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Abstract

In this paper we analyse how the policyholder surrender behaviour is influenced by changes

in various sources of risk impacting a variable annuity (VA) contract embedded with a guar-

anteed minimum maturity benefit rider that can be surrendered anytime prior to maturity.

We model the underlying mutual fund dynamics by combining a Heston (1993) stochastic

volatility model together with a Hull and White (1990) stochastic interest rate process. The

model is able to capture the smile/skew often observed on equity option markets (Grzelak

and Oosterlee, 2011) as well as the influence of the interest rates on the early surrender

decisions as noted from our analysis. The annuity provider charges management fees which

are proportional to the level of the mutual fund as a way of funding the VA contract. To

determine the optimal surrender decisions, we present the problem as a 4-dimensional free-

boundary partial differential equation (PDE) which is then solved efficiently by the method

of lines (MOL) approach. The MOL algorithm facilitates simultaneous computation of the

prices, fair management fees, optimal surrender boundaries and hedge ratios of the variable

annuity contract as part of the solution at no additional computational cost. A comprehen-

sive analysis on the impact of various risk factors in influencing the policyholder’s surrender

behaviour is carried out, highlighting the significance of both stochastic volatility and interest

rate parameters in influencing the policyholder’s surrender behaviour.
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1 Introduction

Variable annuities (VAs) are long-dated contracts which are now dominating the market for

retirement income products in most developed countries such as US, Japan and across Europe.

As of June 2015, the variable annuity net assets in the US alone were in excess of $1.9 trillion,

surpassing pre-Global financial crisis peaks of $1.5 trillion (Holland and Simonelli, 2015). A

variable annuity is a binding contract between an annuity provider and policyholder where the

policyholder agrees to pay a fixed premium either as a single payment or a stream of periodic

payments during the accumulation phase. In return, the annuity provider undertakes to make

guaranteed minimum periodic payments starting either immediately or at a deferred future date.

Variable annuities provide policyholders the flexibility to participate in the equities market

while returning minimum guarantee levels in the event of poor performance of the underlying

mutual fund. There are two major categories of guarantees embedded in VAs namely; guaranteed

minimum death benefits (GMDBs) and guaranteed minimum living benefits (GMLBs) (see Bauer

et al. (2008) and Ignatieva et al. (2016)). A GMDB is usually offered during the accumulation

phase and it provides a guaranteed sum to beneficiaries in the event of untimely death of the

policyholder. GMLBs offer living protection to the policyholder’s income against market risk

by guaranteeing a variety of benefits which can be classified as the GMxB, where “x” stands

for maturity (M), income (I) and withdrawal (W). A GMMB guarantees the return of the

premium payments made by the policyholder or a higher stepped-up value at the end of the

accumulation period. A GMIB guarantees an income stream over an agreed period of time

when the policyholder purchases a retirement annuity or annuitizes a GMMB regardless of

the underlying investment performance. A GMWB guarantees the policyholder a stream of

withdrawals cumulatively summing to the initial investment throughout the life of the contract

conditional on the policyholder being alive.

Guarantees embedded in variable annuity contracts are usually funded by proportional fees levied

from the underlying mutual fund. This paper aims to provide insights on the risks associated

with trading a variable annuity contract embedded with a GMMB rider which can be surrendered

anytime prior to maturity of the contract. Bernard et al. (2014) note that if the guarantee is

deep-out-of-the-money, it may be optimal for the policyholder to surrender the contract prior to

maturity as a way of avoiding paying high fees. The authors formulate the valuation problem

using the geometric Brownian motion (GBM) framework and then use numerical integration

techniques to analyze optimal surrender regions from the perspective of the policyholder. Such

surrender behavior pose significant hazard to annuity providers’ solvency, hence it is imperative

to properly analyze the embedded options in VA contracts (Grosen and Jorgensen, 2000). As

a way of discouraging policyholders from surrendering early, annuity providers normally charge

penalty fees which takes a variety of functional forms. Bernard et al. (2014) and Shen et al. (2016)

incorporate a penalty fee structure which is exponentially decreasing with time to maturity.

Other penalty fee structures are discussed in Milevsky and Salisbury (2001) who denote such

fees as deferred surrender charges.
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Shen and Xu (2005) consider the valuation of equity-linked policies with interest rate guarantees

in the presence of surrender options using the partial differential equation approach under the

GBM environment. A similar problem is presented in Constabile et al. (2008) who devise a bino-

mial tree approach to determine fair premium values. Bacinello (2013) also values participating

life insurance policies with surrender options using a recursive binomial tree approach. Shen

et al. (2016) take the annuity provider’s perspective and use numerical quadrature techniques

to derive expressions for fair management fees and the associated optimal surrender boundaries

using the framework developed in Bernard et al. (2014).

Majority of the literature mentioned above has been premised under the GBM framework. Given

the long-term nature of variable annuity contracts, it is crucial to accurately quantify all the

major risk factors impacting the underlying fund dynamics (Coleman et al., 2006; Du and Martin,

2014; Kling et al., 2014). Contrary to the log-normal asset return distribution assumptions under

the GBM framework (Black and Scholes, 1973) , significant empirical studies have revealed that

such distributions exhibit leptokurtic features and are characterized by heavy tails (Platen and

Rendek, 2008). Empirical evidence also suggest that volatility of asset returns is not constant

(see Christoffersen et al. (2009), Jang et al. (2014) among others). In this regard, van Haastrecht

et al. (2010) highlight the importance of stochastic volatility when pricing guaranteed annuity

options; contracts equivalent to GMMBs with an additional feature of converting accumulated

funds into a life annuity. Kang and Meyer (2014) also note that the level of volatility of the

interest rates plays a crucial role in influencing the exercise decisions of American style options

prior to maturity (equivalent to surrender decisions under the current context).

Shah and Bertsimas (2010) use Monte Carlo simulation to assess the impact of both stochastic

volatility and interest rates on guaranteed lifelong withdrawal benefits by making comparison

with the GBM framework. The authors note that the valuations vary substantially depending

on the modelling framework used. Kélani and Quittard-Pinon (2017) develop a unified valua-

tion framework for pricing and hedging various GMLBs under the Lévy market and note that

traditional modelling assumption of using the GBM framework undervalues economic capital

required by providers to hedge such guarantees.

There has been less focus on the development of a realistic modelling framework for analysing

the impact of various sources of risk in influencing the surrender behaviour. Such an analysis

is critical to all players in the variable annuity business as it can be used as key reference when

making risk management decisions. This paper fills the gap by presenting a comprehensive

analysis on how policyholder surrender behaviour is influenced by the interaction of various risk

factors impacting a VA contract embedded with a GMMB rider. We take the policyholder’s

perspective and extend the framework developed in Bernard et al. (2014) by incorporating both

stochastic volatility and stochastic interest rate in our valuation framework. We assume that

the policyholder’s premium is invested in an underlying mutual fund which evolves under the

influence of stochastic volatility (Heston, 1993) and stochastic interest rates (Hull and White,

1990). To aid our analysis, we utilise the method of lines (MOL) technique (Kang and Meyer,

2014) as a tool for generating fair management fees, early surrender profiles and hedge ratios
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which are important ingredients for risk management.

The rest of the paper is structured as follows; Section 2 presents the modelling framework

and formulates the corresponding value function as a free-boundary problem. An algorithm

of determining the optimal surrender profiles and the associated hedge ratios is presented in

Section 3. Section 4 contains all numerical results analysing how various sources of risk influence

surrender decisions. Concluding remarks are contained in Section 5.

2 Problem Statement

As highlighted above, we consider how the policyholder behaviour is influenced by various sources

of risk impacting a VA contract embedded with a GMMB rider for the case where the contract

can be surrendered anytime prior to maturity subject to penalty charges. We assume that the

policyholder pays the premium as a lump sum at contract initialization which is then invested

in a mutual fund consisting of units of an underlying asset, S = (St)0≤t≤T , whose risk-neutral

dynamics evolve under the influence of both stochastic volatility, v = (vt)0≤t≤T , and stochastic

interest rates, r = (rt)0≤t≤T , specified as follows

dSt = rtStdt+
√
vtStdZ

1
t , (1)

dvt = κv(θv − vt)dt+ σv
√
vtdZ

2
t , (2)

drt = κr(θr(t)− rt)dt+ σrdZ
3
t . (3)

In the above system, {(Z1
t , Z

2
t , Z

3
t ); t ≥ 0} is a vector of correlated Wiener processes such that

E
Q
t (dZ

j
t dZ

j
t ) = ρijdt, for i = 1, 2 and j = i + 1, · · · , 3; vt is the instantaneous variance which

evolves according to (2) and rt is the instantaneous risk-free interest rate which evolves according

to equation (3). In equation (2), κv is the speed of mean reversion of the variance process to its

long run mean, θv, and σv is the so-called vol-of-vol (with σ2
vvt being the variance of vt). Likewise,

κr is the speed of mean reversion of the interest rate process to its long run average, θr(t), which

is time varying and σr is the corresponding volatility of the interest rate process. Incorporating

of stochastic volatility and stochastic interest rates on the underlying asset dynamics facilitates

the development of appropriate risk management strategies capable of mitigating the major

sources of risks impacting VA portfolios.

In the variable annuity business, providers usually deduct various types of fees from policyhold-

ers’ accounts with such fees usually expressed in layers of financial jargon. The fees typically

covers ongoing costs associated with keeping the policyholder invested in the fund, transaction

costs associated with buying and selling assets in the fund, and some advisory fees. In this

paper, we assume a continuously compounded mutual fund fee1 structure (see Bernard et al.

(2014) and Shen et al. (2016) ) such that the resulting mutual fund value from the policyholder’s

1We assume that this fee structure consolidates all various types of fees levied by the annuity provider.
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perspective is

Ft = e−ctSt, (4)

with c being the fee expressed in percentage terms. By applying Itô’s Lemma it can be shown

that the risk-neutral dynamics of the fund value, F = (Ft)0≤t≤T , satisfies

dFt = (rt − c)Ftdt+
√
vtFtdZ

1
t , (5)

where the dynamics of vt and rt are as presented in equations (2) and (3), respectively.

For pricing purposes, it is more convenient to work with independent Wiener processes. The

process of transforming correlated Wiener processes to independent processes is accomplished

by applying the Cholesky decomposition such that







dZ1
t

dZ2
t

dZ3
t






=









1 0 0

ρ12
√

1− ρ212 0

ρ13
ρ23−ρ13ρ12√

1−ρ2
12

√

1− ρ213 −
(ρ23−ρ13ρ12)2

1−ρ2
12















dW 1
t

dW 2
t

dW 3
t






, (6)

where W 1
t ,W

2
t and W 3

t are mutually independent Wiener processes.

In terms of independent Wiener processes, the fund dynamics can be re-expressed as

dFt = (rt − c)Ftdt+
√
vtFtdW

1
t , (7)

dvt = κv(θv − vt)dt+ σvρ12
√
vtdW

1
t + σv

√

1− ρ212
√
vtdW

2
t , (8)

drt = κr(θr(t)− rt)dt+ σr
[

ρ13dW
1
t + ρ̂22dW

2
t + ρ̂33dW

3
t

]

, (9)

where

ρ̂22 =
ρ23 − ρ13ρ12
√

1− ρ212
, and ρ̂33 =

√

1− ρ213 −
(ρ23 − ρ13ρ12)2

1− ρ212
.

Using risk-neutral arguments, the fund value at initial time net of initial expense charges can

be represented as the expected discounted value of the terminal payout, that is

F0 = E
Q
[

e−
∫
T

0
rsdsmax(FT , GT )

]

, (10)

where FT is the fund value at maturity time, T , with GT being the guaranteed value at maturity

of the contract. To avoid arbitrage opportunities, a fair insurance fee, c∗, to be charged during

t ∈ [0, T ] need to be determined for equation (10) to hold. From equation (10) when the

fund value is very high relative to the guarantee level, the policyholder may find it optimal to

surrender the contract early as a strategy of avoiding paying higher fees which are proportional to

the fund value. In the event of the guarantee being terminated prior to maturity, it is a common

practice by annuity providers to charge penalty fees to the fund as a way of discouraging early

termination of the contract such that the resulting payout to the policyholder is

(1− γt)Ft, (11)
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with γt being the penalty percentage charged for surrendering at time t. As in Bernard et al.

(2014) and Shen et al. (2016), we assume that γt is exponentially decreasing with time and is

equal to 1 − e−γ(T−t) implying that if the policyholder surrenders the guarantee at t ∈ [0, T ],

equation (11) becomes

e−γ(T−t)Ft. (12)

As outlined in Bernard et al. (2014), we will assume that the inequality γ < c holds otherwise

the contract will be held to maturity. By introducing surrender features to equation (10), the

variable annuity contract can then be represented as an optimal stopping problem such that2

C(t, F, v, r) = ess sup
t≤τ∗≤T

E
Q

[

e−
∫
τ
∗

t
rsdsmax(e−γ(T−τ∗)Fτ∗ , G)|Ft

]

, (13)

where the supremum is taken over all stopping times, τ∗. Using similar arguments to those

presented in Jacka (1991) and Peskir and Shiryaev (2006), the optimal stopping problem in

equation (13) is equivalent to the free boundary problem

∂C

∂t
+ (r − c)F

∂C

∂F
+ (κvθv − βvv)

∂C

∂v
+ κr(θr(t)− r)

∂C

∂r
+

1

2
vF 2∂

2C

∂F 2
+

1

2
σ2
vv

∂2C

∂v2

+
1

2
σ2
r

∂2C

∂r2
+ ρ12σvvF

∂2C

∂F∂v
+ ρ13σr

√
v
∂2C

∂F∂r
+ ρ23σvσr

√
v
∂2C

∂v∂r
− rC = 0, (14)

where 0 < v < ∞, 0 < r < ∞, 0 < t < T and 0 < F < b(t, v, r), with b(t, v, r) being the optimal

surrender boundary. In (14), βv = κv + λv where λv is the market price of volatility risk3. The

PDE (14) is solved subject to boundary and terminal conditions

C(T, F, v, r) = max(F,G), (15)

C(t, b(t, v, r), v, r) = e−γ(T−t)b(t, v, r), (16)

lim
F→b(t,v,r)

∂C

∂F
= e−γ(T−t), (17)

lim
F→b(t,v,r)

∂C

∂r
= 0 and lim

F→b(t,v,r)

∂C

∂v
= 0, (18)

C(t, 0, v, r) = G · P (t, T ). (19)

Equation (15) is the payoff of the guarantee at maturity; we note that if the guarantee is held to

maturity no surrender charges will be applied. The value matching condition in equation (16)

guarantees the continuity of the value function at the early exercise boundary; a necessary con-

dition enforced to avoid arbitrage opportunities. Smooth-pasting conditions in (17) and (18) are

enforced in conjunction with the value matching condition to eliminate arbitrage opportunities.

We handle the boundary conditions at v = 0 and r = 0 in a similar way as those in Kang and

Meyer (2014) and Meyer (2015) with the help of the Fichera functions. Equation (19) ensuring

2Here for convenience, we use C(t, F, v, r) to denote the value of the variable annuity contract at any time

prior to maturity. We will also be writing G ≡ GT for convenience unless stated otherwise.
3We are not considering the market price of interest rate risk here since a large number of very liquid interest

rate derivatives are trading on the market.
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that in the event of the fund being ruined, the policyholder will be entitled to the present value

of the guarantee, where P (t, T ) presented in equation (20) is the zero coupon bond price when

interest rate dynamics follows equation (3).

The interest rate process in (3) represents the Hull-White model (Hull and White, 1990). At any-

time, t, the explicit solution of a zero coupon bond paying G at maturity under this framework

can be represented as

P (t, T ) = Â(t, T )e−B(t,T )rtG, (20)

where

Â(t, T ) = A(t, T ) exp

{

−κr

∫ T

t

θ(u)B(u, T )du

}

,

A(t, T ) = exp

{

− σ2
r

2κ2r
(B(t, T )− T + t)− σ2

r

4κr
B(t, T )2

}

,

B(t, T ) =
1− e−κr(T−t)

κr
.

Once the PDE (14) is solved, the fair fee, c∗, can be determined implicitly as follows:

c∗ = min
c

{c : F0 = C(0, F c
0 , v0, r0)}, (21)

that is, the fair management fee at initial time is determined such that the value of the variable

annuity contract is equal to the initial premium paid by the policyholder. In the next section

we outline a numerical technique for solving the PDE (14) subject to terminal and boundary

conditions (15)-(19). In particular, we use the method of lines technique (Meyer and van der

Hoek, 1997) which has proved to be very powerful in solving free-boundary problems.

3 Numerical technique for determining optimal surrender fea-

tures and hedge ratios

The method of lines approach is a technique that transforms a multi-dimensional PDE to a

corresponding system of one-dimensional ODEs whose solution can then be readily found by

using a variety of numerical methods. The method of lines techniques have found greater

application in the pricing of American options. Meyer and van der Hoek (1997) consider the

valuation of the standard American put option when the underlying asset is driven by the

geometric Brownian motion process. Extension to the jump diffusion setting has been handled

in Meyer (1998). Chiarella et al. (2009) consider the evaluation of the American call option

when the underlying asset dynamics evolve under the influence of both stochastic volatility and

jumps. In all these cited papers, the method of lines approach proves to be computationally

efficient in terms of speed and accuracy. One major advantage of this approach is that the
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variable annuity (VA) contract price, delta, gamma and the early surrender boundary are all

found simultaneously as part of the solution procedure at no additional computational cost.

It is more convenient to deal with the PDE with time to maturity τ = T − t instead of current

time t. Applying this transformation to the PDE (14) yields

∂C

∂τ
= (r − c)F

∂C

∂F
+ (κvθv − βvv)

∂C

∂v
+ κr(θr(t)− r)

∂C

∂r
+

1

2
vF 2∂

2C

∂F 2
+

1

2
σ2
vv

∂2C

∂v2

+
1

2
σ2
r

∂2C

∂r2
+ ρ12σvvF

∂2C

∂F∂v
+ ρ13σr

√
v
∂2C

∂F∂r
+ ρ23σvσr

√
v
∂2C

∂v∂r
− rC. (22)

Equation (22) is solved subject to the boundary conditions specified in the system (15)-(18).

In solving (22), we first discretise the partial derivative terms with respect to v, r and τ , and

retain continuity in the F direction. In disretising v, we set vm = m△v, for m = 0, 1, · · · ,M .

The interest rate domain is discretised such that, rn = n△v for n = 0, 1, · · · , N while the

time interval is partitioned into K equally spaced sub-intervals by letting τk = k△τ for k =

0, 1, · · · ,K. At any given time step, the variable annuity contract can then be represented as,

C(τk, F, vm, rn) ≡ Ck
m,n(F ). With this discretisation, the delta of the VA contract with respect

to F is here denoted as

V (τk, F, vm, rn) =
∂Ck

m,n(F )

∂F
≡ V k

m,n(F ). (23)

We now present finite difference approximations for the derivatives with respect to v and r. We

use central difference approximations for the second order terms such that

∂2C

∂v2
=

Ck
m+1,n − 2Ck

m,n + Ck
m−1,n

(∆v)2
and

∂2C

∂r2
=

Ck
m,n+1 − 2Ck

m,n + Ck
m,n−1

(∆r)2
. (24)

We also use a central difference approximation for the mixed partial derivative terms such that

∂2C

∂F∂v
=

V k
m+1,n − V k

m−1,n

2∆v
and

∂2C

∂F∂r
=

V k
m,n+1 − V k

m,n−1

2∆r
. (25)

The cross derivative term with respect to v and r is discretised as

∂2C

∂v∂r
=

Ck
m+1,n+1 − Ck

m−1,n+1 − Ck
m+1,n−1 + Ck

m−1,n−1

4∆v∆r
. (26)

We discretise the first-order derivative terms with respect to v and r such that

∂C

∂v
=

Ck
m+1,n − Ck

m−1,n

2∆v
and

∂C

∂r
=

Ck
m,n+1 − Ck

m,n−1

2∆r
. (27)

For the discretisation with respect to time, we use a first-order backward finite difference scheme

for the first two time steps so that

∂C

∂τ
=

Ck
m,n − Ck−1

m,n

∆τ
. (28)
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Equation (28) is only first-order accurate with respect to time, however, Meyer and van der Hoek

(1997) show that the accuracy can be enhanced by considering a second-order approximation

scheme. From the third time step onwards, Meyer and van der Hoek (1997) show that this is

achieved by using the scheme

∂C

∂τ
=

3

2

Ck
m,n − Ck−1

m,n

∆τ
− 1

2

Ck−1
m,n − Ck−2

m,n

∆τ
, (29)

which is a three-level quotient difference scheme. Details on how the coefficients, 3/2 and

1/2, arise can be found in Meyer (2015). We substitute the finite difference approximations in

equations (23)-(29) into the PDE (22) and obtain the corresponding system of ODEs for the

option delta, V k
m,n for k = 0, 1, · · · ,K, m = 0, 1, · · · ,M and n = 0, 1, · · · , N . For the first two

time steps, the PDE is transformed to

vmF 2

2

d2Ck
m,n

dF 2
+ ρ12σvvmF

V k
m+1,n − V k

m−1,n

2∆v
+

σ2
vvm
2

Ck
m+1,n − 2Ck

m,n + Ck
m−1,n

(∆v)2

+ (κvθv − βvvm)
Ck
m+1,n − Ck

m−1,n

2∆v
+ ρ13σr

√
vmF

V k
m,n+1 − V k

m,n−1

2∆r

+
σ2
r

2

Ck
m,n+1 − 2Ck

m,n + Ck
m,n−1

(∆r)2
+ (κrθr − κrrn)

Ck
m,n+1 − Ck

m,n−1

2∆r

+ ρ23σvσr
√
vm

Ck
m+1,n+1 − Ck

m+1,n−1 − Ck
m−1,n+1 + Ck

m−1,n−1

4∆v∆r

+ (rn − c)F
dCk

m,n

dF
− rnC

k
m,n −

Ck
m,n − Ck−1

m,n

∆τ
= 0. (30)

The ODE for all subsequent time steps can be shown to be

vmF 2

2

d2Ck
m,n

dF 2
+ ρ12σvvmF

V k
m+1,n − V k

m−1,n

2∆v
+

σ2
vvm
2

Ck
m+1,n − 2Ck

m,n + Ck
m−1,n

(∆v)2

+ (κvθv − βvvm)
Ck
m+1,n − Ck

m−1,n

2∆v
+ ρ13σr

√
vmF

V k
m,n+1 − V k

m,n−1

2∆r

+
σ2
r

2

Ck
m,n+1 − 2Ck

m,n + Ck
m,n−1

(∆r)2
+ (κrθr − κrrn)

Ck
m,n+1 − Ck

m,n−1

2∆r

+ ρ23σvσr
√
vm

Ck
m+1,n+1 − Ck

m+1,n−1 − Ck
m−1,n+1 + Ck

m−1,n−1

4∆v∆r

+ (rn − c)F
dCk

m,n

dF
− rnC

k
m,n − 3

2

Ck
m,n − Ck−1

m,n

∆τ
− 1

2

Ck−1
m,n − Ck−2

m,n

∆τ
= 0. (31)

After taking boundary conditions into consideration we must solve the (M−1)×(N−1) ODEs at

each time step, τk. This process is accomplished in two steps. The first step involves re-writing

the second order ODEs in equations (30) and (31) as a system of first order ODEs in the form

dCk
m,n

dF
= V k

m,n, (32)

dV k
m,n

dF
= Am,n(F )Ck

m,n +Bm,n(F )V k
m,n + P k

m,n(F ), (33)

9



where Am,n(F ), Bm,n(F ) and P k
m,n(F ) are found by comparing (32) with (30) or (31).

The second step involves applying the Riccati transformation to equations (32) and (33). By

using similar arguments as in Meyer and van der Hoek (1997) and Chiarella et al. (2009), the

solution of the system (32)-(33) can be represented by the Riccati transformation

Ck
m,n(F ) = Rm,n(F )V k

m,n(F ) +W k
m,n(F ), (34)

where Rm,n(F ) and W k
m,n(F ) are solutions of the initial value problems

dRm,n

dF
= 1−Bm,n(F )Rm,n(F )−Am,n(F )(Rm,n(F ))2, Rm,n(0) = 0, (35)

dW k
m,n

dF
= −Am,n(F )Rm,n(F )W k

m,n(F )−Rm,n(F )P k
m,n(F ), W k

m,n(0) = G · P (T − τk, T ).

(36)

The option delta, V k
m,n(F ) satisfies the ordinary differential equation

dV k
m,n

dF
= Am,n(F )[Rm,n(F )V k

m,n +W k
m,n(F )] +Bm,n(F )V k

m,n + P k
m,n(F ). (37)

Equation (37) is solved subject to the boundary condition

V k
m,n(b

k
m,n) = e−γτkbkm,n, (38)

where F = bkm,n is the early surrender boundary at the grid point (τk, vm, rn). In solving the

above system, we first apply the implicit trapezoidal rule4 to equation (35) on a non-uniform

grid for the F domain from [Fmin, · · · , Fmax] where Fmin is chosen to be very small (close to zero)

and Fmax is large enough to cover the early surrender boundary region. The non-uniform grid is

partitioned such that Fmin < · · · < Fmax. For our numerical experiments, we will take Fmax to

be eight times the strike price due to the presence of the stochastic volatility and interest rates

which have significant influence on the level of the surrender boundary.

Once equation (35) is solved, we store the results offline as this is independent of time. Having

determined Rm,n(F ), we proceed to solve equation (36) for F from Fmax to Fmin again using the

implicit trapezoidal rule. This step requires the previously calculated values of Rm,n(F ). Once

Rm,n(F ) and W k
m,n(F ) have been found, it then follows from (34) and the condition (38) that

the early surrender boundary satisfies

e−γτkbkm,n = Rm,n(b
k
m,n) · (e−γτk) +W k

m,n(b
k
m,n). (39)

As equation (39) is implicit in bkm,n, we need to employ root-finding algorithms to find the early

surrender boundary at each grid point, (τk, vm, rn).

Once the early surrender boundary has been determined, we then solve equation (37) by sweeping

backwards from F = bkm,n to Fmin. Having solved equations (35)-(37) for Rm,n(F ), W k
m,n(F )

and V k
m,n(F ) at each grid point (τk, vm, rn), we can then substitute the resulting solutions into

equation (34) to obtain the corresponding variable annuity contract value, Ck
m,n(F ).

4Full details on how to implement the implicit trapezoidal rule have been documented in Meyer (2015).
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4 Numerical Results

Having outlined the techniques for inferring the policyholder behaviour in Section 3, in this sec-

tion we perform various numerical experiments analysing the impact of model parameter changes

to the surrender decisions. In the numerical experiments that follow, we use F0 = 100, G = 100

and T = 15 and the parameter set in Table 1 to analyse properties of the guaranteed minimum

maturity benefit (GMMB) when the underlying fund dynamics evolve according to the Heston

stochastic volatility model and the Hull-White stochastic interest rate process. In addition to

vt−Parameter Value rt−Parameter Value

κv 0.8 κr 0.5

θv 0.06 θr(t) 0.02− 0.0001e−t

σv 0.4 σr 0.01

ρ12 −0.5 ρ13 0.2

λv 0 r0 0.02

v0 0.06

Table 1: Parameters used for assessing policyholder behavior on the GMMB with surrender

options. The first two columns contain parameters and the corresponding values of the stochastic

variance process whilst the last two colums contain parameters and corresponding values of the

stochastic interest rate process.

the parameter set in Table 1, we have also assumed that ρ23 = 0, which is the correlation be-

tween the stochastic volatility and the interest rate processes. This assumption is consistent

with empirical findings on calibration of mutual fund portfolios under stochastic volatility and

stochastic interest rates. The calibration process usually involves initially estimating the inter-

est rate parameters separately using interest rate derivatives. Once the interest rate parameters

have been found, they are then used for estimating the correlation between the interest rates

and mutual fund (see van Haastrecht et al. (2010) for a detailed discussion on the calibration

process).

4.1 Analysis of the impact of variance v and interest rate r on optimal sur-

render and fair management fees

As variable annuity contracts are usually treated as retirement income products, we consider

a GMMB contract maturing in 15 years, that is, T = 15. Using the specifications in Table 1

the corresponding fair management fee c∗ obtained by solving equation (21) is 4.74%. Figure 1

highlights the optimal surrender regions when interest rates are set at 2%. From both subplots

we note that the early surrender boundary gradually increases with increasing volatility. The

early surrender regions are concave functions in the maturity domain, slowly increasing to a

maximum before rapidly decreasing to the guarantee level, G. This implies that when volatility

is high, surrender decisions are only optimal when the fund value is higher in comparison to

11



the case when volatility is low. This is consistent with earlier findings in Bernard et al. (2014)

who consider an equivalent problem under the geometric Brownian motion case and note that

GMMBs are more valuable in a high volatile market. It is worth stating that the surrender

boundary at expiry of the contract is neither a function of volatility nor interest rates as it must

converge to the guarantee value. As volatility increases, the uncertainty in the performance of

fund also increases resulting in high management fees which are proportional to the fund level as

depicted in Table 2. From this table, we note that for given interest rate level, the management

fees increases with volatility.
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(b) Early surrender boundaries assessing
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surrender decision.

Figure 1: Surrender region profiles for varying volatility levels when the initial interest rates are

fixed at 2%. All other parameters are as presented in Table 1.

Next we analyse the impact of interest rates on the surrender behavior for a given level of

volatility (v = 0.06 which translates to a volatility of 24.49%). Figure 2 shows the early surrender

surface in (a), and the boundaries at different interest rates levels in (b). From Figure 2(a), we

note that the early surrender surface is a decreasing function of interest rates, that is, as interest

rates increase, the surface is shifted downwards. This means that when interest rates are high,

surrender decisions are optimal at lower fund values in comparison to the case when interest

rates are lower. We also observe from Figure 2(a) that when interest rates are greater than 20%,

the surfaces becomes almost flat implying that the optimal surrender boundary becomes less

sensitive to changes in interest rates. This explains why the management fees are exponentially

decreasing with rising interest rates as depicted in both Table 2 and Figure 3(b).

It is of interest to assess how the optimal surrender decisions are affected jointly by changes

in both interest rates and volatility. Figure 3(a) shows the early surrender surface at initial

time, that is, when τ = 15. The early surrender boundary is significantly increasing in the

volatility domain while slowly decreasing in the interest rate domain. This implies that in

a low volatility environment coupled with high interest rates, the optimality conditions for

surrendering the contract early are satisfied when the fund value is much lower compared to

the case where the volatility levels are high with low interest rates. However, there is not much

12
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Figure 2: Surrender region profiles for varying interest rate levels when the initial fund volatility

is fixed at 24.49% which corresponds to the variance of 0.06. All other parameters are as

presented in Table 1.

incentive for surrendering the guarantee when the fund level is low because; (i) the fee charged

on the guarantee is very low as highlighted in Table 2 and Figure 3(b), (ii) the probability of

the guarantee ending up in the money is very high meaning that the policyholder stands to

gain more value by delaying surrender. Conversely, a low interest rate environment with high

volatility levels leads to significant fluctuations of the fund; hence higher management fees which

are proportional to the fund level. It will be more sensible for the policyholder to surrender the

guarantee early as a strategy of avoiding paying high management fees.
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Figure 3: Optimal surrender region and the corresponding management fees for varying volatility

and interest rate levels when τ = 15. All other parameters are as presented in Table 1.
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❍
❍
❍
❍

❍
❍❍

v0

r0
0.0125 0.0625 0.1125 0.1625 0.2125

0.03 0.0394 0.0292 0.0221 0.0184 0.0168

0.13 0.0629 0.0551 0.0484 0.0439 0.0404

0.23 0.0687 0.0627 0.0577 0.0534 0.0494

0.33 0.0748 0.0697 0.0650 0.0607 0.0566

0.43 0.0804 0.0756 0.0710 0.0666 0.0624

Table 2: Fair management fees, c∗, as functions of v0 and r0. All other parameters are as

presented in Table 1.

4.2 Impact of σv, σr and the correlation coefficients on optimal surrender and

the fair management fees

Another major advantage of using a more general structure for modelling the underlying fund

dynamics as presented in equation (5) is the added flexibility of being able to assess how sur-

render behaviour is influenced by changes in underlying interest rate and volatility parameters;

something which is not possible with simpler structures such as the geometric Brownian motion

framework. The vol-of-vol (σv) and the volatility of the interest rate, σr, are notable drivers

in influencing the dynamics of the underlying fund. Figure 4(a) shows the impact on the early

surrender surfaces to changes in σv. In this figure, the differences are computed by subtracting

the surrender boundary values generated when σv = 20% from those generated when σv = 40%

for the case where the initial interest rate levels are fixed at 2%. We note that the differences are

consistently positive implying that the early surrender region increases with increasing volatility

of volatility, σv.
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Figure 4: Assessing the impact of σv on the surrender region. We also infer the implications of

varying σv and ρ12 on the management fees. All other parameters are as presented in Table 1.
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For longer maturity contracts, an increase in σv generally causes a decrease in long-term volatility

as revealed in Figure 5(a) which then leads to a decrease in management fees as highlighted in

Figure 4(b) (see also Donnelly et al. (2014)). From Figure 4(b) we also note that the management

fees increase with increases in the correlation coefficient, ρ12 which is the correlation between

the underlying fund and the stochastic volatility process across the σv domain. The implied

management fees to varying levels of both σv and ρ12 are also present in Table 3 for completeness.
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❍
❍

❍
❍
❍

❍❍
ρ12

σv
0.1 0.2 0.3 0.4 0.5 0.6

−0.75 0.0548 0.0524 0.0497 0.0467 0.0436 0.0410

−0.5 0.0555 0.0531 0.0504 0.0474 0.0446 0.0422

−0.25 0.0561 0.0541 0.0522 0.0504 0.0484 0.0460

0 0.0570 0.0560 0.0545 0.0535 0.0524 0.0512

Table 3: Management fee for varying ρ12 and σv. All other parameters are as presented in Table

1.

Focusing on the impact of changes in volatility of interest rates, σr, on the surrender boundaries

as presented in Figure 6(a) which shows the differences in surrender boundaries generated when

σr = 1% minus those generated when σr = 5%, we note that an increase in σr causes significant

decrease of the surrender region for lower interest rates. However, as interest rates begin to

rise, the surrender region becomes less sensitive to changes in σr. We note from Figure 5(b)

that as σr increases, the tails of the density function becomes fatter but has less impact on the

overall mean of the distribution. From equation (20), an increase in σr then results in higher

zero coupon bond prices resulting in an increase in management fees; this behaviour is reflected

in Figure 6(b) and Table 4.
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From Figures 4(b) and 6(b) we observe that an increase in σr causes significant increase in

management fees as compared to the decrease in management fees associated with increase in

σv. For instance, when ρ13 = 0 a change of σr from 1% to 11% results in 63.8% increase in

management fees. On the other hand when ρ12 = 0, varying σv from 10% to 60% results in

10.18% decrease in fees. From this analysis we can conclude that σr plays a very significant role

in detecting the management fee structure of variable annuity contracts embedded with GMMB

riders.

Another interesting finding from Figures 4(b) and 6(b) is that changes in either ρ12 or ρ13

respectively does not have significant influence on the management fee structure of these long-

dated contracts. Both plots are not very sensitive to correlation coefficient changes implying

that mis-specifying the correlation coefficients will not have huge impact on determination of

the fair fees to be levied on such contracts.
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Figure 6: Assessing the impact of σr on the surrender region. We also infer the implications of

varying σr and ρ13 on the management fees. All other parameters are as presented in Table 1.

❍
❍

❍
❍
❍

❍❍
ρ13

σr
0.01 0.03 0.05 0.07 0.09 0.11

0 0.0489 0.0511 0.0531 0.0548 0.0565 0.0801

0.25 0.0500 0.0530 0.0552 0.0567 0.0582 0.0817

0.5 0.0511 0.0548 0.0583 0.0603 0.0623 0.0837

0.75 0.0522 0.0567 0.0609 0.0639 0.0671 0.0857

1 0.0534 0.0584 0.0635 0.0670 0.0705 0.0877

Table 4: Management fees for varying ρ13 and σr. All other parameters are as presented in

Table 1.
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4.3 How the penalty rate γ affects optimal surrender decisions

Due to the surrender feature in the GMMB contracts under consideration, it is of paramount

importance to assess how changes in penalty fees affect the behaviour of the early surrender

region. In Figure 7 we analyse how the optimal surrender region changes when the penalty fee

is varied. Figure 7(a) considers the case where r0 is fixed at 2% and infers the differences in

the surrender region between γ = 0 and γ = 0.5%. From this figure we note the differences

increases with maturity and volatility; there is a curvature developing with maturity indicating

the exponentially decreasing penalty fee structure adopted in this paper. Introducing penalty

fees has an effect of shifting the surrender region up with huge differences noted when the

volatility is high. The surrender region is not significantly affected by changes in penalty fees

when the volatility is low as depicted from the plot. Towards maturity of the contract the

differences vanishes as the boundary under both scenarios converge to the guarantee level, G,

which is independent of both stochastic volatility and interest rates.
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Figure 7: Comparisons of early surrender regions for different penalty fee levels. All other

parameters are as presented in Table 1.

By fixing the volatility at 24.49% (which is equivalent to the variance of 0.06) and computing the

surrender boundary differences when γ = 0 and γ = 0.5% as presented in Figure 7(b), we note

a gradual increase in the differences of the surrender region with increasing maturity across the

entire interest rate domain. The differences are slightly higher for lower interest rates compared

to the case when interest rates are high.

A GMMB contract which can be surrendered anytime prior to maturity as presented in equation

(13) is a typical American style option. It is well known that such options are more valuable

relative to their European style counterparts. It is worthwhile to assess how premiums for

the GMMBs with surrender options compare with those which cannot be surrendered early as

presented in Figure 8. In this figure we compute the difference in premiums of the European
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style guarantees from those with surrender features. From this graph, as expected, we note that

the guarantees with surrender features are consistently more valuable than the European style

guarantees. Such differences increase with increasing volatility and interest rates.
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Figure 8: GMMB premium values for a contract with surrender option minus premiums for a

European style GMMB. All other parameters are as presented in Table 1.

4.4 What are the hedge ratios and how much the surrender is worth?

One superior feature about the method of lines approach which we have utilised in generating

the surrender boundaries is that it simultaneously compute premiums of the variable annuity

contract together with the sensitivities of such premiums to changes in the underlying fund value

and other state variables as part of the solution at no additional computational cost. In practice,

such sensitivities are commonly referred to as “hedge ratios” with the most popular being the

delta and the gamma. Figure 9 shows the delta and gamma surfaces for varying interest rates

and underlying fund value when the volatility is fixed at 24.49%. From Figure 9(a) we note

that deltas for at-the-money (ATM) guarantees lies between 0.7 and 0.8; with those for deep

in-the-money guarantees equal to one across the entire interest rate domain. This implies that

for every $1 increase in the underlying fund value, such guarantee will as well appreciate by

$1. As the levels of interest rates increase, we note that deltas for out-of-the-money guarantees

increase sharply for any given fund value. The corresponding gamma profiles at different interest

rate levels are presented in Figure 9(b). Gamma is a measure of the sensitivity of the delta to

changes in the underlying fund value.

To have a greater perspective on the interaction between the fund value, delta and gamma we

present Table 5 which has the corresponding values for the case when the interest rates are set

at 2% and volatility at 24.49%. We consider an ATM guarantee on a fund whose current value

is $100. From the table we note that the corresponding delta for an ATM guarantee is 0.6977

with a gamma of 0.006795. The corresponding value of the variable annuity contract has been

found to be $104.8758. Should the fund value go up to $101, the policyholder can estimate

that the $100 strike contract will now be worth around $105.5755. The new delta of this $100
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Table 1.

strike contract on an underlying fund whose value is now $101 should be around 0.7045. This

is obtained by simply adding the gamma of 0.006795 to the old delta of 0.6977.

F ∆ Γ

80.0000 0.5673 0.008057

90.0000 0.6306 0.007435

100.0000 0.6977 0.006795

110.0000 0.7671 0.005937

120.0000 0.8317 0.005003

Table 5: Hedge ratios when v = 0.06, τ = 15 and r = 0.02. All other parameters are as presented

in Table 1.

We wrap up the analysis by presenting Figure 10 which assesses the impact of varying volatility

on the delta and gamma profiles when interest rates are fixed at 2%. From Figure 10(a) we

note that deltas for ATM contracts are close to 0.5 across the volatility domain, which are much

lower than those in the interest rate domain when volatility is fixed. We also note that the

gamma profiles in Figure 10(b) behave differently to those presented in Figure 9(b); this shows

that volatility and interest rates have unique impacts on the underlying fund dynamics.

5 Conclusions

In this paper we have presented a framework for analysing how the policyholder surrender

behaviour is influenced by changes in various sources of risks impacting a variable annuity (VA)

contract embedded with a guaranteed minimum maturity benefit. We presented a method of
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lines approach that allows us to efficiently determine not only the prices but also the early optimal

surrender boundaries and the hedge ratios of a VA contract when the underlying fund dynamics

evolves under the influence of stochastic volatility and stochastic interest rates. Compared

to the geometric Brownian motion framework where volatility is assumed to be constant, a

model incorporating stochastic volatility captures “volatility smile / skew” often observed on

the equity options market. Furthermore, a model incorporating stochastic interest rate is also

able to capture better the optimal surrender boundary especially given that those VA contracts

are long-dated.

We formulated the valuation problem of a variable annuity contract with surrender feature as a

free-boundary problem which is solved with the aid of the method of lines. The fair fee which

depends on model parameters has been computed after we compute the value of the contract.

The numerical illustrations reveal that additional to the levels of volatility and interest rates,

different parameter values of the model such as vol-of-vol (σv), volatility of interest rate (σr)

and the penalty rate (γ) have significant influence on the optimal surrender behaviour of the

policyholder. We have performed detailed and comprehensive analysis on such effects in Section

4.

Although this paper considered valuation problem from the policyholder’s perspective, it is

equally important to consider such a VA contract with surrender features from the point of

view of the annuity provider. Especially when the underlying mutual fund does not perform

well resulting in the guarantee being in-the-money, the annuity provider issuing such a contract

must hedge its position on the guarantee. Our future research will address this by investigating

the risk profiles and hedging strategies which annuity providers must take when the fund value

follows the more realistic framework adopted in this paper. Another direction of future research

will involve incorporating mortality effects on the valuation of the VA contract considered in

20



this paper and assessing the influence of such effects on the policyholder surrender behaviour.
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