ2)τ

σ
√
τ

⇒ dw = −σ
√
τ .
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As for the integral limits, w = lnG ⇒ y =
x−lnG+(r−c+ 1

2
σ2)τ

σ
√

τ
and w = −∞ ⇒ y = ∞, hence

A2(τ, x) =
e−cτex

2π

∫ ∞

−d1

e−
y2

2 dy = e−cτexN (−d1 (τ, x,G)) , (A8)

with

d1(τ, x,G) =
x− lnG+ (r − c+ 1

2
σ2)τ

σ
√
τ

. (A9)

By comparing equations (A9) and (A5) it can be shown that

d2(τ, x,G) = d1(τ, x,G)− σ
√
τ . (A10)

Combining the results in equations (A4) and (A8) yield the European option component presented in equation

(29) of Proposition 3.2.

Next we derive the explicit form of the early exercise premium by simplifying the expression presented in equation

(26) which we reproduce here as

VP (τ, x) =

∫ τ

0

e−r(τ−ξ)

∫ lnBξ+κ(τ−ξ)

−∞
[rG− (c− k)e−κ(τ−ξ)ew]U(τ − ξ, x;w)dwdξ. (A11)

The derivations proceed as those for the European option component case. We split the above equation in two

parts by letting

VP (τ, x) = I(τ, x)− II(τ, x), (A12)

where

I(τ, x) =

∫ τ

0

e−r(τ−ξ)

∫ lnBξ+κ(τ−ξ)

−∞
rG

1

σ
√

2π(τ − ξ)
exp

{
− (x− w + ϕ(τ − ξ))2

2σ2(τ − ξ)

}
dwdξ, (A13)

and

II(τ, x) =

∫ τ

0

e−r(τ−ξ)

∫ lnBξ+κ(τ−ξ)

−∞
(c− k)e−κ(τ−ξ)ew

1

σ
√

2π(τ − ξ)
exp

{
− (x− w + ϕ(τ − ξ))2

2σ2(τ − ξ)

}
dwdξ.

(A14)

In simplifying the first component, I(τ, x), we let y = x−w+ϕ(τ−ξ)

σ
√

τ−ξ
, such that dw = −σ

√
τ − ξdy. Also

w = lnB + κ(τ − ξ) ⇒ y =
x− lnB − κ(τ − ξ) + ϕ(τ − ξ)

σ
√
τ − ξ

and w = −∞ ⇒ y = ∞. Equation (A13) then becomes

I(τ, x) =

∫ τ

0

e−r(τ−ξ)

√
2π

∫ ∞

−d2

rGe−
y2

2 dydξ = rG

∫ τ

0

e−r(τ−ξ)N
(
−d2

(
τ − ξ, x,Bξe

κ(τ−ξ)
))

dξ. (A15)

The second component, II(τ, x), is simplified by first rearranging it as follows

II(τ, x) =

∫ τ

0

(c− κ)e−r(τ−ξ)

σ
√

2π(τ − ξ)

∫ lnB+κ(τ−ξ)

−∞
e−κ(τ−ξ) exp{w − (x− w + ϕ(τ − ξ))2

2σ2(τ − ξ)
}dwdξ.

By completing the square and simplifying the above equation we obtain

II(τ, x) =

∫ τ

0

(c− κ)e−(r+κ)(τ−ξ)

σ
√

2π(τ − ξ)

∫ lnB+κ(τ−ξ)

−∞
exp

{
[x+ ϕ(τ − ξ)]2

−2σ2(τ − ξ)

}

× exp

{
w2 − 2w[x+ {r − c+ 1

2
σ2}(τ − ξ)]

−2σ2(τ − ξ)

}
dwdξ, (A16)
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which can also be represented as

II(τ, x) =

∫ τ

0

(c− κ)e−(r+κ)(τ−ξ)

σ
√

2π(τ − ξ)

∫ lnB+κ(τ−ξ)

−∞
exp

{
[x+ ϕ(τ − ξ)]2

−2σ2(τ − ξ)

}
exp

{
[x+ (r − c+ 1

2
σ2)(τ − ξ)]2

2σ2(τ − ξ)

}

× exp

{
[x− w + (r − c+ 1

2
σ2)(τ − ξ)]2

−2σ2(τ − ξ)

}
dwdξ

=

∫ τ

0

(c− κ)e−(r+κ)(τ−ξ)

σ
√

2π(τ − ξ)

∫ lnB+κ(τ−ξ)

−∞
exp {x+ (r − c)(τ − ξ)}

× exp

{
[x− w + (r − c+ 1

2
σ2)(τ − ξ)]2

−2σ2(τ − ξ)

}
dwdξ (A17)

=

∫ τ

0

(c− κ)ex

σ
√

2π(τ − ξ)

∫ lnB+κ(τ−ξ)

−∞
exp {−(c+ κ)(τ − ξ)} exp

{
[x− w + (r − c+ 1

2
σ2)(τ − ξ)]2

−2σ2(τ − ξ)

}
dwdξ.

Now, we let

y =
x− w + (r − c+ 1

2
σ2)(τ − ξ)

σ
√

(τ − ξ)
⇒ dw = −σ

√
(τ − ξ).

When w = lnB + κ(τ − ξ) ⇒ y =
x−lnB−κ(τ−ξ)+(r−c+ 1

2
σ2)(τ−ξ)

σ
√

(τ−ξ)
and w = −∞ ⇒ y = ∞, hence

II(τ, x) =

∫ τ

0

(c− κ)ex

2π

∫ ∞

−d1

e(c+κ)(τ−ξ)e−
y2

2 dydξ

= (c− κ)ex
∫ τ

0

e−(c+κ)(τ−ξ)N
(
−d1

(
τ − ξ, x,Bξe

κ(τ−ξ)
))

dξ. (A18)

Combining equations (A15) and (A18) yields the results presented in (30).

A.2 Proof of Proposition 3.3

Rearrange equation (32) as

Bτ

G
=

[
e−rτN (−d2(τ, lnBτ + κτ,G)) + r

∫ τ

0

e−r(τ−ξ)N
(
−d2

(
τ − ξ, lnBτ + κτ,Bξe

κ(τ−ξ)
))

dξ − 1

]
×

[
e−(c−κ)τN (−d1(τ, lnBτ + κτ,G)) + (c− κ)eκτ

×
∫ τ

0

e−(c+κ)(τ−ξ)N
(
−d1

(
τ − ξ, lnBτ + κτ,Bξe

κ(τ−ξ)
))

dξ − 1

]−1

. (A19)

For simplicity, we let

M1(τ) = e−rτN (−d2(τ, lnBτ + κτ,G)) + r

∫ τ

0

e−r(τ−ξ)N
(
−d2

(
τ − ξ, lnBτ + κτ,Bξe

κ(τ−ξ)
))

dξ − 1, (A20)

and

M2(τ) =e−(c−κ)τN (−d1(τ, lnBτ + κτ,G)) (A21)

+ (c− κ)eκτ
∫ τ

0

e−(c+κ)(τ−ξ)N
(
−d1

(
τ − ξ, lnBτ + κτ,Bξe

κ(τ−ξ)
))

dξ − 1.
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Next we wish to find lim
τ→0

Bτ
G

with the aid of l’Hôpital’s rule. To this end, we first calculate the derivatives of

M1(τ) and M2(τ) as

M ′
1(τ) =− re−rτN (−d2(τ, lnBτ + κτ,G))− e−rτN ′(−d2(τ, lnBτ + κτ,G))

∂

∂τ
d2(τ, lnBτ + κτ,G)

+ rN (−d2 (0, lnBτ + κτ,Bτ )) + r

∫ τ

0

{
− re−r(τ−ξ)N

(
−d2

(
τ − ξ, lnBτ + κτ,Bξe

κ(τ−ξ)
))

− e−r(τ−ξ)N ′
(
−d2

(
τ − ξ, lnBτ + κτ,Bξe

κ(τ−ξ)
)) ∂

∂τ
d2

(
τ − ξ, lnBτ + κτ,Bξe

κ(τ−ξ)
)}

dξ, (A22)

and

M ′
2(τ) =− (c− κ)e−(c−κ)τN (−d1(τ, lnBτ + κτ,G))− e−(c−κ)τN ′(−d1(τ, lnBτ + κτ,G))

∂

∂τ
d1(τ, lnBτ + κτ,G)

+ (c− κ)eκτN (−d1 (0, lnBτ + κτ,Bτ )) (A23)

+ (c− κ)eκτ
∫ τ

0

{
− ce−(c+κ)(τ−ξ)N

(
−d1

(
τ − ξ, lnBτ + κτ,Bξe

κ(τ−ξ)
))

− e−(c+κ)(τ−ξ)N ′
(
−d1

(
τ − ξ, lnBτ + κτ,Bξe

κ(τ−ξ)
)) ∂

∂τ
d1

(
τ − ξ, lnBτ + κτ,Bξe

κ(τ−ξ)
)}

dξ.

For i = 1, 2, we notice that

lim
τ→0

di(τ, lnBτ + κτ,G) =

{
0, if B0 = G,

∞, if B0 > G.
(A24)

Thus if B0 > G, we have

lim
τ→0

M ′
1(τ) =

r

2
, (A25)

and

lim
τ→0

M ′
2(τ) =

c− κ

2
. (A26)

Therefore, taking limit in (A19) and using l’Hôpital’s rule yield

B0 = min

(
1,

r

c− κ

)
G. (A27)

A.3 Proof of Proposition 3.4

The derivation for DE(τ, x) is the same as that for delta of a European put option. We only derive DP (τ, x).

Differentiating VP (τ, x) with respect to the underlying fund value yields

DP (τ, x) = − rG

∫ τ

0

e−r(τ−ξ)N ′
(
−d2

(
τ − ξ, x,Bξe

κ(τ−ξ)
)) ∂

∂F
d2

(
τ − ξ, x,Bξe

κ(τ−ξ)
)
dξ

− (c− κ)

∫ τ

0

e−(c+κ)(τ−ξ)N
(
−d1

(
τ − ξ, x,Bξe

κ(τ−ξ)
))

dξ

+ (c− κ)ex
∫ τ

0

e−(c+κ)(τ−ξ)N ′
(
−d1

(
τ − ξ, x,Bξe

κ(τ−ξ)
)) ∂

∂F
d1

(
τ − ξ, x,Bξe

κ(τ−ξ)
)
dξ

=− rG

σF

∫ τ

0

e−r(τ−ξ)n
(
−d2

(
τ − ξ, x,Bξe

κ(τ−ξ)
)) 1√

τ − ξ
dξ

− (c− κ)

∫ τ

0

e−(c+κ)(τ−ξ)N
(
−d1

(
τ − ξ, x,Bξe

κ(τ−ξ)
))

dξ

+
c− κ

σ

∫ τ

0

e−(c+κ)(τ−ξ)n
(
−d1

(
τ − ξ, x,Bξe

κ(τ−ξ)
)) 1√

τ − ξ
dξ. (A28)
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