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Abstract

This paper presents a comprehensive assessment of premiums, reserves and sol-
vency capital requirements for long-term care (LTC) insurance policies using Activ-
ities of Daily Living (ADLs) and U.S. data. We compare stand-alone policies, rider
benefit policies (LTC insurance combined with whole life insurance), life care annuities
(LTC insurance combined with annuities), and shared LTC insurance in terms of pre-
mium cost and solvency capital requirements. Premiums and best-estimate reserves
for generic LTC insurance policies are determined using Thiele’s differential equation.
Product features such as the elimination period and the maximum benefit period are
compared using a simulation-based model. Solvency capital requirements for longevity
risk and disability risk are based on the Solvency II standard formula. We quantify the
extent to which rider benefit policies and life care annuities provide lower solvency cap-
ital requirements than stand-alone LTC insurance policies. We show how a maximum
benefit period can reduce costs and risks for LTC insurance products.
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1 Introduction

Long-term care (LTC) costs have shown a significant increase over recent decades and the

increasing trend is projected to continue in future (e.g., Congressional Budget Office, 2004;

Productivity Commission of Australia, 2013; Shi and Zhang, 2013). LTC expenses are signif-

icantly higher if the insured moves into LTC facilities (see Fong et al., 2012, for a discussion

on nursing home admittance). The primary funding for LTC costs in Australia is the lifetime

stop-loss mechanism funded through the pay-as-you-go scheme (Productivity Commission of

Australia, 2011, 2013). In the U.S., the base funding programme for LTC costs is Medicaid

(Meiners, 2008). In particular in the U.S., community-based LTC costs are primarily funded

through two public programmes: Medicaid and Medicare; institutionalised LTC expenses

are primarily funded through Medicaid and personal co-payments (Kaye et al., 2010). Or-

ganisation for Economic Co-operation and Development (2005) and Colombo et al. (2011)

provide a comprehensive review on the LTC funding systems in OECD countries including

Australia and the U.S.

Recent discussions in Australia and many other countries have focused on developing the

private LTC insurance market as an important supplement for public funding sources (see

e.g., Colombo et al., 2011; Glendinning et al., 2004; Productivity Commission of Australia,

2011, 2013). Though the private insurance is an important source, the share of the private

market is small. In the U.S., only 4% of LTC costs are reimbursed from private insurance

(Brown and Finkelstein, 2008). Motivated by the small share of private LTC insurance,

Brown and Finkelstein (2008) investigate the interaction of the public Medicaid program and

private LTC insurance. They find that Medicaid has a very large crowd-out effect due to

the implicit tax imposed on the benefits of private LTC insurance. Against this background,

a comprehensive analysis of LTC insurance in terms of premium costs, policy designs and

solvency capital will allow a more informed consideration of the role and effectiveness of

private LTC insurance.
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A LTC insurance policy entitles the insured to receive benefits when the insured becomes

functionally disabled according to the definition pre-specified in the policy (Haberman and

Pitacco, 1999). LTC insurance policies, however, do not have a uniform definition for the

benefit eligibility in the market. The most frequently used criteria for defining functional

disability in LTC insurance are the number of Activities of Daily Livings (ADLs) that indi-

viduals cannot perform independently and cognitive impairment (Haberman and Renshaw,

1996; Murtaugh et al., 2001; Pritchard, 2006). The Australian Bureau of Statistics defines

individuals’ functional disability based on the Core Activity Restrictions (CARs) that can

be linked to scales of ADLs (Leung, 2004, 2006). We focus on ADLs as the basis for a private

LTC insurance contract.

LTC insurance policies can be categorised into four different types (Haberman and Pitacco,

1999; Leung, 2006): fixed benefit policies sold to healthy individuals, fixed benefit policies

sold to the elderly entering or already staying in LTC facilities, indemnity-based benefit

policies, and policies that allow the insured to choose between fixed benefit and LTC service.

The fixed benefit policy is the most typical and widely used type in the private LTC insurance

market. Fixed benefit LTC insurance can be stand-alone policies, included as a rider benefit

in the whole life insurance, or life care annuities (Haberman and Pitacco, 1999).

A stand-alone policy pays out the predetermined benefit when the insured becomes func-

tionally disabled. In practice LTC policies can be combined with other forms of insurance.

LTC cover included as a rider benefit in a whole life insurance policy, referred to as the rider

benefit policy, is a financial product that allows the insured to draw the death benefit for

LTC costs before death (Haberman and Pitacco, 1999). In a rider benefit policy, the insured

is eligible for LTC benefits when becoming functionally disabled and also becomes eligible

upon death for the death benefit net of drawn LTC benefits. Another version of the rider

benefit policy is to directly include LTC benefits in a whole life insurance where the death

benefit is a fixed amount Leung (2006). This paper focuses on the rider benefit policy of the
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type in Leung (2006).

LTC insurance can also be combined with annuities, which is usually referred to as the life

care annuity (Brown and Warshawsky, 2013; Murtaugh et al., 2001; Warshawsky, 2007).

The life care annuity reduces the adverse selection problem by pooling annuitants who are

vulnerable to longevity risk and LTC insurance policyholders who are vulnerable to disability

risk (Murtaugh et al., 2001). This risk pooling of the life care annuity provides a natural

hedge and therefore reduces insurance premiums (Brazell and Warshawsky, 2008; Murtaugh

et al., 2001; Warshawsky, 2007). Such annuities offer a valuable product structure for both

the insurer and the insured especially given the increasing need for individuals to fund their

own retirement income and the potential role of a private annuity market.

The generic LTC insurance in this paper is a LTC insurance policy with no elimination

period or maximum benefit period. In order to minimise adverse selection and to make LTC

insurance more affordable, insurers usually include an elimination period and a maximum

benefit period in the product. The elimination period is the required minimum number of

consecutive payment periods before the insured becomes eligible for benefits. The elimination

period can span from three months to two years. Most LTC insurers provide a lifetime

elimination period, which means that the insured does not have to go through the elimination

period each time before he or she is eligible for receiving benefits. The maximum benefit

period is also a useful tool in managing risks and making the product more affordable.

Analogous to the upper limit in property and casualty insurance, the maximum benefit

period is the maximum periods of payment that the insured can possibly receive. The

commonly used maximum benefit periods are 3 years, 4 years and 5 years. These alternative

product designs have implications for both costs and capital requirements.

This paper considers product design for LTC and analyses lump sum and regular premi-

ums for a broad range of fixed benefit LTC insurance policies, taking into account product

features such as the elimination period and the maximum benefit period. Different combi-
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nations of the elimination period and the maximum benefit period are analysed to highlight

how more affordable products can be offered. Solvency capital requirements under Solvency

II for different types of LTC insurance policies are assessed to determine the extent of cap-

ital reductions in stand-alone policies for disabled lives compared to healthy lives. Capital

reductions for combined LTC insurance with life insurance and annuities are quantified. For

example, under the Solvency II standard formula framework, it is shown that 80% less capital

per unit premium at policy issue is required for life care annuities compared to stand-alone

policies for policies sold to 65-year-old healthy males.

The paper is arranged as follows. Section 2 describes the Markov model framework for

health dynamics. Section 3 presents the methodology on pricing, reserving and deriving

capital requirements for LTC insurance policies. The first part of Section 3 outlines Thiele’s

differential equation approach used for the pricing and reserving of generic LTC insurance

policies. The second part focuses on policies with flexible product features which require a

simulation-based approach to derive premiums and reserves. The third part discusses the sol-

vency capital requirement in the Solvency II Directive (European Insurance and Occupational

Pension Authority, 2011). Section 4 briefly describes the data used to derive health dynamics

and presents the transition rates assumed for the analysis. The demographic characteristics

of the experience assumed in the analysis is also provided in Section 4. Section 5 presents

results for premiums based on the methods described in Section 3 and compares premiums

for different types of LTC insurance policies. Section 6 gives results for the best-estimate

liabilities and solvency capital requirements for the different types of policies. Section 7

concludes.

2 Markov Model Framework for Health Dynamics

A LTC insurance policy pays benefits to the insured when the insured becomes functionally

disabled, i.e. the benefits are dependent on the current health state. We employ a four-state

5



continuous time Markov model to describe the health dynamics of retirees.

The health states are categorised based on the number of difficulties in independently per-

forming Activities of Daily Livings (ADLs). The transition diagram is shown in Figure 1,

where “H” denotes the healthy state, “M” denotes the mildly disabled state (defined as

having 1 - 2 ADL difficulties)1, “S” denotes the severely disabled state (defined as having 3

- 6 ADL difficulties), and “D” denotes the dead state. As shown in the diagram, the paper

allows for recovery from disability, which is in line with prior studies (e.g., Ameriks et al.,

2011; Brown and Warshawsky, 2013; Leung, 2006; Pritchard, 2006; Robinson, 1996). Some

prior studies (such as Ferri and Olivieri, 2000; Olivieri and Pitacco, 2001) do not take into

account recovery, based on the argument that LTC disability has the chronic characteristic

that makes it very hard to recover from the disabled state. Based on Fong et al. (2015) the

recovery rate is comparatively high and should be taken into account in the analysis.

H

M

S

D

Figure 1. Four-state Markov transition diagram.

The transition rates and probabilities are age- and sex-dependent. Let Ωχ = {H, M, S, D}

denote the state space, x the individual’s age last birthday, χ(x) ∈ Ωχ the health state at

age x. For t ≥ 0 and i, j ∈ Ωχ, the transition probability from state i at age x into state j

1Typical private LTC insurance, particularly in North America, pays a benefit when the insured has
difficulties with either 2+ or 3+ ADLs. This paper uses 3+ ADLs as a base and shows the effect of 2+ ADLs
in a sensitivity analysis in Table 9.
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at age x+ t is defined as follows:

pij(x, x+ t) = Pr {χ(x+ t) = j | χ(x) = i} . (1)

Instantaneous transition intensities are assumed to be integrable on compact intervals. For

i 6= j, the transition intensity is defined as:

µij(x) = lim
∆x→0+

pij(x, x+ ∆x)

∆x
. (2)

We use a Generalised Linear Model (GLM) with a log link function and a Poisson distribution

to graduate the estimated transition rates. In this model, the number of transitions is

assumed to follow a Poisson distribution with mean that depends on age in the following

function:

mx = ex

k∑
s=0

βsx
s, (3)

where ex denotes the exposure for x-year-old individuals, βs denotes the coefficients for

the sth order polynomial function of age, and k is the maximum polynomial order. We

select the optimal k based on AICc, BIC and model deviance (see Fong et al., 2015, for

the detailed methodology). The graduated transition rates are then used as inputs to the

pricing, reserving and capital requirements of LTC insurance.

3 Methodology

3.1 Thiele’s Differential Equation

The generic LTC insurance policy has no elimination period or maximum benefit period.

Since we assume a Markov process for our transitions and benefits, we can compute premiums

with the generalised Thiele’s differential equation (Christiansen et al., 2014; Hoem, 1969;
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Leung, 2006). The Thiele’s differential equation approach, first published in Gram (1910),

provides a set of simultaneous differential equations that are used to calculate premiums

and reserves for life insurance policies where only alive and dead states are involved. The

generalised Thiele’s differential equation is applied to life contingencies that involve multiple

health states Linnemann (1993) and Norberg (1992, 1995).

We use Vi(t, T ) to denote the time t expected present value of benefits paid to an individual

in state i within the period (t, T ), where i ∈ Ωχ is the health states and T is the terminal

period. As discussed in Fong et al. (2015), it is difficult to extrapolate the transition rates

past age 100 due to limited exposure at very old ages. Therefore, the maximum attainable

age is assumed to be 100. Based on the four-state health transition diagram defined in

Figure 1, the expected present value is given by:

Vi(t, T ) =

∫ T

t

e−(δ+
∑
j 6=i µij(x+s))(s−t)

[
bi(s) +

∑
j 6=i

µij(x+ s)
(
Bij(s) + Vj(s, T )

)]
ds, (4)

where i, j ∈ Ωχ = {H, M, S, D} denote health states as defined in Section 2, δ is the

continuously compounded interest rate, bi(s) is the annuity payment to the insured while in

state i at time s, µij(x+ s) is the transition intensity from state i to state j for individuals

aged x+ s, and Bij(s) is the benefit payment upon transitions from state i to state j at time

s. When the insured dies, the reserve becomes zero after the payment of death benefit, if

any, i.e. Vi(t, T ) ≡ 0 when i = D. bi(s) is usually referred to in the literature as the sojourn

benefit and Bij(s) as the transition benefit (Christiansen et al., 2014). Since this paper

focuses on fixed benefit products, the sojourn and transition benefits are fixed for generic

stand-alone policies, rider benefit policies of the type in Leung (2006) and life care annuities.

Differentiating both sides of Equation (4) with respect to t, the generalised Thiele’s differ-
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ential equation is derived and expressed as follows:

dVi(t, T )

dt
= δVi(t, T )− bi(t)−

∑
j 6=i

µij(x+ t)
(
Bij(t) + Vj(t, T )− Vi(t, T )

)
, (5)

where notations are consistent with those in Equation (4). Equation (5) explicitly shows

that the change in the reserve during an infinitesimal time can be decomposed into four

parts: the accrued interest, the paid-out annuity to individuals staying in certain states if

any, the benefit payment upon transitions if any, and the jump in the reserve if the individual

transitions into a different state.

When the transition intensities are simple functions with respect to age, the above simul-

taneous differential equations can be easily solved to derive a closed formula for the reserve

function. Based on the assumed values for the interest rate δ and the graduated transition

rate µij(x+t), the reserve function evaluated at time 0 is the lump sum premium of a generic

LTC insurance policy.

Since graduated transition rates are parametrised as exponential polynomial functions with

respect to age, the reserve functions cannot be directly solved for in the simultaneous equa-

tions as in Equation (5). We use the Euler’s rule to derive a numerical solution of the reserve

function Vi(t, T ). The Euler’s rule is a commonly used approach in discretising differential

equations. The dt term in Equation (5) is replaced by a very short period of time h, such

as a day. Rearranging the discretised version of Equation (5), the process of calculating the

reserve for a previous period is as follows:

Vi(T, T ) = 0, ∀ i ∈ Ωχ, (6)

Vi
(
T − (u+ 1)h, T

)
= Vi(T − uh, T )

(
1− hδ − h

∑
j 6=i

µij(x+ T − uh)

)
+ hbi(T − uh)

+h
∑
j 6=i

µij(x+ T − uh)
(
Bij(T − uh) + Vj(T − uh, T )

)
,
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where i, j ∈ Ωχ, u ∈ {0, 1, 2, · · · , T
h
− 1} is a non-negative integer, and other notations are

consistent with those in Equation (5). An implicit assumption is that the transition intensity

is constant within the short period of time h. Numerical values are then solved for based on

backward iterations of Equation (6) starting from the terminal period.

The lump sum premium of a generic LTC insurance sold to an individual in state i is equal

to the expected present value of future benefits, based on the principle of equivalence. The

expected present value of a unit benefit while the insured is in the severely disabled state can

be calculated as the reserve function evaluated at the present time, which can be expressed

as follows:

vS = Vi(0, T ), (7)

where i ∈ Ωχ, ∀ t ∈ (0, T ), bS(t) = 1, bk(t) = 0 for k 6= S, and Bij(t) ≡ 0. The lump

sum premium of insurance policies sold to individuals in state i, denoted by PL
i , is then

calculated in the following equation:

PL
i = y vS, (8)

where y is the predetermined annual amount of LTC insurance benefits paid while the insured

is in the severely disabled state.

Continuously paid premiums are also of interest in the actuarial field. In particular, premi-

ums paid on a very frequent basis, such as weekly premiums, are usually approximated as

continuous premiums. The expected present value of a unit payment while the individual

stays in the healthy or mildly disabled state is first calculated based on the discretised si-

multaneous differential equations, as shown in Equation (6), with a very small step size such

as 0.001. In mathematical expressions, the first step is to calculate the following expected

present value:

vH,M = Vi(0, T ), (9)

10



where i ∈ Ωχ, ∀ t ∈ (0, T ), bH(t) = bM(t) = 1, bS(t) = bD(t) = 0, and Bij(t) ≡ 0.

The expected present value of a unit payment while the individual stays in the severely

disabled state is then calculated using the same specifications as in the case of the lump sum

premium, as shown in Equation (7). Based on the principle of equivalence, the continuously

paid premium per annum of insurance policies sold to individuals in state i, denoted by P̄i,

is solved for in the following equation:

P̄i vH,M = y vS. (10)

Instead of paying lump sum premiums at the outset or continuously paying insurance premi-

ums, policyholders usually choose to pay LTC insurance premiums on an annual, quarterly,

or monthly basis while the insured is not eligible for receiving LTC insurance benefits2. The

Thiele’s differential equation is a very useful tool in dealing with these regular premiums.

For regular premiums of a generic LTC insurance policy, the unit payment while the insured

stays in the healthy or the mildly disabled state are calculated using the discretised version of

Thiele’s differential equation, as shown in Equation (6), with a step size of the corresponding

frequency, for example h = 1
12

for premiums paid on a monthly basis. Let v′H,M denote the

expected present value of a unit payment while the insured is in the healthy or the mildly

disabled state at the beginning of each assessment interval (for example, at the beginning of

each month for premiums on a monthly basis). vS is calculated using the same specifications

on the benefit payments as in Equation (7). Based on the principle of equivalence, the

premium on a regular basis of insurance policies sold to individuals in state i, denoted by

P
(f)
i , can be solved for in the following equation:

fP
(f)
i v′H,M = y vS, (11)

2For some types of LTC insurance policies, only lump-sum premiums are taken into account since regular
or continuous premiums are not feasible. For example, policies sold to individuals who are already severely
disabled and life care annuities.
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where f denotes the number of payments in a year. For example, f = 12 and 1 for monthly

and annual premiums respectively.

3.2 Simulation-Based Approach

The generalised Thiele’s differential equation is widely used for pricing and reserving of insur-

ance in a Markov model framework. When flexible product features such as the elimination

period and the maximum benefit period are allowed, the LTC benefit depends on durations

in one or multiple states and the benefit process is therefore no longer Markov. Conse-

quently, the generalised Thiele’s differential equation approach cannot be directly used for

LTC insurance policies with more flexible features (Christiansen et al., 2014; Hoem, 1969).

An alternative method is to simulate health trajectories of a large number of homogeneous

and independent individuals and to calculate the expected present values of benefit payments

based on the simulated health trajectories.

Given graduated annual transition rates from Fong et al. (2015), transition probabilities for

a short period of time can be calculated as the matrix exponential of the annual transi-

tion rate matrix multiplied by the short period, assuming that transition rates are constant

within integer ages. Based on the calculated transition probabilities for a short period, an

individual’s health state in the next period given his or her current health state follows a

multinomial distribution. The health transition trajectories of a large number of N homo-

geneous individuals aged x are simulated using the multinomial distribution. Based on the

simulated health trajectories, the present value of future benefit payments to the insured

currently in state i at time t is:

PVi(l, t) =
ω−x∑
s=t

∆i(l, t) B(l, 0, 1, 2, · · · , s)e−δ(s−t), (12)

where i ∈ Ωχ is the health state, l denotes the lth individual, ω is the maximum attainable
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age, ∆i(l, t) is an indicator variable that equals 1 if the lth insured is in state i at time t

and equals 0 otherwise, B(l, 0, 1, 2, · · · , s) is the benefit payment to the lth insured based on

the simulated historical and current health status up to time s, and δ is the continuously

compounded interest rate. The benefit payment function B(l, 0, 1, 2, · · · , s) takes into ac-

count the elimination period and the maximum benefit period. In particular, the value of

B(l, 0, 1, 2, · · · , s) is set to zero for those periods spent in functional disability before the

duration surpasses the elimination period; the value of B(l, 0, 1, 2, · · · , s) is set to zero if the

total number of payments exceeds the maximum benefit period.

The lump sum premium of insurance policies sold to individuals in state i, denoted by P̃L
i ,

is calculated as the sample mean of the present values of benefits across all the simulated

homogeneous individuals:

P̃L
i =

1

N

N∑
l=1

PVi(l, 0), (13)

where N is the number of simulations. In addition, the estimation standard error are calcu-

lated as the standard deviation divided by the square root of the number of simulations. The

premium paid on a regular basis of insurance policies sold to individuals in state i, denoted

by P̃
(f)
i , can be calculated in the following equation:

P̃
(f)
i ã

(f)
HM(0) =

1

N

N∑
l=1

PVi(l, 0), (14)

where ã
(f)
HM(0) is the time-0 present value of unit payments at the beginning of each 1

f
year

while the insured is healthy or mildly disabled.

The premium of LTC insurance calculated using the simulation approach is only an ap-

proximation to the price calculated using the Thiele’s differential equation approach. If the

number of simulations is very large and the step size h of the Euler’s approximation approach

is small enough in deriving numerical solutions to the differential equations, the premiums

of generic LTC insurance policies calculated using the two approaches should give very close
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results.

3.3 Best-Estimate Reserves and Solvency Capital Requirements

LTC insurance providers take risks that span a long period of time. Accurate estimations of

premiums and reserves are therefore critical in the risk management for product providers.

The best-estimate reserve is the expected present value of future liabilities while the solvency

reserve ensures that the insurer survives losses resulting from extreme events that occur with

low probabilities.

3.3.1 Best-Estimate Reserves Based on Thiele’s Differential Equation

Best-estimate reserves for individuals in each alive health state are determined from Equa-

tion (6) using the Thiele’s differential equation approach. Let χ(t) ∈ Ωχ denote the health

state that the individual stays at time t. The time t best-estimate reserve for a LTC in-

surance policy issued to an individual in state k, denoted by V (t, T | χ(0) = k), is the

expected value of best-estimate reserves for individuals in different health states. The time

t best-estimate reserve is determined as follows:

V
(
t, T | χ(0) = k

)
=
∑
i

Pr
(
χ(t) = i | χ(0) = k

)
Vi(t, T ), (15)

where i, k ∈ Ωχ, Pr(χ(t) = i | χ(0) = k) is the probability of staying in heath state i at

time t given the insured is in state k at the outset, and Vi(t, T ) is the best-estimate reserve

for an insured in state i at time t which is calculated from Equation (6).
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3.3.2 Best-Estimate Reserves Based on the Simulation Approach

Let Ṽi(t, T ) denote best-estimate reserves for an insured in state i at time t calculated using

the simulation approach. Ṽi(t, T ) can be estimated as follows:

Ṽi(t, T ) =

∑N
l=1 PVi(l, t)∑N
l=1 ∆i(l, t)

, (16)

where i ∈ Ωχ, N is the number of individuals at the outset, PVi(l, t) is calculated using

Equation (12), and ∆i(l, t) is the indicator variable that equals 1 if the lth insured is in state

i at time t and equals 0 otherwise. Based on the simulation approach, the best-estimate

reserve for a LTC insurance policy issued to an individual in state k at the outset, denoted

by Ṽ
(
t, T | χ(0) = k

)
, can be calculated as follows:

Ṽ
(
t, T | χ(0) = k

)
=

∑
i∈Ωχ

∑N
l=1 PVi(l, t)

N
=
∑
i∈Ωχ

∆i(l, t)

N
Ṽi(t, T ), (17)

where the simulation is on a cohort of N individuals who are in state k at the outset.

Distributional risk measures, such as the Value-at-Risk (VaR), are widely used in actuarial

practice, in particular in the context of estimating solvency capital requirements and solvency

reserves. Based on the simulation approach, these distributional risk measures of the reserve

can be easily calculated. The VaRα of liabilities for the insured in state i at time t is

calculated as the 100α% quantile of PVi(l, t) across all simulated individuals at time t,

which is expressed as follows:

V aRα

(
t, T | χ(0) = k

)
(18)

= arg min
x

∀ l ∈ {1, 2, · · · , N}, Pr

∑
i∈Ωχ

PVi(l, t) > x

 ≤ 1− α

 .
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3.3.3 Solvency Capital Requirements

The Solvency Capital Requirement (SCR) is defined under Solvency II as the amount of cap-

ital required to cover losses that occur with a probability of 99.5% over one year (Kochanski,

2010; Meyricke and Sherris, 2014; Olivieri and Pitacco, 2009). SCRs are required to take

into account a broad range of risks that insurers are faced with, including longevity risk, the

risk of higher disability rates, the risk of lower recovery rates, interest rate risk, etc. Planchet

and Tomas (2014) consider the impact of mortality risk of disabled lives on solvency capital

requirements for LTC insurance. Pitacco (2015) uses a sensitivity analysis to assess the

impact of mortality risk and disability risk on premiums of LTC insurance, which provides

insights into the level of solvency capital for product providers.

Let NAVt denote the net asset value at time t, which is calculated as the difference between

the value of assets and the best estimate of liability at time t. The SCR at time t is then

defined as the smallest amount of capital held at time t so that the probability of a positive

NAV next year is no less than 0.995. This can be expressed as follows:

SCRt = arg min
x

{
Pr (NAVt+1 > 0 | NAVt = x) ≥ 99.5%

}
. (19)

An equivalent expression frequently adopted in practice for the SCR is shown as follows

(Börger, 2010; Meyricke and Sherris, 2014):

SCRt = arg min
x

{
Pr
(
NAVt −NAVt+1e

−δt+1 > x
)
≤ 0.5%

}
, (20)

where δt+1 is the continuously compounded interest rate per annum from time t to t+ 1.

An alternative approach to the above framework is to use the standard formula in Solvency

II. The SCR in the standard formula is calculated as the negative change in NAVt in the

presence of a shock that represents a one-in-two-centuries crisis. The SCR calculated using
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the standard formula, denoted by SCRS
t , can be expressed as follows:

SCRShock
t = NAVt −NAV Shock

t , (21)

where NAV Shock
t is the net asset value at time t if the one-off permanent shock occurs.

The paper focuses on the analysis of two major risks that LTC insurance providers are faced

with: longevity risk and disability risk. Under Solvency II, longevity risk is assessed as

a permanent 20% decrease in mortality rates at all ages; disability risk is assessed as an

increase of 35% in disability rates at all ages for the next year, a permanent increase of

25% at all ages for the following years and a permanent decrease of 20% in recovery rates

at all ages (European Insurance and Occupational Pension Authority, 2011). The SCR for

the aggregate risk is to calculate the SCR for each risk and to aggregate these SCRs via a

correlation matrix (Kochanski, 2010). Based on the assumption of zero correlation between

longevity risk and disability risk, the SRC for longevity risk and disability risk is calculated

as follows:

SRCS
t =

√(
SRCLongevity

t

)2

+
(
SRCDisability

t

)2

, (22)

where SRCLongevity
t and SRCDisability

t are the SRCs for longevity risk and disability risk

respectively which are calculated using Equation (21).

In the standard formula, insurers are also required to hold a risk margin in addition to the

best-estimate reserve, in order to cover residual risks associated with those captured in SCRs

(European Insurance and Occupational Pension Authority, 2011; Olivieri and Pitacco, 2009).

The risk margin also represents the fair value amount that another insurer would require to

take over the liabilities (Meyricke and Sherris, 2014). The risk margin, denoted by RMt, is

linked to current and future SCRs and is determined as follows:

RMt =
m∑
k=0

c
SCRS

t+k

(1 + rf )k
, (23)
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where m is the time to exhaustion of the portfolio of LTC insurance policies, c is the cost

of capital and rf is the risk-free interest rate. The total capital requirement at time t in

the Solvency II standard formula, denoted by TCRS
t , is the sum of the solvency capital

requirement and the risk margin at time t, i.e.:

TCRS
t = SCRS

t +RMt. (24)

4 Health Dynamics

4.1 Data Description

In order to provide realistic estimates we use health transitions data from the University

of Michigan Health and Retirement Study (HRS), which is a U.S. nationally representative

ongoing survey of people aged 50 and above. Starting from 1992, the survey has been

conducted biennially to collect information on physical and mental health functioning, health

insurance, health expenditures, retirement plans, and assets. Since there was an inconsistent

structure of questions asked before wave 1998, we use data from wave 1998 onward to the

latest available wave in 2010.

The data has detailed information on self-reported difficulties in six Activities of Daily Liv-

ings (ADLs) and an assessment of mental functioning. The six ADLs are dressing, walking,

bathing, eating, transferring, and toileting. There is also information on whether the respon-

dent moves into a nursing home, but information on the respondent thereafter is no longer

tracked. Based on the number of ADLs that the individuals cannot perform independently,

we categorise alive health states into healthy, mildly disabled, severely disabled and dead

(see Section 2 for the detailed definition of each state). Exposure years and the number of

transitions are summarized in Table 1.
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Table 1. Summary of exposure years and the number of transitions. For reporting purposes,
we report these summaries for 5-year age groups. Data for lives aged 101 and above is
truncated.

Age Band
Exposure years Number of transitions

H M S H-M H-S H-D M-H M-S M-D S-H S-M S-D

Males
50-54 1,946.6 165.6 85.7 32 4 8 15 7 3 4 7 3
55-59 6,602.6 589.3 209.8 143 27 60 111 22 10 13 22 18
60-64 12,139.0 1,147.7 408.2 267 42 159 234 69 54 30 59 31
65-69 13,963.7 1,361.0 530.1 347 62 270 301 75 80 27 60 69
70-74 11,766.0 1,444.9 628.1 410 80 349 250 87 105 28 44 87
75-79 8,881.3 1,431.0 717.0 397 87 394 224 97 103 17 37 117
80-84 5,557.1 1,195.4 693.6 337 89 356 182 96 150 11 35 166
85-89 2,564.4 787.2 624.4 213 92 257 103 84 132 11 30 156
90-94 786.2 328.2 310.8 85 56 131 36 39 96 8 8 125
95-100 129.6 92.5 89.5 21 21 39 9 7 30 0 3 47
Total 64,336.3 8,542.7 4,297.5 2,252 560 2,023 1,465 583 763 149 305 819

Females
50-54 4,539.7 381.6 171.1 67 21 8 52 13 2 10 13 4
55-59 10,855.1 1,202.5 494.3 280 40 55 212 69 27 37 63 16
60-64 15,767.3 1,932.4 887.5 458 74 114 436 129 37 42 112 36
65-69 16,652.7 2,293.9 971.2 553 112 193 474 147 86 41 145 79
70-74 14,029.9 2,170.3 1,096.9 575 107 226 441 178 97 53 95 86
75-79 10,853.4 2,267.5 1,216.2 579 144 257 349 157 116 41 95 171
80-84 7,546.3 2,227.3 1,377.6 570 162 315 338 190 166 37 94 242
85-89 3,905.6 1,907.7 1,558.5 445 172 302 235 211 212 36 82 312
90-94 1,250.9 1,016.1 1,060.3 218 92 160 86 156 172 18 50 296
95-100 240.7 273.8 429.4 52 24 51 18 76 75 3 13 174
Total 85,641.6 15,673.2 9,262.8 3,797 948 1,681 2,641 1,326 990 318 762 1,416

4.2 Graduated Transition Rates

Table 2 shows goodness of fit comparisons for the nested models for the relationship between

transition rates and age based on the three selection criteria: AICc, BIC and the difference

between model residual deviances. It is found that a quadratic specification is optimal for two

and seven health transition rates for males and females respectively. This specification results

in lower values of AICc and BIC criteria than other predictor structures. Likelihood-ratio

tests of the difference in residual deviance also confirm that the inclusion of the quadratic

age term (i.e. moving from k = 1 to k = 2) is beneficial and improves the fit (p < 0.01) for

these transition rates, despite the additional parameter involved. In contrast, the subsequent

inclusion of age-cubed is found to be over-parameterised and not statistically significant. The
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model selection criteria supports the use of a linear function of age for the remaining health

transition rates.

Transition rates are then graduated based on the optimal specification for each transition.

The fitted parameters for each of the transition rates are shown in Table 3.

4.3 Demographic Characteristics of the Simulated Individuals

In order to provide a large enough sample we simulate health trajectories of 40,000 males and

40,000 females starting at various ages and from the healthy, mildly disabled and severely

disabled states based on the monthly transition probabilities. Monthly transition proba-

bilities are calculated as the matrix exponential of the graduated annual transition rates

divided by 12. For illustrative purposes, simulations for the 65-year old male and female

cohorts starting from the healthy state are as follows.
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Figure 2. Number of disabled among the simulated cohorts of 65-year-old healthy males and
females.

Figure 2 shows the number of mildly disabled and severely disabled individuals among the
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Table 2. Poisson GLM: goodness-of-fit of nested models. AICc is the Akaike Information
Criterion corrected for sample size, BIC is the Bayesian information criterion, and Dc is the
residual deviance statistic. k = 1 implies age term only; k = 2 implies age and age-squared
terms; and k = 3 implies age, age-squared, and age-cubed terms. The optimal criteria value
is bolded for each set of nested models. ∗ is for statistic that is significant at the 10% level,
∗∗ at the 5% level, and ∗∗∗ at the 1% level.

k
Males Females

AICc BIC Dc ∆Dc AICc BIC Dc ∆Dc

Disability rates
µHM: healthy to mildly disabled
1 256.77 260.38 33.91 334.42 338.03 87.15
2 256.37 261.66 31.26 2.65 305.15 310.44 55.63 31.52***
3 258.66 265.52 31.19 0.07 304.20 311.05 52.31 3.32*
µHS: healthy to severely disabled
1 237.77 241.38 62.62 260.51 264.13 64.70
2 217.44 222.73 40.04 22.59*** 248.16 253.45 50.09 14.61***
3 219.55 226.40 39.78 0.25 246.87 253.73 46.44 3.65*
µMS: mildly disabled to severely disabled
1 214.46 218.07 43.54 314.73 318.34 99.05
2 215.97 221.25 42.79 0.75 278.90 284.19 60.96 38.09***
3 215.29 222.15 39.75 3.04* 278.50 285.36 58.21 2.76

Recovery rates
µMH: mildly disabled to healthy
1 244.31 247.92 44.62 300.61 304.23 72.82
2 245.44 250.72 43.49 1.13 290.77 296.06 60.72 12.10***
3 247.71 254.57 43.41 0.08 293.05 299.91 60.64 0.08
µSH: severely disabled to healthy
1 147.94 151.55 42.01 182.83 186.45 41.31
2 149.37 154.65 41.18 0.83 179.44 184.73 35.66 5.65**
3 151.59 158.45 41.04 0.14 181.80 188.66 35.66 0.00
µSM: severely disabled to mildly disabled
1 184.84 188.45 45.95 239.36 242.97 58.64
2 185.53 190.82 44.38 1.56 240.57 245.85 57.60 1.05
3 187.88 194.74 44.37 0.01 242.76 249.62 57.43 0.17

Mortality rates
µHD: healthy to dead
1 248.70 252.31 21.86 271.48 275.09 50.02
2 247.81 253.09 18.70 3.15* 264.39 269.67 40.67 9.35***
3 248.28 255.14 16.82 1.89 266.24 273.10 40.17 0.51
µMD: mildly disabled to dead
1 228.91 232.53 36.62 245.42 249.04 43.72
2 223.39 228.68 28.84 7.78** 242.61 247.90 38.65 5.07**
3 225.11 231.96 28.19 0.65 242.68 249.54 36.36 2.29
µSD: severely disabled to dead
1 239.71 243.32 47.29 245.43 249.04 30.06
2 241.70 246.98 47.02 0.27 247.67 252.95 30.04 0.02
3 243.49 250.35 46.46 0.56 247.28 254.13 27.29 2.75
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Table 3. Parameter estimates of the Poisson GLM with log link.

Intensity
Males Females

β0 β1 β2 (×10−2) β0 β1 β2 (×10−2)

Disability Rates
µHM -7.12*** 0.05*** - -2.73*** -0.06*** 0.08***
µHS 1.32 -0.25*** 0.23*** -1.87 -0.16*** 0.16***
µMS -4.59*** 0.03*** - 1.22 -0.13*** 0.11***
Recovery Rates
µMH -0.75*** -0.01*** - -7.64*** 0.18*** -0.14***
µSH 0.06 -0.05*** - -4.82** 0.08 -0.08*
µSM 0.18 -0.04*** - -0.05 -0.03*** -
Mortality Rates
µHD -9.71*** 0.09*** - -7.67*** 0.01 0.06***
µMD -4.36** -0.01 0.05 -4.20*** -0.03 0.06**
µSD -5.47*** 0.05*** - -6.62*** 0.06*** -

∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01

simulated independent and homogeneous 65-year-old healthy males and females respectively.

It can be seen from Figure 2 that there are fewer mildly disabled and severely disabled

individuals for males than females at all ages in the simulated cohorts. In addition, the

ages at which the numbers of mildly disabled and severely disabled individuals respectively

reach the peak are smaller for males than females. For both males and females, the number

of mildly disabled individuals is larger than that of the severely disabled at all ages except

after around age 93 from which severely disabled individuals start to dominate. This is also

confirmed in Table 4 that shows the proportion of survivors in each health state on a 5-year

basis for the simulated 65-year-old healthy individuals.

Based on the simulated health trajectories for the 80,000 individuals (40,000 males and 40,000

females) who are healthy at age 65, relevant demographic characteristics can be computed

(Brown and Warshawsky, 2013). The results are shown in Table 5. These demographic

characteristics include the life expectancy, time spent in each level of disability, share of

people ever becoming disabled, and the average age of first disability conditional on becoming

disabled. Life expectancy is the expected survival time of the cohort plus 65, expected time
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Table 4. Proportion of survivors in each health state for the simulated 65-year-old healthy
male and female cohorts.

Age Survivors Healthy Mildly Disabled Severely Disabled

Males
65 40,000 100.00% 0.00% 0.00%
70 35,834 90.30% 7.45% 2.25%
75 29,735 83.96% 11.68% 4.36%
80 22,129 78.44% 14.54% 7.02%
85 13,912 71.37% 17.91% 10.72%
90 6,612 61.04% 21.46% 17.50%
95 2,064 47.77% 24.90% 27.33%

100 340 27.35% 22.94% 49.71%
Females

65 40,000 100.00% 0.00% 0.00%
70 37,597 88.25% 8.98% 2.77%
75 33,587 81.26% 12.86% 5.88%
80 27,735 73.17% 17.48% 9.35%
85 20,001 62.62% 22.47% 14.91%
90 11,375 47.41% 28.44% 24.15%
95 4,273 28.32% 32.44% 39.25%

100 855 11.46% 29.12% 59.42%

in each health state is calculated as the mean of total time spent in each state across all

simulated individuals. Share with disability is the proportion of people who are ever disabled.

Share with severe disability is the proportion of people who are ever severely disabled. It can

be seen from Table 5 that 65-year-old healthy females are expected to live three years longer

than their male counterparts. The expected time of the remaining life spent in the severely

disabled state for a healthy female aged 65 is nearly twice that for a 65-year-old male. More

than half of males and nearly three quarters of females in the simulated 65-year-old healthy

cohorts are expected to experience mild or severe disability. Among those males who are ever

disabled, nearly half of them are expected to experience severe disability. For females, nearly

60% of those who are ever disabled are expected to ever become severely disabled. Given

that a 65-year-old healthy individual ever becomes disabled in the remaining life, disability

after age 65 is expected to first strike at age 76 for both males and females. Conditional on

ever becoming severely disabled, the expected age of first severe disability after age 65 for
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females is about 1 year older than that for males.

Table 5. Demographic characteristics of the simulated 65-year-old healthy individuals (40,000
males and 40,000 females).

Demographic Characteristics Males Females

Mean years of life after age 65 16.33 19.43
Mean years with mild disability 1.78 2.80
Mean years with severe disability 0.89 1.68

Share with disability 56.43% 72.70%
Share with mild disability 47.89% 63.37%
Share with severe disability 26.82% 42.39%

Average age of first disability, conditional on
becoming disabled

76.23 76.52

Average age of first mild disability, condi-
tional on becoming mildly disabled

75.83 76.38

Average age of first severe disability, condi-
tional on becoming severely disabled

80.51 81.70

5 LTC Insurance Premiums

This section presents the estimated premiums based on the approaches covered in Section 3.

The results for the base case analysis for generic LTC insurance policies, i.e. products without

the elimination period or the maximum benefit period are presented. These products include

stand-alone policies sold to the healthy, the mildly disabled and the severely disabled, rider

benefit policies, and life care annuities. Different combinations of the elimination period and

the maximum benefit period are taken into account. Thiele’s differential equation and the

simulation approach are also compared.

5.1 Base Case Results: Generic Policies

The premiums of generic stand-alone long-term insurance policies sold to the healthy, the

mildly disabled and severely disabled are calculated using the Thiele’s differential equation
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approach as described in Section 3. The generic stand-alone policy pays $100 per day when

the insured is severely disabled and no elimination period is included in the generic policy.

The benefit is unlimited as long as the insured stays in the severely disabled state since there

is no maximum benefit period in the generic policy. The generic policies are assumed sold

to healthy individuals aged 55, 60, 65, 70, 75, and 80 respectively in exchange for lump sum

premiums or premiums paid on a regular basis. The continuously compounded interest rate

is assumed to be a constant 4% per annum.

Lump sum, continuous, annual and monthly premiums of the above generic stand-alone

policy sold to individuals in different initial health states are shown in Table 6. It can be

seen from the table that LTC insurance premiums for females are considerably higher than

those for their male counterparts. This is due to the dual effects of females’ higher disability

rates and lower mortality rates compared to those of males. Higher disability rates increase

the probability of claiming LTC insurance benefits and lower mortality rates decrease the

probability of ceasing benefit payments due to deaths.

The premium generally increases as the age at policy issue goes up, except for very old

females who pay lump sum premiums. The impact of policy purchase age on the premium

amount results from the combined effects of disability, recovery and mortality. On the one

hand, older individuals have higher probabilities of getting disabled and lower probabilities

of recovery that increase the amount of premiums. On the other hand, older individuals

also have higher death probabilities that result in higher probabilities of ceasing benefit

payments and therefore lower the amount of premiums. For females ageing from 75 to 80,

the effects of the increasing mortality rate slightly outweigh the joint effects of the higher

disability rate and the lower recovery rate. Subsequently the lump sum premiums charged

to 80-year-old females are slightly higher than 75-year-old females, as shown in Table 6.

Since the probability of staying in or coming back to the healthy state decreases as the age

goes up, the present value of unit payments while the insured is in the healthy state, such

25



as vH in Equation (10) and v′H in Equation (11), is lower for older ages. Consequently the

continuous, annual and monthly premiums charged to 80-year-old females are higher than

the corresponding premiums charged to 75-year-old females.

Premiums of generic stand-alone policies sold to mildly disabled and severely disabled indi-

viduals are shown in the second and third panels of Table 6. The generic stand-alone LTC

insurance sold to disabled individuals also pays $100 per day while the insured is severely

disabled. Benefit payment amount, eligibility for receiving benefits, interest rate and other

parameters are the same as in the analysis of stand-alone policies sold to the healthy. The

only difference is the starting health state in which the insured stays. It can be seen from the

table that policies sold to the mildly disabled and the severely disabled are considerably more

expensive than those sold to the healthy, since individuals already in the disabled state have

Table 6. Premiums ($) of generic stand-alone LTC insurance policies sold to individuals in
different health states and at different ages. The generic stand-alone LTC insurance pays
$100 per day while the insured is severely disabled.

Age
Males Females

Lump sum Continuous Annual Monthly Lump sum Continuous Annual Monthly

Stand-alone policies sold to the healthy
55 15,923 1,138 1,126 95 27,526 1,825 1,806 152
60 16,766 1,350 1,333 112 28,913 2,127 2,101 177
65 17,448 1,619 1,596 135 30,313 2,535 2,501 211
70 17,915 1,964 1,933 163 31,469 3,084 3,036 257
75 18,193 2,428 2,383 202 32,099 3,824 3,753 318
80 18,403 3,094 3,025 257 31,924 4,828 4,719 402

Stand-alone policies sold to the mildly disabled
55 28,694 2,326 2,295 194 48,865 3,647 3,607 304
60 31,230 2,935 2,892 244 47,727 3,977 3,926 331
65 32,622 3,639 3,581 303 47,391 4,550 4,482 379
70 32,590 4,417 4,340 368 47,163 5,412 5,318 450
75 31,096 5,242 5,139 436 46,333 6,615 6,483 550
80 28,328 6,075 5,942 505 44,260 8,188 8,001 681

Stand-alone policies sold to the severely disabled
55 130,655 - - - 157,337 - - -
60 136,521 - - - 159,954 - - -
65 136,771 - - - 159,412 - - -
70 131,552 - - - 154,487 - - -
75 121,918 - - - 144,742 - - -
80 109,382 - - - 130,743 - - -
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higher probabilities of staying longer in the severely disabled state than healthy individuals.

Table 7. Premiums ($) of generic rider benefit policies and life care annuities. The generic
rider benefit policy pays $100 per day while the insured is severely disabled and pays a death
benefit of $500,000 when the insured dies. The generic life care annuity pays $50 per day
while the insured is alive and additional $50 per day while the insured is severely disabled.

Age
Males Females

Lump sum Continuous Annual Monthly Lump sum Continuous Annual Monthly

Rider benefit policies sold to the healthy
55 226,927 16,219 16,042 1,350 209,708 13,906 13,759 1,158
60 258,649 20,826 20,570 1,734 239,785 17,637 17,426 1,468
65 291,614 27,053 26,675 2,252 272,847 22,820 22,509 1,900
70 324,797 35,615 35,044 2,964 307,940 30,183 29,708 2,512
75 357,067 47,658 46,767 3,965 343,570 40,930 40,171 3,406
80 387,212 65,096 63,649 5,415 377,597 57,100 55,821 4,750

Life care annuities sold to the healthy
55 267,773 - - - 298,983 - - -
60 240,319 - - - 273,634 - - -
65 211,479 - - - 245,530 - - -
70 182,067 - - - 215,110 - - -
75 153,053 - - - 183,191 - - -
80 125,472 - - - 150,957 - - -

Life care annuities sold to the mildly disabled
55 250,787 - - - 290,061 - - -
60 222,786 - - - 263,741 - - -
65 194,002 - - - 234,859 - - -
70 165,388 - - - 204,025 - - -
75 137,878 - - - 172,404 - - -
80 112,263 - - - 141,551 - - -

Life care annuities sold to the severely disabled
55 270,261 - - - 323,363 - - -
60 239,606 - - - 292,932 - - -
65 208,682 - - - 259,514 - - -
70 178,927 - - - 224,654 - - -
75 151,417 - - - 190,228 - - -
80 126,759 - - - 157,930 - - -

Premiums of rider benefit policies and life care annuities calculated using the Thiele’s dif-

ferential equation approach are shown in Table 7. The rider benefit policy has a fixed death

benefit of $500,000 and pays the LTC benefit of $100 per day while the insured is severely

disabled. Since the death benefit is a large component in the rider benefit policy and males

have higher mortality rates than their female counterparts, the calculated premium of the

rider benefit policy charged to the male insured is larger than the premium charged to their
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female counterparts3. Results show that rider benefit products become very expensive for

old individuals. When the insured is disabled, expected values of LTC and death benefits

both increase. Therefore, rider benefit policies sold to disabled individuals are expected to

be very expensive and are not feasible in the market.

The life care annuity pays $50 per day while the insured is healthy or mildly disabled and the

benefit is upgraded to $100 per day if the insured is in the severely disabled state. It can be

seen from Table 7 that life care annuities are more affordable as the insured becomes older.

It is also interesting to note that premiums for life care annuities sold to individuals who are

mildly disabled are lower than those charged to the healthy and the severely disabled. The

results provide evidence for the insurability of LTC costs for old and impaired individuals

and also provide insights into the design of more affordable LTC insurance policies.

Inflation protection is a typical feature included in most LTC insurance policies. LTC insur-

ance policies with inflation protection provide the insured with benefits that increase with

inflation. We assume a continuously compounded inflation rate of 3% per annum. Lump

sum premiums for generic LTC insurance policies with inflation protection are shown in

Table 8. It can be seen that including inflation protection leads to a large increase in the

premium of all types of generic insurance policies. This increase in the premium reduces as

the purchasing age is older or the insured is in a worse health state. In addition, including

inflation protection makes the insurance policies more expensive for females than males of

the same age and health condition.

We also show lump sum premiums for generic LTC insurance policies where the insured

become eligible for LTC benefits when they have difficulties with 2 or more ADLs. The

results are also compared with prior results where the definition for receiving LTC benefits

is to have difficulties with 3 or more ADLs. The results are shown in Table 9. It can be seen

3The discrepancy between premiums of rider benefit policies that are charged to males and females
becomes larger when the death benefit is increased due to higher mortality rates of males.
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Table 8. Lump sum premiums for generic LTC insurance policies with inflation protection.

Age
Males Females

Without Inflation With Inflation Increase Without Inflation With Inflation Increase

Stand-alone policies sold to the healthy
55 15,923 29,708 86.57% 27,526 54,264 97.14%
60 16,766 28,945 72.64% 28,913 52,697 82.26%
65 17,448 27,930 60.08% 30,313 50,946 68.07%
70 17,915 26,681 48.94% 31,469 48,790 55.04%
75 18,193 25,308 39.11% 32,099 46,042 43.44%
80 18,403 24,008 30.46% 31,924 42,560 33.32%

Stand-alone policies sold to the mildly disabled
55 28,694 44,193 54.02% 48,865 78,748 61.16%
60 31,230 45,339 45.18% 47,727 73,980 55.01%
65 32,622 44,992 37.92% 47,391 69,990 47.69%
70 32,590 42,958 31.82% 47,163 66,041 40.03%
75 31,096 39,360 26.57% 46,333 61,471 32.67%
80 28,328 34,556 21.98% 44,260 55,767 26.00%

Stand-alone policies sold to the severely disabled
55 130,655 154,702 18.40% 157,337 197,103 25.27%
60 136,521 159,375 16.74% 159,954 196,134 22.62%
65 136,771 157,321 15.03% 159,412 191,237 19.96%
70 131,552 149,008 13.27% 154,487 181,256 17.33%
75 121,918 135,968 11.52% 144,742 166,109 14.76%
80 109,382 120,155 9.85% 130,743 146,862 12.33%

Rider benefit policies sold to the healthy
55 226,927 240,711 6.07% 209,708 236,446 12.75%
60 258,649 270,828 4.71% 239,785 263,569 9.92%
65 291,614 302,097 3.59% 272,847 293,480 7.56%
70 324,797 333,564 2.70% 307,940 325,262 5.63%
75 357,067 364,183 1.99% 343,570 357,513 4.06%
80 387,212 392,818 1.45% 377,597 388,233 2.82%

Life care annuities sold to the healthy
55 267,773 386,968 44.51% 298,983 450,833 50.79%
60 240,319 332,297 38.27% 273,634 394,043 44.00%
65 211,479 280,065 32.43% 245,530 337,567 37.48%
70 182,067 231,296 27.04% 215,110 282,469 31.31%
75 153,053 186,933 22.14% 183,191 230,037 25.57%
80 125,472 147,737 17.74% 150,957 181,654 20.33%

Life care annuities sold to the mildly disabled
55 250,787 357,529 42.56% 290,061 430,790 48.52%
60 222,786 303,319 36.15% 263,741 374,509 42.00%
65 194,002 252,675 30.24% 234,859 318,576 35.65%
70 165,388 206,604 24.92% 204,025 264,409 29.60%
75 137,878 165,758 20.22% 172,404 213,778 24.00%
80 112,263 130,384 16.14% 141,551 168,436 18.99%

Life care annuities sold to the severely disabled
55 270,261 363,643 34.55% 323,363 455,549 40.88%
60 239,606 307,057 28.15% 292,932 393,576 34.36%
65 208,682 255,889 22.62% 259,514 332,848 28.26%
70 178,927 211,169 18.02% 224,654 275,812 22.77%
75 151,417 173,076 14.30% 190,228 224,554 18.04%
80 126,759 141,166 11.37% 157,930 180,252 14.13%
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that relaxing the LTC disability to 2+ ADLs makes generic stand-alone LTC insurance much

more expensive but the impact on rider benefit policies and life care annuities is minimal.

The increase in premium of stand-alone policies reduces for older ages and where the insured

is in a worse health state. This is slightly larger for males than females in the healthy state

and the mildly disabled state and is larger for females than their male counterparts in the

severely disabled state.

5.2 Policies with Typical Product Features

Based on the simulated health trajectories of the different individuals, premiums and re-

serves for policies with typical product features are calculated using the simulation approach

described in Section 3.2. Different combinations of the elimination period and the maximum

benefit period are allowed for in calculating premiums based on the simulation approach.

For illustrative purposes, lump sum premiums of stand-alone policies, rider benefit policies

and life care annuities issued to 65-year-old healthy individuals are shown in Table 10 and

Table 11. When the elimination period is zero and the maximum benefit period is unlimited,

the products are generic policies, i.e. the first two rows in the first panels of Tables 10 and 11.

It can be seen from Table 10 that the elimination period and the maximum benefit period are

effective tools in making the premium more affordable. For example, premiums of generic

stand-alone policies sold to 65-year-old females would be 46% cheaper if a 90-day elimination

period and a maximum benefit period of 3 years are included. The elimination period and

the maximum benefit period are not effective in making rider benefit policies and life care

annuities more affordable as shown in Table 11, because LTC benefits account for only a

small proportion in rider benefit policies and life care annuities.

We also investigate the premiums for shared LTC insurance issued to couples. The shared

LTC insurance allows each spouse to access his or her partner’s unused LTC funds. As a

result, a shared LTC insurance policy is cheaper than two stand-alone policies purchased

30



Table 9. Lump sum premiums for generic LTC insurance policies with different LTC disabil-
ity definitions: 2+ ADLs v.s. 3+ ADLs.

Age
Males Females

3+ ADLs 2+ ADLs Difference from 3+ ADLs 3+ ADLs 2+ ADLs Difference from 3+ ADLs

Stand-alone policies sold to the healthy
55 15,923 26,657 67.41% 27,526 45,000 63.48%
60 16,766 27,487 63.95% 28,913 46,157 59.64%
65 17,448 28,059 60.82% 30,313 47,473 56.61%
70 17,915 28,296 57.95% 31,469 48,459 53.99%
75 18,193 28,202 55.02% 32,099 48,615 51.45%
80 18,403 27,852 51.35% 31,924 47,493 48.77%

Stand-alone policies sold to the mildly disabled
55 28,694 45,261 57.74% 48,865 72,121 47.59%
60 31,230 47,794 53.04% 47,727 69,362 45.33%
65 32,622 48,756 49.46% 47,391 68,184 43.88%
70 32,590 47,836 46.78% 47,163 67,330 42.76%
75 31,096 45,006 44.73% 46,333 65,596 41.57%
80 28,328 40,503 42.98% 44,260 61,956 39.98%

Stand-alone policies sold to the severely disabled
55 130,655 146,985 12.50% 157,337 187,343 19.07%
60 136,521 150,330 10.11% 159,954 181,076 13.21%
65 136,771 148,445 8.54% 159,412 175,380 10.02%
70 131,552 141,413 7.50% 154,487 168,242 8.90%
75 121,918 130,106 6.72% 144,742 157,759 8.99%
80 109,382 115,896 5.96% 130,743 142,987 9.36%

Rider benefit policies sold to the healthy
55 226,927 237,845 4.81% 209,708 227,297 8.39%
60 258,649 269,470 4.18% 239,785 257,161 7.25%
65 291,614 302,290 3.66% 272,847 290,170 6.35%
70 324,797 335,271 3.22% 307,940 325,128 5.58%
75 357,067 367,248 2.85% 343,570 360,311 4.87%
80 387,212 396,926 2.51% 377,597 393,395 4.18%

Life care annuities sold to the healthy
55 267,773 272,975 1.94% 298,983 307,601 2.88%
60 240,319 245,590 2.19% 273,634 282,118 3.10%
65 211,479 216,727 2.48% 245,530 253,939 3.42%
70 182,067 187,176 2.81% 215,110 223,396 3.85%
75 153,053 157,906 3.17% 183,191 191,206 4.37%
80 125,472 129,966 3.58% 150,957 158,477 4.98%

Life care annuities sold to the mildly disabled
55 250,787 261,300 4.19% 290,061 303,750 4.72%
60 222,786 233,782 4.94% 263,741 277,020 5.03%
65 194,002 205,040 5.69% 234,859 247,994 5.59%
70 165,388 176,002 6.42% 204,025 216,992 6.36%
75 137,878 147,647 7.09% 172,404 184,884 7.24%
80 112,263 120,854 7.65% 141,551 152,969 8.07%

Life care annuities sold to the severely disabled
55 270,261 291,262 7.77% 323,363 346,964 7.30%
60 239,606 260,166 8.58% 292,932 314,357 7.31%
65 208,682 227,793 9.16% 259,514 279,606 7.74%
70 178,927 195,657 9.35% 224,654 243,408 8.35%
75 151,417 165,134 9.06% 190,228 207,043 8.84%
80 126,759 137,230 8.26% 157,930 172,111 8.98%
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Table 10. Premiums ($) of stand-alone policies with different combinations of the elimination
period and the maximum benefit period issued to 65-year-old healthy individuals. The stand-
alone LTC insurance pays $100 per day while the insured is severely disabled. Standard errors
are shown in brackets under the corresponding premium estimates.

Elimination Males Females

Period Lump sum Annual Monthly Lump sum Annual Monthly

Unlimited benefit period

0-day
17,018 1,510 131 29,843 2,392 207
(219) (31) (5) (287) (35) (6)

30-day
16,561 1,470 128 29,155 2,337 202
(216) (30) (5) (284) (35) (6)

60-day
16,116 1,430 124 28,479 2,283 198
(213) (30) (5) (281) (34) (6)

90-day
15,680 1,391 121 27,817 2,230 193
(210) (29) (5) (278) (34) (6)

5-year maximum benefit period

0-day
13,837 1,228 107 22,907 1,836 159
(154) (22) (4) (184) (24) (4)

30-day
13,473 1,196 104 22,391 1,795 155
(153) (22) (4) (183) (24) (4)

60-day
13,117 1,164 101 21,884 1,754 152
(151) (22) (4) (181) (23) (4)

90-day
12,770 1,133 99 21,386 1,714 148
(149) (21) (4) (179) (23) (4)

4-year maximum benefit period

0-day
12,512 1,110 97 20,470 1,641 142
(135) (20) (4) (159) (21) (4)

30-day
12,183 1,081 94 20,013 1,604 139
(133) (19) (4) (157) (21) (4)

60-day
11,861 1,053 92 19,564 1,568 136
(132) (19) (4) (156) (20) (4)

90-day
11,548 1,025 89 19,122 1,533 133
(130) (19) (3) (155) (20) (4)

3-year maximum benefit period

0-day
10,700 950 83 17,237 1,382 120
(111) (16) (3) (128) (17) (3)

30-day
10,418 924 80 16,854 1,351 117
(109) (16) (3) (127) (17) (3)

60-day
10,142 900 78 16,476 1,321 114
(108) (16) (3) (126) (17) (3)

90-day
9,873 876 76 16,106 1,291 112
(107) (16) (3) (125) (16) (3)
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Table 11. Lump sum premiums ($) of rider benefit policies and life care annuities with
different combinations of the elimination period and the maximum benefit period issued to
65-year-old healthy individuals. The rider benefit policy pays $100 per day while the insured
is severely disabled and pays a death benefit of $500,000 when the insured dies. The life
care annuity pays $50 per day while the insured is alive and additional $50 per day while the
insured is severely disabled. Standard errors are shown in brackets under the corresponding
premium estimates.

Elimination Rider Benefit Policies Life Care Annuities

Period Males Females Males Females

Unlimited benefit period

0-day
291,875 273,536 211,475 245,982
(469) (465) (441) (440)

30-day
291,419 272,848 211,247 245,638
(468) (463) (441) (439)

60-day
290,973 272,173 211,024 245,301
(468) (462) (440) (438)

90-day
290,538 271,510 210,806 244,969
(467) (461) (439) (438)

5-year maximum benefit period

0-day
288,695 266,600 209,885 242,514
(454) (431) (429) (416)

30-day
288,331 266,084 209,703 242,256
(453) (431) (429) (416)

60-day
287,975 265,577 209,525 242,003
(453) (430) (429) (416)

90-day
287,627 265,079 209,351 241,754
(453) (430) (428) (415)

4-year maximum benefit period

0-day
287,370 264,163 209,222 241,296
(451) (426) (426) (411)

30-day
287,041 263,706 209,058 241,067
(451) (426) (426) (411)

60-day
286,719 263,257 208,897 240,843
(451) (426) (426) (411)

90-day
286,406 262,815 208,740 240,622
(450) (426) (425) (410)

3-year maximum benefit period

0-day
285,558 260,930 208,316 239,679
(448) (423) (422) (405)

30-day
285,276 260,547 208,175 239,488
(448) (423) (422) (405)

60-day
284,999 260,169 208,037 239,299
(448) (423) (422) (405)

90-day
284,730 259,799 207,902 239,114
(448) (422) (422) (405)

33



by the couple separately. For example, a three-year shared LTC insurance policy gives each

spouse the potential to use six year’s LTC benefits as long as the total benefits do not

exceed six years. For a couple of a male and female who are both 65 years old, the lump sum

premiums for shared LTC insurance policies are compared with premiums if they purchase

LTC insurance separately. The results are shown in Table 12. We can see that the premium

for a 2-year (3-year) shared LTC insurance policy is about 7% (5%) cheaper than the total

premium of two 4-year (6-year) stand-alone LTC insurance policies separately purchased by

a couple.

Table 12. Lump sum premiums for shared and separately purchased LTC insurance, a couple
of a male and a female both aged 65.

Product 3-year, separate 3-year, shared 6-year, separate

Premium 27,937 37,450 39,507
s.e. (239) (240) (375)

Product 2-year, separate 2-year, shared 4-year, separate

Premium 21,171 30,569 32,982
s.e. (173) (182) (294)

6 Reserves and Capital Requirements

6.1 Best-Estimate Reserves

Best-estimate reserves for individuals in each alive state, i.e. Vi(t, T ) and Ṽi(t, T ) for any

i ∈ {H, M, S} calculated in Equations (6) and (16) respectively, in generic stand-alone LTC

insurance policies purchased by 65-year-old individuals with lump sum premiums are shown

in Figure 3. We focus on policies paid with lump sum premiums.

As shown in Figure 3 the best-estimate reserve for the healthy initially increases from ac-

crued interest and then decreases as expected large benefit payments are made. When the

individual becomes disabled, the reserve has a sharp increase. Reflecting the impact of dis-
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Figure 3. Best-estimate reserves for individuals in each alive state in a generic stand-alone
policy sold to the 65-year-old with lump sum premiums.

ability, reserves for females are larger than those for their male counterparts regardless of

the health state they are in.

To calculate the best-estimate reserves for policies that are sold to disabled individuals, we

also simulate 80,000 65-year-old individuals (including 40,000 males and 40,000 females) who

are in the mildly disabled state at the outset and in the severely disabled state at the outset,

respectively. Figure 4 shows best-estimate reserves for generic stand-alone policies paid with

lump sum premiums. These generic stand-alone policies are sold to 65-year-old individuals

in different health states at the outset. The best-estimate reserves, i.e. V
(
t, T | χ(0) = k

)
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Figure 4. Best-estimate reserves for generic stand-alone policies issued to a 65-year-old in
different health states with lump sum premiums.

and Ṽ
(
t, T | χ(0) = k

)
, are calculated using Equations (6) and (15) respectively. Figure 4

shows that the although reserves for policies sold to more disabled individuals are larger at

the outset they decline much faster.

The Value-at-Risk (VaR) of liabilities can be used to assess the idiosyncratic risk, in par-

ticular for small insurance providers. The VaR of liabilities for lump sum premium generic

stand-alone policies sold to the 65-year-old healthy individuals is calculated and shown in

Figure 5. The 99.5% VaR is much higher than the best-estimate reserve, and this reflects

large idiosyncratic risk as the lives reduce in number at the older ages.
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Figure 5. VaR of liabilities of generic lump sum premium stand-alone policies issued to
65-year-old healthy individuals.

The difference between the 99.5% VaR of future liabilities and the best-estimate reserve as

a proportion of the best-estimate reserve, which can be expressed as V aR99.5%

(
t, T | χ(0) =

k
)
/ Ṽ

(
t, T | χ(0) = k

)
− 1, is calculated for stand-alone policies with different elimination

periods and maximum benefit periods. The results are shown in Figure 6. The top two

panels show results for policies with different elimination periods. The bottom two panels

show results for policies with different maximum benefit periods.

Figure 6 shows that the maximum benefit period is effective in reducing extremely large

losses, but the elimination period is not effective in reducing idiosyncratic risk.

6.2 Solvency Capital Requirements under Solvency II

This section assesses the impact of longevity risk and disability risk on solvency capital

requirements under the Solvency II standard formula framework. In the Solvency II standard

formula, the SCR for longevity risk and disability risk is calculated using Equation (22). In

addition to SCRs, insurers are required to hold a risk margin that is calculated according to

Equation (23). In the following results shown in this section, it is assumed that the cost of

capital (denoted by c) is 6% per annum and the risk-free interest rate (denoted by rf ) is the
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Figure 6. VaR minus best-estimate reserves as a proportion of best-estimate reserves for
lump sum premium stand-alone policies with different elimination periods and maximum
benefit periods. The policies issued to 65-year-old healthy males (left) and females (right).

annual effective rate equivalent to a continuous compounding rate of 4% per annum.

The ratio of the total capital requirement to the best-estimate reserve is used to assess the

total capital required for a unit premium under the Solvency II standard formula framework.

The ratio, denoted by η(t), is calculated in Equation (25):

η(t) =
TCRS

t

V
(
t, T | χ(0) = k

) , (25)

where k ∈ Ωχ is the insured’s health state at policy issue, V
(
t, T | χ(0) = k

)
is the best-
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estimate reserve calculated in Equation (15), and TCRS
t is the total capital requirement

calculated in Equation (24). The ratio, η(t), for a generic stand-alone LTC insurance policy

is shown in Figure 7.
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Figure 7. The ratio of total capital requirement to the best-estimate reserve, η(t), for generic
stand-alone policies sold to the healthy.

Under Solvency II, the total capital requirement as a proportion of the best-estimate re-

serve, η(t), for a lump sum premium generic stand-alone policy sold to 65-year-old healthy

individuals decreases significantly as the insured becomes older. At age 80, the total capital

requirement is 40% of the best-estimate reserve for males and 36% for females. Figure 7

shows that generic stand-alone policies sold to healthy males require slightly more capital

than those sold to healthy females for a unit premium. The difference between capital re-

quirements for generic stand-alone policies sold to the two genders diminishes as the insured

reach very old ages.

The ratio of the total capital requirement to the best-estimate reserve, η(t), is compared

across generic stand-alone policies issued to individuals in different health states. The results

are shown in Figure 8. Generic stand-alone policies sold to healthy individuals require high

levels of capital per unit premium. Generic stand-alone policies sold to severely disabled

individuals are very expensive and require high levels of reserves (as shown in Table 6), they
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require lower amounts of capital per unit premium compared to those sold to the healthy

and mildly disabled. Differences in η(t) for policies issued to individuals in different health

states diminishes after around 25 years since policy inception.
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Figure 8. The ratio of the total capital requirement to the best-estimate reserve, η(t), for
generic stand-alone policies sold to 65-year-old healthy, mildly disabled and severely disabled
males (left) and females(right).

The impact of longevity risk and disability risk on capital requirements based on the ratios

of risk-specific SCRs to the best-estimate reserve is shown in Figure 9. For policies issued to

healthy and mildly disabled individuals, disability risk capital requirements are higher than

for longevity risk for males (females) in the first eight (twelve) years. After that longevity

risk dominates capital requirements. In general, disability risk has more impact on capital

requirements for policies issued to disabled females than to disabled males, but the effects

of disability risk are very similar for policies sold to healthy males and healthy females.

Longevity risk has more impact on the capital requirements for policies sold to males than

to females.

The η(t) ratios for rider benefit policies and for life care annuities are shown in the left and

right panels of Figure 10, respectively. The existing natural hedge in rider benefit policies

and life care annuities, results in the total capital requirements per unit premium for these

two types of policies being lower than those for stand-alone policies. There are considerable
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Figure 9. The ratio of SCR for longevity risk and for disability risk respectively to the best-
estimate reserve, for generic stand-alone policies sold to the healthy, the mildly disabled and
the severely disabled.
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capital reductions in policies that combine LTC insurance with life insurance or annuities as

noted in Zhou-Richter and Gründl (2011). We show the extent to which life care annuities

reduce the required capital level for LTC insurance providers.
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Figure 10. The ratio of the total capital requirement to the best-estimate reserve, η(t), for
generic LTC insurance policies sold to 65-year-old healthy males (left) and females (right).

The ratios of risk-specific SCRs to the best-estimate reserve for rider benefit policies and

for life care annuities are shown in Figure 11. Longevity shocks impact the components

of rider benefit policies in opposite directions. Mortality improvements reduce the reserve

for the whole life insurance benefit, while longevity risk increases the reserve for the LTC

insurance as shown in Figure 9. Overall longevity risk, as in the Solvency II standard formula

framework, results in a significant reduction in the liability for rider benefit policies4.

Disability risk impacts the components of life care annuities in the opposite directions as well.

Higher disability rates and lower recovery rates increase the expected value of liabilities for

LTC benefits but also increase the average mortality rates, which results in a lower expected

value of liabilities for annuity payments. The effect of disability shock on the liabilities of

life care annuities is dominated by that of longevity shock.

4In calculating the aggregate SCRs for rider benefit policies and for life care annuities, negative values of
the risk-specific SCRs are set to zero.
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Rider benefit policies
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Figure 11. The ratio of the SCR for longevity risk and disability risk respectively to the best-
estimate reserve, for generic rider benefit policies and life care annuities sold to 65-year-old
healthy individuals.

7 Conclusions

This paper has assessed premiums, best-estimate reserves and solvency capital requirements

for a broad range of LTC insurance policies sold to individuals in different health states.

Thiele’s differential equation approach and a simulation-based method are applied to a range

of policy designs. LTC insurance policies considered are stand-alone policies, rider benefit

policies (LTC insurance combined with whole life insurance), life care annuities (LTC insur-
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ance combined with annuities), and shared LTC insurance.

Policies providing reasonable levels of fixed benefits are relatively affordable for healthy lives.

Whereas premiums of stand-alone policies are very high for disabled and older individuals, in

particular for those who are severely disabled, life care annuities that combine LTC insurance

and annuities are more affordable for disabled and older individuals as well as for healthy

lives. Policy design can be used to enhance the insurability of LTC expenses for individuals

with impaired health.

The simulation-based approach is required to assess premiums and reserves for policies with

different combinations of elimination periods and maximum benefit periods. This also allows

the distributional measures of future liabilities, such as the VaR, to be estimated. The

elimination period and maximum benefit period are shown to be effective in making a LTC

product more affordable. The maximum benefit period is effective in reducing idiosyncratic

risk arising from reduced numbers of policies at the older ages.

The Solvency II standard formula framework shows that solvency capital requirements are

high for LTC insurance taking into account both longevity risk and disability risk. Stand-

alone policies issued to the more disabled require less capital per unit premium compared

to healthy lives. Interestingly rider benefit policies and life care annuities show substantial

reductions in the required capital per premium compared to stand-alone LTC insurance

reinforcing the potential benefits of these combined products. This is in line with the results

in Pitacco (2015).

We have provided a thorough analysis of premiums, reserves and capital of LTC polices.

We have used U.S. individual data to provide mortality and disability assumptions to allow

a realistic assessment. The analysis presented provides valuable insights into the product

design of more affordable products and an analysis of the solvency risks faced by LTC

insurance providers.
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