Projected Confusion: Simple heuristics in financial future-thinking

Ben R. Newell
School of Psychology,
UNSW Sydney

Question 1

Assume that you deposit $\$ 400$ every month into a retirement savings account that earns a 10\% yearly rate of interest. (You never withdraw any money.)

How much money do you think you will have in your account (including interest earned):

After 10 years?
After 20 years?
After 30 years?
After 40 years?

Question 2

You owe $\$ 10,000$ on your credit card and the interest rate is 12% annually.

You have destroyed the card and will not use it any more.

Suppose that you plan to pay a fixed amount of $\$ 110$ per month until the card is completely paid off.

What is your best estimate of how many months it will take to totally pay off the card?

Question 3

American Consumers Bank

Payment Due Date

7/15/2010

Late Payment Warning: If we do not receive your Minimum Amount Due by the Payment Due Date
listed above, you will have to pay a late fee of up to $\$ 39.00$.
Minimum Payment Warning: If you make only the minimum payment each period, you will pay
more in interest and it will take you longer to pay off your balance. For example:

If you make no additional charges and each month you pay...	You will pay off the balance shown on this statement in about...	And you will pay an estimated total of...
(G) Only the Minimum Amount Due	(H) 22 years	(I) $\$ 20,294.97$
(J) $\$ 352.16$	(K) 3 years	(I) $\$ 12,677.67$

(11) Annual
Percentage
Rate
12.0%

How long would it take to pay off the card if one were to pay $\$ 212$ each month, assuming no further charges on the card?

Answer 1

A: When $\$ 400$ Is Deposited Each Month at 10\%
Annual Compound Interest

McKenzie \& Liersch, 2011

Answer 2

Figure 2. Participants' Estimates of Time to Pay Off a $\$ 10,000$ Credit Card Balance with an Annual Interest Rate of 12%, as a Function of the Monthly Payment

Soll et al., 2013

Answer 3

Ameriean Consumers Bank

$$
7 / 15 / 2010
$$

If you make no additional charges and each month you pay...	You will pay off the balance shown on this statement in about...	And you will pay an estimated total of...
(G) Only the Minimum Amount Due	(H) 22 years	(I) $\$ 20,294.97$
(J) $\$ 352.16$	(K) 3 years	(I) $\$ 12,677.67$

(11) Annual
Percentage
Rate
12.0%

How long would it take to pay off the card if one were to pay $\$ 212$ each month, assuming no further charges on the card?

Soll et al., 2013

"Exponential growth bias"

$\$ 400 \times 12$ (months per year) $\times 40$ (years) $x 1.1=$ \$211,200
$\$ 400 \times 12$ (months per

$$
\text { year) } \times 10 \text { (years) } \times 1.1
$$

$$
=\$ 52,800
$$

Figure 2. Participants' Estimates of Time to Pay Off a $\$ 10,000$ Credit Card Balance with an Annual Interest Rate of $\mathbf{1 2 \%}$, as a
Function of the Monthly Payment

"Principal-plus-adjustment heuristic"

Fig. 1. Four types of simple exponential change.

Fig. 3. Mean of section medians as a function of condition and change occurring in the section for experiment 1.

Solutions?

Tell people the answer (nudge)

Let people experience the impact of decisions (boost)

Research Team

Prof. Hazel Bateman
h.bateman@unsw.edu.au

A/Prof. Isabella Dobrescu dobrescu@unsw.edu.au

Prof. Susan Thorp susan.thorp@sydney.edu.au

George Smyrnis gsmy3865@uni.sydney.edu.au

UniSuper

Australian Government
Australian Research Council
LP150100608

Retirement Income Experiment (RIE): FIELD

The 2013 RIE presented members with both a projected account balance and income stream at retirement ($1 \& 2$). Further, the RIE gave members three calls to action: (i) contacting Cbus (3); (ii) increasing retirement contributions (4); and choosing different investment options (4).

RIE Results - Contributions

The RIE had significant effects upon the retirement saving decisions of Cbus members. These effects were generally more pronounced for older members and in relation to salary sacrificing.

1 Higher salary sacrifice in (\$AUD)
Salary Sacrifice (\$AUD)

3 More members salary sacrificing
Cbus Member Salary Sacrificing (\%)

2 Higher NC saving in (\$AUD)
Non-Concessional Saving (\$AUD)

4 Fewer members with NC saving
Cbus Member Non-Concessional Saving (\%)

Online experiment design

Age Group	Treatment Group

(All hypothetical choices)

Current Balance + Balance + Income Estimate

Participants choose \% of "left over" income to save.

Account and income information set at population averages.

First choice set	$45-54$ years
Starting age	48 yrs
Annual gross income	$\$ 77,000$
Annual net income	$\$ 60,400$
Annual living expenses	$\$ 49,500$
Income left over	$\$ 10,900$
Current plan balance	$\$ 65,600$
Estimated retirement balance	$\$ 286,400$
Estimated 25 yr payment	$\$ 16,400$

Choice set information updates after each saving decision.

Average percentage of discretionary income saved by treatment

Combined projections: reference dependence and positive feedback.

- Lump sum feedback is large relative to income
- Lump sum + income feedback = carrot + stick?
- Projections affect younger respondents more than older
- Younger get the benefit of longer compounding periods

```
Growth in projections: 35 years; saves 100% of "left-over" income
```

	Choice 1	Choice 5	Choice 10
Income projection	$\$ 22,200$	$\$ 28,600$	$\$ 30,900$
Lump sum projection	$\$ 386,200$	$\$ 497,700$	$\$ 538,500$

Version 1

Would like to save

Inertia \& Friction Costs?

 any of your left over income this year?
YES
 NO

What percentage of left over income will you save this year?

- 25\%
- 50%
- 75\%
- 100\%
- Custom amount

Version 2

What percentage of left over income will you save this year?

- 0\%
- 25%
- 50%
- 75\%
- 100\%
- Custom amount

Inertia \& Friction Costs?

We found the sequential, two-stage choice architecture (survey version 1) results in significantly lower saving, due largely to more respondents answering "No" (0% saving) to the first question.

General Discussion Points

- The need to shift away from enumerating biases to providing solutions
- Focus on changing the choice architecture or improving competence/education?
- Is it competence or engagement?
- Should we target arithmetic problems or conceptual problems? (Does it matter if you know the answer even if you don't know why?)
- Can simulators/calculators/forecasters solve misunderstanding (and engagement)? Does it matter if they can't (as long as people do the "right thing")

Retirement Specific Discussion Points

- How much do people think they need for retirement? How much do they think they can spend in retirement?
- Why do people not save enough, but then spend too slowly in retirement? Discount rate changes? "Exponential Decline Bias"?
- Why does EPG bias not lead to lower savings intentions? (People tend to underestimate how much they will have which could lead them to save less...).

