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Introduction

Mortality models have attracted research attention over recent years,
particularly discrete time mortality models (Lee and Carter (1992),
Cairns et al. (2006b), Cairns et al. (2009), Renshaw and Haberman
(2006)).

focus on improvement trends,

impact of uncertainty or volatility of mortality, and

cohort effects.

Continuous time affine cohort mortality models have attracted more
recent research

single cohort models (Milevsky and Promislow (2001), Dahl and Møller
(2006), Biffis (2005), Luciano et al. (2008), Schrager (2006), Cairns
et al. (2006a), Blackburn and Sherris (2013))

multi-cohort models (Jevtic et al. (2013), Xu et al. (2019a), Chang and
Sherris (2018), Zhou et al. (2019)).
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Why Continuous Time Multi-factor Models?

Analytical tractability - closed form survival curves for affine class,

Consistency between mortality dynamics and functional form of the
survival curve,

Stability of parameter estimates,

Use of mathematical finance methods for term structure and credit
risk models familiar to financial market participants,

Natural extensions to multi-factor models, capturing differing trends,
volatility and correlations by age,

Arbitrage-free formulation along with real world dynamics to allow
calibration of prices of risk.
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Coverage of this Session

Introduce continuous-time multi-factor cohort mortality models -
closed-form expressions for survival curves, dynamics of mortality
rates, factors of level, slope and curvature for the mortality curve
(AFNS mortality models),

Fitting with age-cohort data,

Kalman filter and estimation of the models, highlighting how Poisson
variation can be incorporated into the model estimation,

Comparison of fits and prediction using historical US mortality data,

Multi-cohort models,

Applications of multi-cohort models to quantifying price of mortality
risk using Blackrock CORI indices.
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Survival Curve - Continuous Time Affine Mortality Model

Drawing on term structure of interest rate models - equivalence of
average force of mortality rate to yield to maturity for zero coupon
bond. Use of similar notation as in yield curve modelling.

Survival probability S(x , t,T ) for single cohort aged x at time t for
survival for a duration (T − t) to age x + (T − t), as an affine
function of (latent) factors (3 factor case)

S(x , t,T ) = E [e−
∫ T
t µi (x ,s)ds |Ft ]

= e−µ̄(t,T )(T−t)

= eB1(t,T )X1(t)+B2(t,T )X2(t)+B3(t,T )X3(t)+A(t,T ), (1)

Bj(t,T ) are factor loadings (functional form derived from mortality
dynamics for the latent factors, exponential terms) and Xj(t) are the
latent factors (stochastic parameters).
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Mortality Rate - Continuous Time Affine Mortality Model

Average mortality rate - age-period data or age-cohort data

µ̄ (t,T ) = − 1

T − t
log [S (t,T )] = −B (t,T )

′

T − t
Xt −

A (t,T )

T − t
. (2)

where vector B (t,T ), the factor loadings, and A (t,T ) have explicit
expressions (derivations similar to term structure models).

Canonical form for these (Blackburn and Sherris, 2013), where δjj and
σjj are parameters in the latent factor dynamics (estimated from
historical data)

Bj (t,T ) = −1− e−δjj (T−t)

δjj
, j = 1, 2, 3, (3)

A (t,T ) =
1

2

3∑
j=1

σ2
jj

δ3
jj

[
1

2

(
1− e−2δjj (T−t)

)
− 2

(
1− e−δjj (T−t)

)
+ δjj (T − t)

]
.

(4)
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Mortality Rate - AFNS Mortality model

Mortality model equivalent of the Nelson-Seigel term structure model
in arbitrage-free dynamic implementation (Christensen et al., 2011)

Mortality rate curve has level, slope and curvature factors
(independent AFNS mortality model).

B1 (t,T ) = − (T − t) , B2 (t,T ) = −1− e−δ(T−t)

δ
,

B3 (t,T ) = (T − t) e−δ(T−t) − 1− e−δ(T−t)

δ
,

(5)

A (t,T )

T − t
= σ2

11

(T − t)

6
+ σ2

22

[
1

2δ2
− 1

δ3

1− e−δ(T−t)

T − t
+

1

4δ3

1− e−2δ(T−t)

T − t

]
+

σ2
33

[
1

2δ2
+

1

δ2
e−δ(T−t) − 1

4δ
(T − t) e−2δ(T−t) − 3

4δ2
e−2δ(T−t)

− 2

δ3

1− e−δ(T−t)

T − t
+

5

8δ3

1− e−2δ(T−t)

T − t

]
.

(6)
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Affine Mortality Models - Q Pricing measure

The price of a longevity zero-coupon bond on a specific cohort
currently aged x is

P̄x(t,T ) = EQ
[
e−

∫ T
t (r(s)+µ(x ,s))ds |F(t)

]
= EQ

[
e−

∫ T
t r(s)ds |G(t)

]
EQ
[
e−

∫ T
t µ(x ,s)ds |H(t)

]
= P(t,T )SQ(x , t,T ), (7)

where the dynamics of the mortality rates and the dynamics of the
interest rates are independent.

Dynamics of the mortality rate used to derive the (risk-neutral)
survival probability SQ(x , t,T ).

Use the same methodology of term structure modelling applied to
(pricing) survival probability.
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Affine Mortality Models - Dynamics of Mortality Rates

The affine dynamics of the latent factors Xt follow a system of
stochastic differential equations (SDEs) under the risk-neutral
measure Q (Duffie and Kan, 1996; Christensen et al., 2011):

dXt = KQ
[
θQ − Xt

]
dt + ΣD (Xt , t) dWQ

t , (8)

where KQ ∈ Rn×n is the mean reversion matrix,

θQ ∈ Rn is the long-term mean (usually zero in mortality models),

Σ ∈ Rn×n is the volatility matrix,

WQ
t ∈ Rn is a standard Brownian motion, and

D (Xt , t) is a diagonal matrix with the ith diagonal entry as√
αi (t) + βi

1 (t) x1
t + . . .+ βi

n (t) xnt . α and β are bounded continuous
functions.
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Affine Mortality Models - ODEs for Factor Loadings

Under these dynamics the (risk-neutral) survival probabilities for age
x for survival from time t to time T are (see details in Blackburn and
Sherris, 2013):

S (t,T ) = exp
(
B (t,T )

′
Xt + A (t,T )

)
, (9)

Where B (t,T ) and A (t,T ) are the solutions to the following system
of ordinary differential equations (ODEs):

dB (t,T )

dt
= ρ1 +

(
KQ
)′

B (t,T ) , (10)

dA (t,T )

dt
= −B (t,T )

′
KQθQ − 1

2

3∑
j=1

(
Σ
′
B (t,T )B (t,T )

′
Σ
)
j ,j
,

(11)
with boundary conditions B (T ,T ) = A (T ,T ) = 0.
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Affine Mortality Models - Gaussian and CIR Models

Dynamics include Gaussian models (where there is a probability of
negative mortality rates).

These models

are readily estimated with (Gaussian) Kalman filter

are easily simulated

in practice, have very low probabilities of negative mortality rates.

Dynamics also include square root process dynamics with potential to
capture mortality heterogeneity (Cox-Ingersoll-Ross or CIR)

These models

can capture mortality heterogeneity (gamma distributed mortality
rates)

avoid probabilities of negative mortality rates

are more difficult to estimate with the Kalman filter (we use maximum
quasi-likelihood).
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Affine Mortality Models - Historical Mortality Rates

To calibrate models to historical mortality rates (P measure) we need
a link between the risk neutral dynamics and the historical dynamics -
assumption for the price of risk.

Assuming an essentially affine form for the risk premium (Duffee,
2002):

Λt =

{
λ0 + λ1Xt , Gaussian processes;

D (Xt , t)λ0, the CIR model,
(12)

where Λt ∈ Rn×1, λ0 ∈ Rn×1 and λ1 ∈ Rn×n.

The SDEs for factors under the measure P are:

dXt =

{
KP
[
θP − Xt

]
dt + ΣdW P

t , Gaussian processes;

KP
[
θP − Xt

]
dt + ΣD (Xt , t) dW P

t , the CIR model.

(13)
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Affine Cohort Mortality Models - 3-factor Dynamics

The dynamics of the factors (Canonical and AFNS models) are (we
estimate both P and Q measure dynamics):

The independent Blackburn-Sherris model (Blackburn and Sherris, 2013)

 dX 1
t

dX 2
t

dX 3
t

 = −

 δ11 0 0
0 δ22 0
0 0 δ33

 X 1
t

X 2
t

X 3
t

 dt +

 σ11 0 0
0 σ22 0
0 0 σ33


 dW

1,Q
t

dW
2,Q
t

dW
3,Q
t

 . (14)

The independent AFNS model (Christensen et al., 2011). The dynamics of the factors under the Q-measure are given
by:

 dLt
dSt
dCt

 = −

 0 0 0
0 δ −δ
0 0 δ

 Lt
St
Ct

 dt +

 σ11 0 0
0 σ22 0
0 0 σ33


 dW

1,Q
t

dW
2,Q
t

dW
3,Q
t

 . (15)

The dependent Blackburn-Sherris model

 dX 1
t

dX 2
t

dX 3
t

 = −

 kP11 0 0

0 kP22 0

0 0 kP33


 X 1

t
X 2
t

X 3
t

 dt +

 σ11 0 0
σ21 σ22 0
σ31 σ32 σ33


 dW

1,P
t

dW
2,P
t

dW
3,P
t

 . (16)
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Affine Cohort Mortality Models - 3-factor Dynamics

The dependent AFNS model

 dX 1
t

dX 2
t

dX 3
t

 = −

 δ11 0 0
δ21 δ22 0
δ31 δ32 δ33

 X 1
t

X 2
t

X 3
t

 dt +

 σ11 0 0
σ21 σ22 0
σ31 σ32 σ33


 dW

1,Q
t

dW
2,Q
t

dW
3,Q
t

 . (17)

The CIR model

 dX 1
t

dX 2
t

dX 3
t

 = −

 δ11 0 0
0 δ22 0
0 0 δ33



 θQ1

θQ2
θQ3

−
 X 1

t
X 2
t

X 3
t


 dt

+

 σ11 0 0
0 σ22 0
0 0 σ33




√
X 1
t 0 0

0
√

X 2
t 0

0 0
√

X 3
t


 dW

1,Q
t

dW
2,Q
t

dW
3,Q
t

 .
(18)
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Model Estimation - Kalman Filter

We model mortality rates but observe deaths - we need a
measurement equation capturing the effects of Poisson variation and
heterogeneity.

Mortality rate curve changes stochastically through time, driven by
latent factors with trend and uncertainty - we need a state transition
equation for the dynamics.

We then filter the values of latent factors from historical data -
deriving means and covariances which are functions of the parameters
in the dynamics.

We can then construct the likelihood (Gaussian) in terms of means
and covariance (a function of parameters to be estimated).

Then numerically select the parameter set that maximises the
likelihood using an iterative process.
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Model estimation - Measurement equation

The measurement equation, based on the average force of mortality,
for a given current age to different future survival ages is:

µ̄ (t,T ) = −B (t,T )
′

T − t
Xt −

A (t,T )

T − t
+ εt , (19)

where the measurement error εt is independently and identically
distributed noise and Xt are the latent factors.

We can write this as
yt = BXt + A + εt . (20)
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Model estimation - Measurement equation

For a 3-factor affine mortality model, the measurement equation with
N observed average forces of mortality for ages x + 1 to x + N is:


µ̄ (t, t + 1)
µ̄ (t, t + 2)

.

.

.
µ̄ (t, t + N)

 =



−B1 (t, t + 1) −B2 (t, t + 1) −B3 (t, t + 1)

− B1(t,t+2)
2

− B2(t,t+2)
2

− B3(t,t+2)
2

.

.

.

.

.

.

.

.

.

− B1(t,t+N)
N

− B2(t,t+N)
N

− B3(t,t+N)
N


 X 1

t
X 2
t

X 3
t

 (21)

+


−A (t, t + 1)

− A(t,t+2)
2

.

.

.

− A(t,t+N)
N

 +


εt (1)
εt (2)

.

.

.
εt (N)

 , (22)
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Kalman Filter - State Transition Equation

The state transition equation is a discretized version of the SDE
dynamics and is given by:

Xt = exp
(
−KP

)
Xt−1 + ηt , (23)

where ηt is the transition error vector.

The structure of stochastic error terms is assumed to be:(
ηt
εt

)
∼ N

[ (
0
0

)
,

(
R 0
0 H

) ]
, (24)

where both the matrix H and matrix R are diagonal, with R being the
covariance matrix of the measurement error and H being the
covariance matrix of the transition error.
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Kalman Filter - Error Assumptions

The error matrix R for the state transitions, derived from the
dynamics of the latent factors, in discrete time form is

R =

∫ t

t−1
e−K

P(t−s)ΣΣ
′
e−(KP)

′
(t−s)ds. (25)

Poisson variation is captured in the diagonal of the covariance matrix
H, assumed to have exponential form (reflecting exponential increase
in mortality rate) given by

H (t,T ) =
1

T − t

T−t∑
i=1

[
rc + r1e

r2i
]
, (26)

where the values of rc , r1 and r2 are estimated as part of the optimal
parameter set.
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Kalman Filter - Forecasting step

Denote the (average) mortality rates at time t by Yt = (y1, . . . , yt)
and the parameters by ψ.

In the forecasting step we first update the state, Xt−1, and its mean
square error, Σt−1,

Xt|t−1 = E [Xt |Yt−1] = Φ (ψ)Xt−1, (27)

Σt|t−1 = Φ (ψ) Σt−1Φ (ψ)
′

+ R (ψ) , (28)

where Φ = exp
(
−KP

)
and R =

∫ t
t−1 e

−KP(t−s)ΣΣ
′
e−(KP)

′
(t−s)ds.
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Kalman Filter - Forecasting step

We then use the historical mortality rate information at time t to
update the forecasts to obtain:

Xt = E [Xt |Yt ] = Xt|t−1 + Σt|t−1B (ψ)
′
F−1
t νt , (29)

Σt = Σt|t−1 − Σt|t−1B (ψ)
′
F−1
t B (ψ) Σt|t−1, (30)

where

νt = yt − E [yt |Yt−1] = yt − A (ψ)− B (ψ)Xt|t−1, (31)

Ft = cov (νt) = B (ψ) Σt|t−1B (ψ)
′

+ H (ψ) . (32)
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Kalman Filter - Log-likelihood

The log-likelihood function is then computed as:

log L (y1, . . . , yt ;ψ) =
T∑
t=1

(
−N

2
log (2π)− 1

2
log |Ft | −

1

2
ν
′
tFtνt

)
,

(33)
where N is the number of ages with observed average forces of
mortality.

The log-likelihood function is maximized with respect to ψ to obtain
the optimal parameter set using an iterative process

Start with initial values, use Kalman filter to determine likelihood of
data, update parameter values and iterate until maximum of
likelihood is derived.
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Forecasting Survival Curves

Optimal forecasts, or best-estimate forecasts, are used to project
average forces of mortality and survival probabilities fro future
cohorts.

At time t, the one step ahead forecast of the average force of
mortality is

µ̄ (t + 1,T + 1) = −B (t,T )
′

T − t
E [Xt+1|Xt ]−

A (t,T )

T − t
, (34)

where B (t,T ) and A (t,T ) depend on the model.

The forcasts of survival probabilities are then:

S (t + 1,T + 1) = exp
(
B (t,T )

′
E [Xt+1|Xt ] + A (t,T )

)
. (35)
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Forecasting Survival Curves

The factor dynamics under measure P in the independent
Blackburn-Sherris model and the 3-factor independent AFNS model
are the same. The conditional expectation of state variables for these
two models are as follows:

E
[
X 1
t+1|X 1

t

]
= e−kP

11X 1
t , E

[
X 2
t+1|X 2

t

]
= e−kP

22X 2
t ,

E
[
X 3
t+1|X 3

t

]
= e−kP

33X 3
t .

(36)

For the independent AFNS model, the conditional mean has the same
structure but with Xt = (Lt ,St ,Ct).

The conditional mean of the CIR model for the mortality model is:

E
[
X 1
t+1|X 1

t

]
= e−kP

11X 1
t + θP1

(
1− e−kP

11

)
,

E
[
X 2
t+1|X 2

t

]
= e−kP

22X 2
t + θP2

(
1− e−kP

22

)
,

E
[
X 3
t+1|X 3

t

]
= e−kP

33X 3
t + θP3

(
1− e−kP

33

)
.

(37)
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Mortality Data - Estimating Mortality Models

Mortality models are usually estimated with age-period historical data
(life tables) - US data from 1933 to 2015 at ages from 50 to 100 is
shown below.

Cohort mortality rates are required in practice. Age-period models
require forecasting of age-period curves and derivation of cohort
mortality rates from the diagonal as the cohort ages.

0

2020

0.05

2000 100

0.1

901980

0.15

Year

80

Age

0.2

1960 70
601940

50

Figure 1: Average force of mortality of US Males Using Age-Period data,
from 1933 to 2015
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Mortality Data - Estimating Mortality Models

Age-cohort data allows fitting of age-cohort curves directly but
incomplete data for more recent cohorts - see US cohort data below.

0
100

0.05

90

0.1

188080

Age

0.15

1900
70

Cohort

1920
60 1940

196050

Figure 2: Average Force of Mortality for
Males Born from 1883 to 1965
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Mortality Data - Estimating Mortality Models

Complete age-cohort data for cohorts born in earlier years. US
complete cohort data below.

0

1920

0.05

1910 100

0.1

90

Cohort

1900 80

Age

0.15

701890
60

1880 50

Figure 3: Average Force of Mortality for
Males Born from 1883 to 1915
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Mortality Data - Calibrating Affine Mortality Models

US mortality age-cohort data from the Human Mortality Database
(2017) (HMD) to calibrate and compare the mortality models.

Mortality data of males from ages 50 to 100 for the cohorts born
from 1883 to 1915.

Historical survival probability, S i (x ; t,T ), and the historical average
forces of mortality µ̄i (x ; t,T ) over the period τ = T − t for each
cohort i aged x at time t from the data, using:

S i (x ; t,T ) =
T−t∏
s=1

[
1− qi (x + s − 1, t + s − 1)

]
, (38)

µ̄i (x ; t,T ) = − 1

T − t
log
[
S i (x ; t,T )

]
, (39)

where qi (x , t) is the one year death probability for an individual aged x at
time t in cohort i .
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Affine Cohort Mortality Models - Goodness of Fit

Table 1: Comparison of Affine Mortality Models

The Blackburn-Sherris Model The AFNS Model The CIR Model

Independent-

Factor

Dependent-

Factor

Independent-

Factor

Dependent-

Factor

Log Likelihood 9896.419 9938.696 9665.801 9887.878 10045.70
RMSE 0.00250 7.601e-04 6.856e-04 9.160e-04 5.227e-04
No. of

Parameters 12 18 10 13 18
AIC -19570.837 -19643.392 -19113.602 -19551.757 -19857.40
BIC -18968.292 -19008.277 -18521.914 -18943.783 -19222.29

Probability of

Negative

Mortality 0.02700 1.011e-32 1.722e-31 4.34e-14 -

AFNS model fits historical age-cohort data well. Low negative
mortality probabilities. CIR the best fit.
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Canonical Age-Period Mortality Curve Factors

1940 1950 1960 1970 1980 1990 2000 2010

Year

-4
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-3

X1
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X3

Figure 4: Factors in the Blackburn-Sherris Model with Age-Period Data

Factor X2 captures trend change around 1970’s.
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Canonical Age-Period Mortality Curve Factor Loadings
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Figure 5: Factors Loadings in the Blackburn-Sherris Model with Age-Period Data
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AFNS Age-Cohort Mortality Curve Factors

1885 1890 1895 1900 1905 1910 1915

Year
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Figure 6: Factors in the Independent AFNS Model
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AFNS Age-Cohort Mortality Curve Factor Loadings
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Figure 7: Factors Loadings in the Independent AFNS Model
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Affine Cohort Mortality Models - Residual Analysis
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Model
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Figure 8: Residuals of Affine Mortality Models
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Affine Cohort Mortality Models - MAPE

Mean Absolute Percentage Error (MAPE) for each age, across all cohorts
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Figure 9: The Models with Gaussian Processes
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Affine Cohort Mortality Models - MAPE
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Figure 10: The CIR Model, the Dependent Blackburn-Sherris Model and the
Independent AFNS Model
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Affine Cohort Mortality Models - Forecast RMSE

Table 2: RMSE by Comparing the Actual and Best-Estimate Survival Probabilities
of the 1916 Cohort

The Blackburn-Sherris Model The AFNS Model The CIR Model

Independent Dependent Independent Dependent

RMSE 0.03197 0.00726 0.00668 0.00754 0.01835

AFNS model performs well. CIR model has poorer forecasting
performance. Forecast for a single cohort.
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Affine Cohort Mortality Models - Forecast RMSE
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Figure 11: Actual and Best-Estimate

Survival Probabilities of the 1916
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Multi-cohort Continuous Time model

We cover the multi-cohort mortality model in Xu et al. (2019b).

This is a three-factor affine mortality model, with mortality intensity
process for each cohort i aged x + t at time t is

µi (x , t) = X1(t) + X2(t) + Z i (t), (40)

where X1(t), X2(t) are two common factors and Z i (t) is a cohort
specific factor.

Under best-estimate measure Q̄, the state variables
(X1(t),X2(t),Z i (t)) have the following dynamics

dXj(t) = −φjXj(t)dt + σjdW
Q̄
j (t), j = 1, 2 (41)

dZ i (t) = −φi3Z i (t)dt + σi3dW
Q̄,i
3 (t) (42)

where φ1, φ2, φi3, σ1, σ2 and σi3 are constants, and W Q̄
1 (t), W Q̄

2 (t)

and W Q̄,i
3 (t) are standard Wiener processes under Q̄. 39/50



Multi-cohort Survival Probability

The best-estimate survival probability, S Q̄,i (x , t,T ) for cohort i aged
x at time t over duration T − t, has a closed-form solution:

S Q̄,i (x , t,T ) = E Q̄ [e−
∫ T
t µi (x ,s)ds |Ft ]

= eB1(t,T )X1(t)+B2(t,T )X2(t)+B i
3(t,T )Z i (t)+Ai (t,T ), (43)

where

B1(t,T ) = −
1− e−φ1(T−t)

φ1

,

B2(t,T ) = −
1− e−φ2(T−t)

φ2

,

B i
3(t,T ) = −

1− e−φ
i
3(T−t)

φi
3

,

Ai (t,T ) =
1

2

2∑
j=1

σ2
j

φ3
j

[
1

2
(1− e

−2φj (T−t)
)− 2(1− e

−φj (T−t)
) + φj (T − t)

]

+
1

2

(σi
3)2

(φi
3)3

[
1

2
(1− e−2φi3(T−t))− 2(1− e−φ

i
3(T−t)) + φ

i
3(T − t)

]
. (44)
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Price of Mortality Risk

Best-estimate measure Q̄ and the parameters are estimated using
historical age-cohort mortality data.

The pricing risk-neutral measure Q has affine market price of risk
specification in Dai and Singleton (2000) and Duffee (2002).

Λi = (λµ,1, λµ,2, λ
i
µ,3)T is vector of market prices of risk associated

with cohort i

Market prices of longevity risk, λµ,1 and λµ,2 assumed the same
across cohorts - common factors, but λiµ,3 differs by cohort.

From Girsanov’s Theorem

dWQ
j (t) = dW Q̄

j (t) + λµ,jdt, j = 1, 2 (45)

dWQ,i
3 (t) = dW Q̄,i

3 (t) + λiµ,3dt (46)

where WQ
1 (t), WQ

2 (t) and WQ,i
3 (t) are standard Wiener processes

under the risk-neutral measure Q.
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Calibrating Price of Risk - Blackrock CORI

BlackRock introduced the CoRI Indexes in June 2013 to help
investors estimate and track the cost of $1 of annual lifetime income
at retirement.

The CoRI consists of twenty indexes corresponding to twenty cohorts
born from 1941 to 1960 in U.S.

For cohorts with an age below 65 the index is the discounted cost of
purchasing inflation-adjusted lifetime retirement income at age 65,
and for other cohorts it is the cost of purchasing inflation-adjusted
retirement income for remaining life.

The CoRI indexes are constructed based on real-time market data, do
not include any fees or premium taxes that would be associated with
the price of an annuity. Available on NYSE.

Investors can use the CoRI index as a risk metric directly or invest in
the BlackRock CoRI Funds that track the index.
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Multi-cohort Mortality Model Estimation

We use U.S. male mortality data from Human Mortality Database for
1934 to 2013, aged 50 to 100, cohorts born 1884 to 1913.

Restructured on a cohort basis.

Sample survival probability for cohort i aged x at time t over duration
T − t is

S̃ i (x , t,T ) =
T−t∏
s=1

(1− q̃ix(t + s − 1)), (47)

where q̃ix(t) is the observed death rate at time t.

Corresponding sample average force of mortality is

µ̃i (x , t,T ) = − 1

T − t
logS̃ i (x , t,T ). (48)
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Multi-cohort Mortality Model Estimation

Figure 13 shows the average force of mortality in U.S. for cohorts
born between 1884 and 1913, ages 50 to 100.
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Figure 13: Male average force of mortality in U.S. for cohorts born between
1884 and 1913, ages 50 to 100.
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Multi-cohort Mortality Model Estimation

We use the Kalman filter estimation for the two common factors -
parameter estimates shown in Table 3.

φ1 -0.14313
φ2 -0.07904
σ1 0.00006
σ2 0.00018
ε1(×107) 2.74881
ε2(×107) 1.99699
Log likelihood 24440
RMSE 0.00051

Table 3: Kalman filter parameter estimates, log likelihood and RMSE.
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Multi-cohort Mortality Model Estimation

Parameters for the cohort specific factors are estimated by minimising
calibration error in the model after including the cohort factor.

Grouping by 10 cohorts.

Cohort parameters are shown in Table 4.

i cohort φi3 σi3 Z i

1884-1893 0.06791 0.00558 0.00163
1894-1903 0.05228 0.00719 0.00106
1904-1913 0.05463 0.00122 -0.00079

Table 4: Estimation results for cohort specific factors with a 10-year interval.
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Implied Price of Longevity Risk based on CORI indices

The calibrated risk premiums are shown in Table 5.

λ̂µ,1 λ̂µ,2 λ̂1
µ,3 λ̂2

µ,3

0.3601 0.0892 0.1099 0.0973

Table 5: Calibrated market price of longevity risk.

Note that all prices of risk are positive

Prices of risk are consistent with and of similar magnitude to other
studies.

There are similar prices of risk for each cohort risk factor.
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Implied Price of Longevity Risk

Table 6 shows model risk-neutral index levels and the values of CoRI
indexes published by BlackRock on 31 March 2015.

Cohort Age Name Index level Risk-neutral index level Difference

1941 74 CoRI Index 2005 15.26 15.96 0.70
1942 73 CoRI Index 2006 15.94 16.41 0.47
1943 72 CoRI Index 2007 16.61 16.89 0.28
1944 71 CoRI Index 2008 17.28 17.40 0.12
1945 70 CoRI Index 2009 17.95 17.93 -0.02
1946 69 CoRI Index 2010 18.60 18.48 -0.12
1947 68 CoRI Index 2011 19.26 19.05 -0.21
1948 67 CoRI Index 2012 19.93 19.64 -0.29
1949 66 CoRI Index 2013 20.59 20.24 -0.35
1950 65 CoRI Index 2014 21.25 20.85 -0.40
1951 64 CoRI Index 2015 22.19 21.03 -1.16
1952 63 CoRI Index 2016 21.50 20.66 -0.84
1953 62 CoRI Index 2017 20.93 20.29 -0.64
1954 61 CoRI Index 2018 20.35 19.93 -0.42
1955 60 CoRI Index 2019 19.73 19.57 -0.16
1956 59 CoRI Index 2020 19.11 19.21 0.10
1957 58 CoRI Index 2021 18.52 18.85 0.33
1958 57 CoRI Index 2022 17.98 18.50 0.52
1959 56 CoRI Index 2023 17.50 18.13 0.63
1960 55 CoRI Index 2024 16.93 17.77 0.84

*The CoRI Index data is obtained from BlackRock on 31 March 2015.

Table 6: CoRI index level and the risk-neutral index level at the market prices of
longevity risk given in Table 5.
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Wrap Up

Introduced continuous-time mortality models including an AFNS
cohort mortality model with interpretable latent stochastic factors for
level, slope and curvature of the survival curve.

The model is based on factor loadings multiplied by (latent) factors,
where the factors are equivalent to stochastic parameters and the
factor loadings determine how the factors impact different ages.

Outlined the dynamics of the mortality rates and the affine survival
curves.

Outlined the estimation of the models using the Gaussian Kalman
filter.

Outlined how the models can capture Poisson variation in the
estimation.

Introduced a multi-cohort continuous time mortality model with
cohort factors with calibrated prices of risk to Blackrock CORI data.
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Some comments on the Models

Empirical results show that the independent-factor AFNS cohort
mortality model is:

Parsimonious, captures the variation in cohort mortality rates in US
data, producing a better fit at older ages than the independent-factor
Blackburn-Sherris model, and has good predictive performance.

As a Gaussian model it is easy to implement with closed-form
expressions for survival probabilities, ieasy to estimate using the
Kalman filter, and can be readly implemented using simulation.

Negative mortality rates have very low probability.

Factors that better fit historical data dynamics and have intuitive
factor interpretation (Level, Slope, Curvature).

Multi-factor age-cohort models, and particularly the AFNS model, is
well suited for financial and insurance applications.

Work to be done: incorporating imcomplete cohorts inrto estimation,
better capturing Poisson variation, age-dependence in trend and
covariance, CIR model estimation and forecasting. 50/50
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