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Abstract

This paper analyzes an individual’s post retirement longevity risk management
strategy allowing for systematic longevity risk, recent product innovations, and
product loadings. A complete-markets discrete state model and multi-period sim-
ulations of portfolio strategies are used to assess individual longevity insurance
product portfolios with differing levels of systematic and idiosyncratic longevity
risk. Portfolios include: fixed life annuities, deferred annuities, inflation-indexed
annuities, phased withdrawals and recently proposed group self-annuitization (GSA)
plans. GSA plans are found to replace even inflation-indexed annuity products
when there are loadings on guaranteed life annuity products. With a bequest
motive and loadings, coinsurance portfolio strategies with phased withdrawals
and GSA’s dominate portfolios with life annuities or deferred annuities.
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1 Introduction

Most developed countries use subsidies and tax incentives to increase mandatory and

voluntary retirement savings so individuals are less reliant on public pay-as-you-go

pension systems. Payout phases of pension systems are organized very differently

across countries with individuals increasingly responsible for post-retirement financial

decisions (Rocha et al., 2010; Rocha and Vittas, 2010). Although most private retire-

ment savings are in defined contribution plans, limited attention has been paid to the

decumulation of these funds. Individuals face a complex problem of post-retirement

financial planning. They have to take into account investment risk, inflation risk,

product loadings and guarantees and both systematic and unsystematic (idiosyncratic)

longevity risk.1 Recent product innovations in the form of group self-annuitization

(GSA) plans provide new opportunities to manage longevity risk.

The importance and complexity of the post-retirement financial planning problem has

been well recognized in the literature. There is a longstanding literature on optimal an-

nuitization dating back to (Yaari, 1965). Recent studies consider individuals’ retirement

portfolio choice with longevity insurance products such as life annuities and deferred

annuities (e.g., Horneff et al., 2010a; Post, 2010; Purcal and Piggott, 2008; Schulze and

Post, 2010; Stevens, 2010), variable annuities (e.g., Doyle and Piggott, 2003; Milevsky

and Kyrychenko, 2008; Horneff et al., 2010b), or group self-annuitization plans (e.g.,

Piggott et al., 2005; Valdez et al., 2006; Stamos, 2008). Only a few of these papers

distinguish between idiosyncratic and systematic longevity risk, model inflation risk

or assess new product innovations including group self-annuitization.

This paper uses a simplified complete markets framework to study the optimal man-

agement of systematic and idiosyncratic longevity risk. New insights into the impact

of systematic longevity risk, loadings for guarantee products and the potential impact

of insurer insolvency risk on an individual’s optimal product portfolio are provided.

1Systematic longevity risk arises from uncertain changes in population survival probabilities that
apply to all individuals to a greater or lesser extent.
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Multi-period simulation is then used to assess a broader range of realistic individual

portfolio strategies. The multi-period model incorporates stochastic mortality and

inflation. Investment risk is not included in order to focus on products that manage

longevity risk rather than investment risk.2

Individual welfare is compared for different product portfolios motivated by the op-

timal insurance literature (see, e.g., Borch, 1960; Arrow, 1971, 1973; Raviv, 1979). Coin-

surance for longevity risk is represented in the portfolio by self-insurance, referred

to as phased withdrawals, and deductibles by deferred annuities. Applying concepts

from the optimal insurance literature is complicated by the effect of a bequest motive

in the longevity case. We address this by including cases with and without bequests to

highlight the impact on individual longevity risk management.

The paper consists of two main parts. Section 2 presents a discrete state model to derive

the optimal longevity insurance strategy for an individual facing both idiosyncratic

and systematic longevity risk subject to a budget constraint. The individual has access

to a complete market of financial and insurance products that allows the individual

to attain optimal consumption in current and future states. The products required to

complete the market are a risk-free bond, a life annuity, a longevity bond, and a GSA

plan. Products are priced using a contingent claims approach. Frictional costs and

insolvency risk are introduced. An example is used to highlight the main insights of

the model.

Section 3 presents a multi-period expected utility simulation analysis of a range of

longevity insurance strategies developed from the insights of the two-period model

and concepts from optimal insurance. The longevity insurance strategies include port-

folios of life annuities, deferred annuities, inflation-indexed annuities, GSA’s, and phased

withdrawals. Expected utilities and certainty equivalent consumption are used for

welfare comparisons. The market price for insurer annuity products is determined

as the actuarially fair insurance premium plus loadings typically observed in annuity

2Although only risk free investments are included, allowing for investment risk changes the relative
weighting of phased withdrawals in the individual portfolios but not the main conclusions of the study.
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markets. In practice loadings cover costs of guarantees, adverse selection and costs

of capital from regulatory capital requirements. The stochastic evolution of mortality

rates is based on a multivariate mortality model in Wills and Sherris (2010) designed to

study the pricing and risk management of longevity risk. The market model developed

by Ngai and Sherris (2011) is used to generate future stochastic inflation and economic

scenarios. This model simulates gross domestic product, interest rates, stock prices,

and inflation.

The results of the study show that for individuals with no bequest motive and with no

product loadings, annuitization strategies including small GSA holdings are optimal

under systematic longevity risk. Inflation indexed annuities dominate, and because life

annuities insure both systematic and idiosyncratic longevity risk, GSA’s have a limited

role. With loadings on guaranteed life annuity products, GSA plans, which are mutual

and non-guaranteed, become significantly more attractive for individuals in managing

their post-retirement longevity risk, replacing even annuitization products with infla-

tion guarantees. For individuals with a bequest motive, coinsurance strategies in the

form of self annuitization (phased withdrawals) dominate. Holdings of GSA plans

increase significantly where there are loadings on guarantee products typical of these

products.

2 Optimal longevity insurance: a two-period model

We study the optimal transfer of idiosyncratic and systematic longevity risk and demon-

strate the impact of loadings and insolvency risk for longevity products on optimal

longevity insurance using a two-period expected utility model.3 At the start of the

period, an individual is endowed with an initial wealth of W0 (his retirement savings).

He chooses consumption C0 and a portfolio of financial and insurance products to

obtain optimal second period consumption C1 in future states. Uncertainty at the end

3Two-period models have been employed, for example, by Brown (2003), Valdez et al. (2006), and
Schulze and Post (2010) to study the demand for annuities and for group self-annuitization funds.
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of the period arises from both idiosyncratic and systematic longevity risk, introduced

in Section 2.1.

The individual has access to a risk-free investment, a life annuity, a longevity bond,

and a GSA fund. These products complete the market and are introduced in Section

2.3. Their prices are derived using the state-contingent claims approach outlined in

Section 2.2. These products allow the individual to achieve the optimal consumption

pattern based on his preferences.

Section 2.4 studies the optimal consumption problem when there are no frictional

costs and products are priced at fair market prices. In Section 2.5 the market is no

longer complete as frictional costs are introduced. Products issued by intermediaries

(i.e., the life annuity) include loadings for guarantees and adverse selection. To allow

for solvency and costs of capital, the life annuity is then assumed to have a (small)

probability of not paying off fully when the population survival rate is high.

Section 2.6 uses a numerical example to demonstrates the insights of the model for

optimal individual longevity risk management as well as the practical implications.

The results are used as a basis for the product portfolios assessed in the multi-period

simulations.

2.1 Idiosyncratic versus systematic longevity risk

Systematic longevity risk is the risk that arises from shocks to population-level mortal-

ity rates that apply to all individuals to a greater or lesser extent, whereas idiosyncratic

longevity risk is uncertainty in individual survival given the population mortality

rates. The model includes systematic and idiosyncratic mortality risk using four dif-

ferent states at the end of the period determined by the random population survival

rate and the survival status of the individual given the mortality rate. The states are

denoted by (h, a) for a high population survival rate with the individual alive, (l, a) for

a low population survival rate with the individual alive, (h, d) for a high population
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survival rate with the individual dead, and (l, d) for a low population survival rate

with the individual dead.

The probability that the population survival rate at the end of the period is high is de-

noted by π(h); a low population survival outcome occurs with probability π(l) = 1−

π(h). The individual’s survival outcome depends on the population survival rate. For

example, the probability that the population survival rate is high and the individual is

alive is given by π(h)π(a|h). Table 1 summarizes the possible survival outcomes and

the corresponding probabilities.

State Population Individual Probability
(h, a) high alive π(h)π(a|h)
(l, a) low alive π(l)π(a|l)
(h, d) high dead π(h)π(d|h)
(l, d) low dead π(l)π(d|l)

Table 1: Summary of notation for states and survival probabilities in the two-period
complete market model.

2.2 Contingent claims

A state-contingent pricing approach is used. We consider a complete market and

assume that for each of the four states a contingent claim is available that pays off

1 in the state and 0 in all other states. The prices of these contingent claims are denoted

by pc(h, a) for the contingent claim paying 1 in the (h, a) state and zero otherwise. Sim-

ilarly for the other states the state-contingent prices are pc(l, a), pc(h, d), and pc(l, d),

respectively. All products are portfolios of these contingent claims in the model.

2.3 Longevity insurance products

The state-contingent claims are used to price financial and insurance products. Table 2

summarizes the pay-offs for the following products in the individual’s portfolio:
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• A risk-free bond that pays 1 in each of the states with price

pb = pc (h, a) + pc (l, a) + pc (h, d) + pc (l, d)

so that 1
pb

= 1 + r where r is the risk-free interest rate.

• A life annuity that pays 1 if the individual is alive with price

pa = pc (h, a) + pc (l, a) .

• A longevity bond that pays 1 if survival probabilities are high with price

pl = pc (h, a) + pc (h, d) .

• A group self-annuitization (GSA) overlay contract that pays 1 if the individual is

alive and survival probabilities are low with price

pg = pc (l, a) .

This GSA overlay contract, when combined with the life annuity, is a standard

GSA contract as described by Valdez et al. (2006) that pays off in both states in

which the individual is alive, with lower payoffs in the high population survival-

state (h, a) than in the low population survival-state (l, a).

The longevity bond and the GSA overlay allow the individual to manage system-

atic longevity risk, the life annuity insures against both systematic and idiosyncratic

longevity risk, and the risk-free bond provides a bequest. The individual selects a

portfolio of these products to optimize consumption in the future uncertain states.

Individuals can both purchase and issue these products subject to a budget constraint.
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State Risk-free bond Annuity Longevity bond GSA
(h, a) 1 1 1 0
(l, a) 1 1 0 1
(h, d) 1 0 1 0
(l, d) 1 0 0 0

Table 2: Longevity product payoffs at time t = 1. These products are portfolios of the
state contingent securities.

2.4 Optimal longevity insurance: the complete market case without

frictional costs or insolvency risk

In the complete market without frictional costs or insolvency risk, the optimal longev-

ity insurance portfolio that finances the optimal consumption pattern is determined

using the contingent claims introduced in Section 2.2. Two cases are studied: Section

2.4.1 considers an individual with no bequest motive, whereas Section 2.4.2 allows

for a bequest motive. The optimal financial and insurance product portfolio is then

determined that replicates the optimal contingent claims portfolio.

2.4.1 Optimal consumption without bequest motive

An individual with initial wealth W0 (i.e., his retirement savings) determines his op-

timal consumption by maximizing expected utility over future uncertain states. The

individual faces a budget constraint so that only wealth, (W0 − C0), after initial con-

sumption of C0, can be used to finance contingent claims to consumption in each of the

future states. Consumption at the end of the period C1 is uncertain. The consumption

in each of the future uncertain states is denoted by C (h, a) , C (l, a) , C (h, d) and C (l, d),

respectively. The utility function is assumed to be additive and separable so that

U (C0, C1) = u (C0) + βE [u (C1)] ,

where β is the time preference parameter.

If the individual has no bequest motive then the optimal consumption in the dead state
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is zero (C (h, d) = C (l, d) = 0). There is no utility in the dead state in this case even

if there is an unintended bequest. For the no bequest case, the utility function in the

dead state is u (C) = 0. The optimal consumption problem for the individual is

max
C0,C(h,a),C(l,a)

u (C0) + β [π(h)π(a|h)u (C (h, a)) + π(l)π(a|l)u (C (l, a))]

subject to the budget constraint

W0 − C0 = pc (h, a)C (h, a) + pc (l, a)C (l, a)

The first-order conditions are used to derive the marginal rates of substitution between

consumption at the start of the period and at the end of the period at the optimal

consumption:

MRSC0,C(h,a) =

∂u(C0)
∂C0

∂u(C(h,a))
∂C(h,a)

=
βπ(h)π(a|h)

pc(h, a)

MRSC0,C(l,a) =

∂u(C0)
∂C0

∂u(C(l,a))
∂C(l,a)

=
βπ(l)π(a|l)

pc(l, a)
.

The marginal rate of substitution between consumption in the states where the indi-

vidual is alive is:

MRSC(h,a),C(l,a) =

∂u(C(h,a))
∂C(h,a)

∂u(C(l,a))
∂C(l,a)

=

pc(h,a)
π(h)π(a|h)

pc(l,a)
π(l)π(a|l)

.

This is the ratio of the state-contingent prices divided by the state probabilities. The

consumption trade-off between states is determined by the price of transferring con-

sumption between the states. The first-order conditions determine the individual’s

optimal consumption pattern C∗no bequest = (C∗0 , C∗(h, a), C∗(l, a), 0, 0).
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2.4.2 Optimal consumption with bequest motives

Now consider an individual with a bequest motive. The individual derives utility

from consumption in the dead state and to reflect the lower utility in this state the

utility function is scaled by a factor k with 0 < k < ∞ (see, e.g., Campbell, 2008). The

individual now faces the optimization problem:

max
C0,C(h,a),C(l,a),C(h,d),C(l,d)


u (C0) + β



π(h)π(a|h)u (C (h, a))

+π(l)π(a|l)u (C (l, a))

+π(h)π(d|h)k u (C (h, d))

+π(l)π(d|l)k u (C (l, d))




subject to the budget constraint

W0 − C0 = pc (h, a)C (h, a) + pc (l, a)C (l, a) + pc (h, d)C (h, d) + pc (l, d)C (l, d) .

As before, the first-order conditions can be rearranged to derive the marginal rates of

substitution between consumption at the beginning of the period, t = 0, and at the end

of the period, t = 1, and between the four different states at t = 1. These determine the

optimal consumption pattern denoted by C∗bequest = (C∗0 , C∗(h, a), C∗(l, a), C∗(h, d), C∗(l, d))

for the individual with a bequest motive.

2.4.3 Optimal longevity insurance

The optimal consumption patterns C∗no bequest and C∗bequest are used to determine the

optimal product portfolio α∗ = (α∗b , α∗a , α∗l , α∗g), where the α∗i , i = b, a, l, g denote the

number of units the individual buys from the risk-free bond, the life annuity, the

longevity bond, and the GSA overlay contract introduced in Section 2.3.

The optimal product portfolio α∗ allows the individual to finance the optimal con-
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sumption pattern C∗. This portfolio is the solution to the system of equations:

State(h, a) : C∗(h, a) = αb + αa + αl

State(l, a) : C∗(l, a) = αb + αa + αg

State(h, d) : C∗(h, d) = αb + αl

State(l, d) : C∗(l, d) = αb

Budget constraint : W0 − C0 = pbαb + paαa + plαl + pgαg

The first four equations are determined from the product payoffs summarized in Table

2. The last equation is the budget constraint in terms of product prices and units in the

portfolio.

2.5 Optimal longevity insurance: the case of frictional costs and in-

solvency risk

We now extend the model to include frictional costs in the form of loadings for guar-

antee products and insolvency risk. These impact the demand for the life annuity

and the extent of coinsurance in the optimal product portfolio. Frictional costs and

insolvency risk are introduced separately. In both cases we assume that the individual

has a bequest motive to provide for an amount of wealth in the event of death at the

end of the period.

2.5.1 Frictional costs

The life annuity now includes a loading sot he price for the life annuity becomes the

complete market price pa plus a loading φ:

pa,loading = (1 + φ)[pc (h, a) + pc (l, a)].
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The individual optimizes the same expected utility as in the bequest case with no load-

ings and is subject to the same product cash flow constraints. However the individual

now faces the following budget constraint:

W0 − C0 = pbαb + pa,loadingαa + plαl + pgαg

The individual maximizes his expected utility by choosing the consumption pattern C

and the product portfolio α given these product market prices. The resulting optimal

consumption pattern is denoted by C∗loading = (C∗0 , C∗(h, a), C∗(l, a), C∗(h, d), C∗(l, d)).

2.5.2 Insolvency risk

To allow for insolvency risk it is assumed that the life annuity pays only a proportion

of the promised annuity payment in the event that survival probabilities are high and

the full amount when survival probabilities are low. The probability that losses will

not be fully covered is denoted by πinsolvency and the price for the annuity is given by:

pa,insolvency = (1− πinsolvency)pc (h, a) + pc (l, a) .

The individual faces the same optimization problem as previously but with budget

constraint:

W0 − C0 = pbαb + pa,insolvencyαa + plαl + pgαg

The individual maximizes his expected utility by choosing the consumption pattern C

and the product portfolio α given the product market prices and the resulting optimal

consumption pattern is denoted by C∗insolvency = (C∗0 , C∗(h, a), C∗(l, a), C∗(h, d), C∗(l, d)).
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2.6 Numerical example

In order to provide insight into the practical implications of the two-period theoretical

model, a numerical example is used to determine optimal product portfolios for an

individual. Risk premiums for products are included and their impact on the optimal

product portfolios assessed. Sensitivity of the results to these assumptions is also

analyzed.

The individual is risk-averse, with decreasing absolute risk aversion (u′(C) > 0, u′′(C) <

0, u′′′(C) > 0). A standard utility function satisfying these assumptions is the power

utility function:

u(C) =
C1−δ − 1

1− δ
,

where δ denotes the individual’s relative risk aversion. A moderate relative risk aver-

sion of δ = 2 is assumed and the time preference parameter is set to β = 0.98. The

individual’s initial wealth is W0 = 100 although since our utility function is homothetic

the level of wealth does not impact the conclusions.

The probability that the population survival rate is high at t = 1 is π(h) = 0.6 (thus,

π(l) = 0.4), and the conditional probabilities that the individual is alive is π(a|h) =

0.9 given a high population survival rate, and π(a|l) = 0.8 given a low population

survival rate. Table 3 gives the resulting state probabilities π(h, a), π(l, a), π(h, d), and

π(l, d) and the state-contingent prices pc (h, a), pc (l, a), pc (h, d), and pc (l, d). State-

contingent prices are chosen so they result in reasonable market prices of the financial

and insurance products. Prices are varied later to assess the results’ sensitivity to this

assumption.

State Probability π Price pc

(h, a) 0.540 0.547
(l, a) 0.320 0.314
(h, d) 0.060 0.050
(l, d) 0.080 0.060

Table 3: Numerical example illustrating the two period model: State probabilities and
state-contingent prices.
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Table 4 gives the risk-neutral prices, the market prices and the risk premiums of the

financial and insurance products resulting from the state prices in Table 3. The market

price for the risk-free bond is pb = 0.971, with a risk-free interest rate of 1 + r = 1
pb

=

1.03. The risk premium is defined as the expected return from a product in excess of the

risk-free rate (1+r). The expected return is calculated as the expected payoff divided by

the market price. The risk premium is zero for the risk-free bond and negative for the

annuity, the longevity bond, and the GSA overlay contract. The individual pays a risk

premium to transfer his longevity risk. The risk premium is largest in absolute value

for the life annuity, which transfers both systematic and idiosyncratic longevity risk,

second largest for the longevity bond, which transfers only systematic longevity risk,

and small for the GSA overlay contract, which only transfers idiosyncratic longevity

risk.

Product Risk-neutral price Market price Risk premium α∗no bequest α∗bequest
Risk-free bond 0.971 0.971 0.000 0.000 23.315

Annuity 0.835 0.861 -0.031 53.110 29.547
Longevity bond 0.583 0.597 -0.025 0.000 -1.087

GSA overlay 0.311 0.314 -0.010 0.882 -0.166

Table 4: Numerical example illustrating the two period model: prices, risk premiums,
and optimal product portfolios with and without bequest.

Table 4 also shows the optimal portfolios for the no bequest motive case and with a

bequest motive case where the utility from consumption in the “dead” state is scaled

by the factor k = 0.15. These are denoted respectively by α∗no bequest and α∗bequest. An

individual with no bequest motive buys 53.110 units of the annuity and 0.882 units of

the GSA overlay contract. An individual with a bequest motive buys much less units of

the annuity, in this case 29.054, and holds 23.315 units of the risk-free bond to provide

a bequest. He also issues small amounts of the longevity bond and the GSA overlay

contract. The relative prices including risk premiums for the life annuity, longevity

bond and the GSA determine the demand for these products.

In the no bequest case, systematic longevity risk has limited impact on the optimal

strategy of full insurance. Demand for full annuitization is the dominant strategy
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even in the presence of systematic risk. This occurs because life annuities insure both

idiosyncratic and systematic longevity risk. For individuals with a bequest motive, it

is optimal to include consumption in the dead state and this is provided by holding

the risk-free bond. There is a significantly reduced demand for the life annuity. The

risk-free bond is the equivalent of coinsurance in the two-period example. Portfolio

strategies that include coinsurance are optimal in the case of a bequest, even when this

utility is heavily discounted as in our example.

Systematic risk is mostly insured with the life annuity. The GSA overlay and the

longevity bond holdings are relatively small. As will be shown, when loadings on

the life annuity increase substantially, the relative cost of hedging longevity risk with

the life annuity becomes high enough that the demand for the GSA overlay and the

longevity bond increases. Individuals then prefer to bear the systematic longevity risk

rather than pay the higher insurance premium in the life annuity.

2.6.1 Numerical example: Loadings and insolvency risk

In this section the effect of loadings and insolvency risk is considered using the same

state-contingent claims prices as in the previous section for an individual with a be-

quest motive.

A loading of κ = 0.03 on the market price of the life annuity is included. This changes

the risk premium for this product to -0.060. Table 5 shows that the demand for the life

annuity is significantly reduced from 29.547 to 18.736 units compared to the bequest

case without loadings in Table 4. The individual now buys 8.466 units of the longevity

bond and 10.500 units of the GSA overlay contract to insure his systematic longevity

risk. A relatively small increase in the effective risk premium for the life annuity that

arises from product price loadings has a significant impact on the product mix in the

optimal portfolio.

Insolvency risk for the annuity provider is introduced by assuming a probability that

there will be annuity payoffs at the end of the period of πinsolvency = 0.95. The life

15



annuity price includes this and the risk premium is unchanged. As expected, a similar

optimal portfolio results as in the bequest case without insolvency risk. The individual

with a bequest motive buys slightly more units of the annuity amounting to 31.228, up

from 29.054, since insolvency risk is fairly reflected in the annuity’s market price. He

also holds 23.309 units of the risk-free bond to provide a bequest, and, as before, issues

small amounts of the longevity bond and the GSA overlay contract.

Loading on the life annuity Insolvency risk
Product Risk premium α∗loading Risk premium α∗insolvency

Risk-free bond 0.000 23.234 0.000 23.309
Annuity -0.060 18.736 -0.031 31.228

Longevity bond -0.025 8.466 -0.025 -1.196
GSA overlay -0.010 10.500 -0.010 -1.897

Table 5: Numerical example illustrating the two period model: risk premiums and
optimal product portfolios for the cases of loadings or insolvency risk with bequest.

With a bequest motive and loadings on the price of the life annuity, demand for the

life annuity is significantly reduced. Demand for the risk-free bond, representing

coinsurance, remains almost unchanged. Life annuity demand is substituted with

holdings in the longevity bond and GSA that incur no loadings. Individuals place

more of their retirement wealth into coinsurance portfolio strategies by holding mutual

products without guarantee loadings.

The results for the case in which the life annuity cash flows are discounted for expected

insolvency risk are very similar to the complete market case with a bequest motive.

The individual buys more units of the life annuity because the risk premium of the life

annuity is slightly lower than in the complete market case due to the reduced expected

payout in the (h, a) state.

2.6.2 Numerical example: Impact of the price for transferring systematic and idio-

syncratic longevity risk

The case with loadings on the life annuity highlights the important role that market

prices play in the optimal portfolio. The impact of the price for transferring system-
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atic and idiosyncratic longevity risk on an individual’s optimal longevity insurance

strategy is now considered for an individual with a bequest motive.

To begin, consider the case where there is no risk premium for transferring either

systematic or idiosyncratic longevity risk. The corresponding market prices pc (h, a),

pc (l, a), pc (h, d), and pc (l, d) for the contingent claims are then equal to the state

probabilities π(h, a), π(l, a), π(h, d), and π(l, d). The market prices for the financial

and insurance products are equal to the product’s risk-neutral prices.

Table 6 shows the optimal product portfolio α∗zero rp for the case of no risk premiums.

There are 20.126 units of the risk-free bond, 31.839 units of the life annuity, no holdings

of the longevity bond or the GSA overlay contract. There is very little difference in

this portfolio from the optimal portfolio α∗bequest. The life annuity is the main form of

longevity insurance. Relative risk premiums then determine holdings of the longevity

bond and the GSA.

For the case where only systematic longevity has a loading there is a zero loading on

the GSA overlay contract. The life annuity loading is lower and the loading for the

longevity bond is unchanged compared to the examples in the previous subsections.

Table 6 shows that the optimal product portfolio α∗systematic rp contains similar holdings

of the risk-free bond and the annuity as the optimal portfolio α∗bequest. A small number

of units of the longevity bonds are issued and a small number of GSA overlay contract

purchased.

The individual’s demand for the annuity and for the risk-free bond is mainly determ-

ined by preferences, including the bequest motive, rather than the product loadings for

systematic and idiosyncratic longevity risk. The demand for longevity bonds and GSA

contracts is mainly determined by the relative risk premiums between these products

and the life annuity. Larger loadings for the life annuity reduce demand substantially

and increase relative demand for the longevity bond and the GSA.
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Zero risk premiums Risk premium only for systematic risk
Product Risk premium α∗zero rp Risk premium α∗systematic rp

Risk-free bond 0.000 20.126 0.000 22.834
Annuity 0.000 31.839 -0.027 29.832

Longevity bond 0.000 0.000 -0.025 -0.857
GSA overlay 0.000 0.000 0.000 0.247

Table 6: Numerical example illustrating the two period model: risk premiums
and optimal product portfolios for different prices for transferring systematic and
idiosyncratic longevity risk

3 Optimal longevity insurance: multi-period numerical

analysis

Motivated by the two-period model results, a multi-period stochastic simulation model

is used to assess and compare individual product portfolio strategies. Systematic

and idiosyncratic longevity is included using a stochastic mortality model along with

inflation risk. Individual welfare is assessed using expected utility. Different ages at

retirement are assessed. Premiums reflect actuarial discounted expected cash flows

and include loadings.

We consider a range of portfolios. We include recent product innovations in the form

of GSA products in the portfolios. We also include an inflation linked life annuity

to compare portfolios with different exposures to longevity and inflation risk. Since

there are no longevity bonds on issue, we no longer include a longevity bond. We

consider portfolios with full annuitization and various coinsurance strategies with

phased withdrawal, life annuities and the GSA. We also assess and compare the impact

of a bequest motive and product loadings on individual welfare. We use certainty

equivalent consumption for this purpose.

In a multi-period longevity risk setting, the equivalent of the two-period risk-free bond

is phased withdrawals. This is where an individual draws down from his savings to

provide a high probability of not exhausting his savings during his future uncertain

lifetime. Full insurance is provided by an inflation linked life annuity so that con-
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sumption in real terms is fixed.

Two types of self-insurance are considered. One is horizontal self-insurance, or coin-

surance, where the individual uses a fraction of his wealth to purchase a life annuity

and self insures with a phased withdrawal for the remainder. The other form of self-

insurance is vertical self-insurance, or a deductible, where the individual purchases a

deferred life annuity and uses the remaining wealth in a phased withdrawal over the

fixed period until the deferred annuity commences payment.

3.1 Product cash flows and pricing assumptions

Portfolios of the following products are assessed:

• Fixed life annuities paying a fixed nominal amount per period as long as the

individual is alive. The price of the annuity is the actuarial expected present value

based on population mortality plus a loading. The insurer issuing the annuity has

an annual risk of insolvency. Cash flows for the life annuity are determined by

the wealth allocated to the product divided by the expected annuity factor from

the mortality model at the initial age including loadings.

• Deferred annuities paying fixed periodic annuity payments upon survival to a

future age. The price of the annuity is the actuarial expected present value based

on population mortality plus a loading. The insurer issuing the annuity has an

annual risk of insolvency. The product is similar to the fixed life annuity except

that payments only commence at age 85 provided that the individual is alive.

Deferred annuity cash flows are the wealth allocated to the product divided by

the expected deferred annuity value including loadings.

• Inflation-indexed annuities paying variable annuity payments per period that are

indexed to the rate of inflation. The price of the annuity is the actuarial expected

present value based on population mortality allowing for expected inflation plus

a loading. The insurer issuing the annuity has an annual risk of insolvency. In
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real terms, indexed annuity cash flows are fixed.

• Group self-annuitization (GSA) where payments depend on the population mor-

tality experience and it is assumed that the size of the pool is large enough that

idiosyncratic risk does not impact the individual payments. Payments depend on

population mortality allowing for systematic mortality changes. If an individual

is alive, the payment is the original life annuity value at the annuity value for

the previous period divided by a revised annuity factor using expected future

mortality at the next age. Payments vary with expected future mortality rates.

For every economic scenario the distribution of mortality rates is allowed for in

computing the utility of the cash flows. There is no insolvency risk for the GSA

since it is a mutual fund.

• Self-annuitization, or phased withdrawal, is the equivalent of self-insurance. An

individual draws down a regular annual payment such that, allowing for interest

earnings at the fixed interest rate, the probability of running out of wealth at the

initial age is less than 5% based on the expected future mortality rates. The pay-

ment is the amount drawn down in each period and continues until an individual

dies or runs out of funds if he lives too long. If death occurs the remaining balance

is an unintended bequest.

Expenses are not explicitly included. Cost-related supply-side factors for guaranteed

annuity products are included with a loading in the price of the life annuity, the de-

ferred annuity, and the inflation-linked annuity. Where expected insolvency is in-

cluded the insurer issuing those annuity products is assumed to become insolvent

with probability pd = 0.005 4 and future cash flows in the event of insolvency are

reduced by 95%. Annuity cash flows are multiplied by an expected insolvency factor

0.995 + 0.005 ∗ 0.95 consistent with the two-period model.

4This ruin probability corresponds to the once in 200 years ruin probability targeted under Solvency
II (CEIOPS, 2010).
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3.2 Market model

The market model used is that in Ngai and Sherris (2011). The model generates con-

sistent future scenarios for four financial and economic times series (log gross domestic

product (GDP), log bond index, log stock price index, and log inflation index). In this

model GDP and the stock price index are included as macroeconomic variables that

influence interest rates and inflation.

Each of these economic and financial variables is modeled as a time series vector yt

using an econometric model that captures long-run relationships between the variables

and allows for volatility to vary over time using a regime-switching assumption. The

model used is a cointegrating vector error correction model with regime switching

(RS-VECM). The general form of a RS-VECM with lag of p is expressed as:

∆yt = µ +
p−1

∑
i=1

Ai∆yt−i + BCyt−p + εt(ωt)

where yt is a d-dimensional vector of the economic and financial series, ∆yt = yt− yt−1

is the first differenced series, µ is the mean vector of rates of change in the variables, A

is a d× d parameter matrix of coefficients, B and C′ are d× r matrices of rank r captur-

ing the cointegration (equilibrium) relationship between the variables, and εt(ωt) is a

vector of regime-dependent multivariate normal random errors with covariances Σωt :

εt(ωt) ∼ Nd (0, Σωt)

The model assumes two regimes, representing a normal state and high-volatility state

and the probabilities of switching between regimes are modeled using a Markov chain.

The parameter estimates are taken from Ngai and Sherris (2011) where the model was

selected as the best fitting VAR model with regime switching and cointegration based

on quarterly data from the Reserve Bank of Australia (RBA) over the period 1970 to

2009. Accumulated 90-Day Bank-Accepted-Bill Yields are used for the bond index,

the ASX All Ordinaries is used for the stock price index, and the inflation index is
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constructed based on the CPI.

The economic scenarios generate future inflation rates. Interest rates are assumed fixed

at the long-run average interest rate in the economic scenario model in order to isolate

the impact of longevity risk from the impact of investment risk.

Three thousand economic scenario paths are generated. For this number of simulations

the standard error of the estimated expected utility was at a low enough level to allow

accurate comparison and ranking of alternative strategies.

3.3 Mortality model

The mortality model used to simulate future population mortality is based on the

model used in Wills and Sherris (2010). The model is a discrete time, discrete age

model of a vector of mortality rates for ages x = x1, . . . , xN denoted by:

µ(t) =


µ(x1, t)

...

µ(xN, t)

 .

The model is based on rates of change in mortality rates for cohorts. The rate of change

in mortality rates is given by

∆c ln µ(x, t) = ln µ(x + 1, t + 1)− ln µ(x, t) = ln
(

µ(x + 1, t + 1)
µ(x, t)

)

where ∆c indicates differencing in the cohort direction.

The model assumes that the rates of change in the mortality rates in the cohort direction

have a mean that depends on the age in the form

∆c ln µ(x, t) = (a(x) + b)∆t + σ∆Zx.

where a, b and σ are constants and Zx contains standard normally distributed random
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variates that are correlated across ages with covariance matrix Σ.

To simulate future randomness, the eigenvalues and eigenvectors of the standardized

residuals are used. Define θ = [θ1, . . . , θN]
′ as the ordered eigenvalues of Σ, with θ1 ≥

. . . ≥ θN. The corresponding eigenvectors are given by the matrix V = [V1, . . . , VN]

where

ΣV = VT

Σ = VTV′,

and T is the N × N diagonal matrix with diagonal θ and (V
√

T) is the Cholesky

decomposition of Σ.

Mortality rates are simulated by generating an N-dimensional random vector η ∼

iid N(0, I), where I is an N × N unit diagonal matrix. A random vector ν is then

generated using

ν = V
√

Tη,

where
√

T is an N × N diagonal matrix with diagonal
√

θ = [
√

θ1, . . . ,
√

θN]
′. The

vector ν is normally distributed with covariance matrix:

Σν = (V
√

T)I(V
√

T)′

= VTV′

= Σ.

The model was calibrated to Australian Population Mortality Data for ages 65-99 from

1971-2004 from the Human Mortality Database, University of California, Berkeley (USA),

and the Max Planck Institute for Demographic Research (Germany). Parameter values

were re-estimated for Australian data for ages 65 and older. Estimated parameter

values used were a = -0.00225071, b = 0.237739 and σ = 0.098440.

One thousand mortality paths are generated for the simulations.
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3.4 Expected utility model

Products are compared using expected utility of simulated product cash flows. The

expected utility for a particular product portfolio is derived by averaging the utility of

consumption in real terms for the portfolio cash flows over the simulated outcomes for

the economic variables and survival probabilities (both systematic and idiosyncratic),

with time preference discounting.

The utility assumption without a bequest motive is standard and of the form

E

[
ω−x

∑
t=0

t pxβtu (Ct)

]
.

where t px is the probability that an individual aged x years survives another t years

and the expectation is taken over all economic and survival scenarios.

The one-period utility function is

u(C) =
C1−δ − 1

1− δ
,

consistent with the two-period example, with δ denoting the individual’s relative risk

aversion. As in the two-period example, a moderate relative risk aversion of δ = 2 is

used, the time preference parameter is β = 0.98, and the utility the individual derives

from leaving a bequest is scaled by the factor k = 0.15.

Denoting the n mortality scenarios using as and the m economic scenarios using es, the

expected utility for each alternative portfolio, risk aversion parameter, initial age, and

initial wealth is computed using

U =
ω−x

∑
t=0

n

∑
as

m

∑
es

βt [Ia (t)× u (C (as, es, a) , t) + Id (t)× k× u (C (as, es, d) , t)]

where Ia (t) = 1 if the individual is alive at time t and Id (t) = 1 if the individual

is dead at time t,. C (as, es, a) is the total cash flows from the product portfolio if the

individual is alive and C (as, es, d) is the total cash flows from the product portfolio if
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the individual is dead. Cash flows in the dead state only occur for product portfolios

that include phased withdrawals where there are cash flow in the dead state. For utility

in the dead state, the utility is reduced by k = 0.15 as for the two-period example.

Since the idiosyncratic mortality scenarios average to the expected probabilities of

survival and death at future dates this becomes

U =
ω−x

∑
t=0

m

∑
es

βt [Pr (a, t)× u (C (as, es, a) , t) + Pr (d, t)× k× u (C (as, es, d) , t)]

where Pr (a, t) is the probability the individual will be alive at time t and Pr (d, t) is the

probability the individual will die at time t. These are estimated from the mortality

model by averaging across the simulated paths.

The cash flows are

C (as, es, a) = ∑
i

wic fi (as, es, a)

where i indicates the product, wi is the amount invested in product i, c fi (as, es, a) is the

cash flow for product i in that scenario for the “alive” state. A similar computation is

used for the cash flows, C (as, es, d), for product i in the scenarios for the “dead” states.

3.5 Portfolios

Differing retirement wealths of $75,000, $150,000, $350,000 and $750,000 are shown

in the base case. As expected, certainty equivalents scale linearly in initial wealth so

results for differing wealths are only shown in the base case. Individuals are assumed

to retire at either 65, 75 or 85 to assess the impact of deferring the retirement decision

on the optimal product portfolio.

Table 7 summarizes the portfolio percentages used for the different product portfolios.

Buying a deferred annuity can be considered as a form of vertical self-insurance, or in-

surance with a deductible, of longevity risk, whereas self-annuitization corresponds to

horizontal self-insurance, or co-insurance. A GSA provides horizontal self-insurance,
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or co-insurance, of systematic longevity risk.

The portfolios are as follows:

• Portfolio 1: an individual fully insures nominal cash flows by purchasing a life

annuity with the full amount of retirement wealth.

• Portfolio 2: an individual fully insures real cash flows with a variable payment

inflation-indexed life annuity.

• Portfolio 3: an individual only insures idiosyncratic risk and bears the systematic

risk in a mutual GSA. Loadings are lower than for a life annuity or deferred

annuity.

• Portfolio 4: an individual purchases no insurance and self-annuitizes the full

amount of retirement savings with a phased withdrawal.

• Portfolio 5: an individual self-annuitizes 75% of retirement wealth and purchases

a deferred annuity with the remaining retirement wealth. This is a combination

of vertical and horizontal self-insurance of longevity risk.

• Portfolio 6: an individual uses 50% of wealth to purchase a life annuity and the

remainder is used in self-annuitization. This is horizontal self-insurance or co-

insurance.

• Portfolio 7: an individual uses 50% of wealth to purchase a deferred life annuity

and the remainder invested in a GSA. This is a combination of vertical self-

insurance with horizontal self-insurance of systematic mortality risk.

• Portfolio 8: an individual combines a life annuity with a mutual GSA along with

self-annuitization. 35% of retirement wealth is in the life annuity, 35% is in the

GSA, and 30% is in self-annuitization. This portfolio combines two forms of

horizontal self-insurance.

• Portfolio 9: an individual pools idiosyncratic risk and bears the systematic risk

using a GSA for a deferral period and a deferred annuity is purchased to cover the
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old age systematic and idiosyncratic risk. 75% of retirement wealth is in the de-

ferred annuity and 25% is in the GSA. Similar to portfolio 7, this is a combination

of vertical self-insurance with horizontal self-insurance of systematic mortality

risk.

• Portfolio 10: is a modification of portfolio 5. The individual invests 50% of

his retirement wealth in a self-annuitization strategy with a phased withdrawal

ending at age 84 and uses the remaining 50% of wealth to purchase a deferred

annuity starting at age 85. This is a combination of vertical and horizontal self-

insurance of longevity risk.

A portfolio consisting of only a deferred annuity is not included since an individual

requires consumption in every period including those prior to the deferral period

commencing. In all cases with deferred annuities, there is a product included that

generates cash flows prior to commencement of the deferred annuity.

Portfolio Life Annuity Deferred Annuity Indexed Ann. GSA Self-Ann.
1 100
2 100
3 100
4 100
5 25 75
6 50 50
7 50 50
8 35 35 30
9 75 25
10 50 50

Table 7: Summary of product mixes as percentages of total wealth. Each row shows
the product mix for that portfolio.
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4 Results

4.1 Economic indicators, survival rates, and annuity values

This section provides details of the expected (mean) values, standard deviations, and

confidence intervals for the 3000 simulated economic scenarios and the 1000 mortality

scenarios. Figure 1 gives the histograms for the GDP growth rates, annual interest

rates, share price returns, and inflation rates based on the historical data and compares

them with histograms for the same variables based on the simulated data over a 10 year

horizon. The simulated scenarios are seen to capture the main distributional features

of the historical data.

Figure 1: Historical data and simulated data after 10 years for GDP growth rates,
annual interest rates, share price returns, and inflation rates.

Table 8 shows the expected multi-period survival probabilities for individuals aged

65-years in the first period. Figure 2 shows the corresponding expected survival curve.

The expected probability of a 65-year old to survive to age 99 is 27.1% with a standard

deviation of 18.2%. The model estimation was restricted to a maximum age of 99, so

the probability of surviving to age 100 and beyond is zero. For the self-annuitization
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strategy an individual withdraws a fixed annuity of income to the maximum age of

100. Earlier death results in a bequest.

Survival probability Life annuity value Inflation-indexed
t p65 annuity value

Age Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
65 1.000 0.000 10.275 0.474 14.234 1.017
70 0.935 0.003 9.461 0.685 12.700 1.271
75 0.845 0.015 8.592 0.923 11.160 1.516
80 0.728 0.044 7.658 1.133 9.603 1.672
85 0.591 0.092 6.619 1.196 7.979 1.609
90 0.454 0.140 5.325 1.038 6.129 1.277
95 0.339 0.171 3.433 0.558 3.738 0.627
99 0.271 0.182 0.934 0.000 0.963 0.000

Table 8: Simulated multi-period survival probabilities t p65 and annuity values for the
life annuity and the inflation-indexed life annuity for individuals aged 65 in the first
period.

Figure 2: Survival curve for a 65-year old.

Table 8 also summarizes the simulated annuity values for the life annuity and inflation-

indexed annuity for individuals aged 65 in the first period. Figure 3 and Figure 4 plot

these values with confidence intervals showing the significance of systematic longevity

risk. Because of indexation, life annuity values are lower than the inflation-indexed

annuity values. For example, in the first period the annuity value for a 65-year old is

10.275 for the life annuity and 14.234 for the inflation-indexed life annuity since these

are the values of an initial payment starting at 1 in both cases. Standard deviations

increase at first with the increased uncertainty from the stochastic survival probabilities
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and then diminish reflecting the effect of the smaller number of random cash flows in

the annuity value.

Figure 3: Annuity values for a 65-year old with confidence intervals.

Figure 4: Indexed annuity values for a 65-year old with confidence intervals.

4.2 Portfolio comparison

The expected discounted utility values are estimated for each product portfolio over all

3000 economic scenarios and 1000 mortality scenarios. These simulated path numbers

produced standard errors of the estimates that were small (effectively zero) compared

to the average utility values.

The expected utility values are converted to certainty equivalent consumption levels.

The certainty equivalent consumption CEC is the fixed yearly consumption level that
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gives the same utility as the product portfolio (see, e.g., Stevens, 2010). The certainty

equivalent consumption is calculated as:

E

[
ω−x

∑
t=0

t pxβt (CEC)1−δ − 1
1− δ

]
= U.

where U is the utility value calculated in equation (3.4), β = 0.98 and δ = 2 as before,

and t px is the expected survival probability of an individual aged x at the beginning of

the first period.

The Base Case

In the base case, we consider a 65-year-old individual with no bequest motive and

all the guarantee products have no loadings. Table 9 gives the certainty equivalent

consumption and the preference-based ranking for each product portfolio for different

wealth levels. Figure 5 plots the values confirming that for the utility function assump-

tion these values scale linearly in wealth.

The preferred portfolio is Portfolio 2, which contains only inflation indexed annuities;

the pure life annuity portfolio (Portfolio 1) is second best. The pure GSA strategy

(Portfolio 3) ranks third, followed by the two portfolios that contain life annuities

(Portfolio 8 and 6) and by Portfolio 5 that combines self-annuitization up to age 100

with the deferred annuity.

Less preferred portfolios are the the pure self-annuitization strategy (Portfolio 4) and

the three remaining portfolios (Portfolios 10, 7, and 9). The last three portfolios all

contain deferred annuities with portfolio 9 having the highest percentage of wealth

(75%) invested in this product. These portfolios are unattractive because they have a

low level of consumption in the early years before the cash flows from the deferred

annuity contract commence.
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Portfolio $75,000 $150,000 $350,000 $750,000
CEC Rank CEC Rank CEC Rank CEC Rank

1 4,252.09 (2) 8,504.20 (2) 19,843.21 (2) 42,520.48 (2)
2 5,267.93 (1) 10,535.84 (1) 24,583.61 (1) 52,679.72 (1)
3 3,999.35 (3) 7,998.68 (3) 18,663.70 (3) 39,993.34 (3)
4 3,416.47 (7) 6,832.93 (7) 15,943.58 (7) 34,165.01 (7)
5 3,587.09 (6) 7,174.16 (6) 16,739.73 (6) 35,870.61 (6)
6 3,834.55 (5) 7,669.12 (5) 17,894.67 (5) 38,345.68 (5)
7 3,032.56 (9) 6,065.12 (9) 14,151.96 (9) 30,325.56 (9)
8 3,955.21 (4) 7,910.41 (4) 18,457.66 (4) 39,551.96 (4)
9 1,562.23 (10) 3,124.45 (10) 7,290.41 (10) 15,622.29 (10)

10 3,057.67 (8) 6,115.36 (8) 14,269.15 (8) 30,576.87 (8)

Table 9: Certainty equivalent consumption and preference-based ranking for each
product portfolio for different wealth levels. (Age = 65, β = 0.98, δ = 2, no bequest, no
loadings)

Figure 5: Certainty equivalent consumption for each product portfolio for different
wealth levels. (Age = 65, β = 0.98, δ = 2, no bequest, no loadings)

Different ages at retirement

Table 10 and Figure 6 compares the certainty equivalent consumption of individuals

for different ages at retirement. The individuals all have an initial wealth of $75,000,

have no bequest motive, and the insurance products have no loadings.

Increasing the initial age to 75 slightly changes the preference-based ranking of the

portfolios. Portfolio 10 now increases in ranking to 5th (up from 8th at age 65) and
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Portfolio 7 has moved up from 9th to 7th ranking. Both of these portfolios contain

deferred annuities. Portfolio 10 becomes more attractive because 50% of wealth is

invested into a self-annuitization strategy that ends at age 84, after 10 years. This

portfolio provides higher consumption in the early years before the deferred annuity

starts.

At age 85, the preference-based ranking of the portfolio changes because for this age

the deferred annuity starting at age 85 corresponds to an (immediate) life annuity.

Thus, Portfolio 10 yields exactly the same cash flows, utility values, and certainty

equivalent consumption level as the pure life annuity portfolio (Portfolio 1). Both

portfolios rank second; the inflation-linked annuity portfolio (Portfolio 1) is still the

preferred strategy. Portfolio 9, which was the least preferred portfolio with 75% of

wealth invested in the deferred annuity, now ranks 4th. The least preferred portfolio

at age 85 is the pure self-annuitization portfolio (Portfolio 4). The certainty equivalent

consumption levels are higher since the same amount of wealth is consumed over a

shorter period of time.

Deferring retirement makes portfolios with deferred annuities more attractive because

consumption becomes smoother across time for the portfolios considered at the older

retirement ages. The amount of deferred annuity purchased needs careful consider-

ation since consumption needs to be spread across the deferral period as well as in

the payment period of the deferred annuity. Decisions for individuals considering

portfolios with deferred annuities are more complex because of the need to ensure

smooth consumption across time.

Loadings on annuity products

Table 11 and Figure 7 show the certainty equivalent consumption levels for the case of a

65-year-old individual without a bequest motive and with an initial wealth of $75,000,

but with varying levels of loading on annuity products. The base case of zero loading
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Portfolio Initial age 65 Initial age 75 Initial age 85
CEC Rank CEC Rank CEC Rank

1 4,252.09 (2) 6,602.37 (2) 12,245.69 (2)
2 5,267.93 (1) 7,310.20 (1) 12,433.18 (1)
3 3,999.35 (3) 5,846.17 (3) 10,880.76 (6)
4 3,416.47 (7) 4,588.99 (9) 6,983.78 (10)
5 3,587.09 (6) 5,029.27 (8) 8,299.26 (9)
6 3,834.55 (5) 5,596.05 (6) 9,615.40 (8)
7 3,032.56 (9) 5,088.37 (7) 11,652.70 (5)
8 3,955.21 (4) 5,775.68 (4) 10,264.22 (7)
9 1,562.23 (10) 2,809.89 (10) 11,969.01 (4)

10 3,057.67 (8) 5,761.85 (5) 12,245.69 (3)

Table 10: Certainty equivalent consumption values and preference-based ranking for
each product portfolio for different ages at retirement. (β = 0.98, δ = 2, wealth =
$75,000, no bequest, no loading)

Figure 6: Certainty equivalent consumption values for each product portfolio for
different ages at retirement. (β = 0.98, δ = 2, wealth = $75,000, no bequest, no loading)

is compared with a 10% loading scenario and a 25% loading scenario.5

A loading of 10% changes only the relative ranking of two portfolios. The pure GSA

portfolio (Portfolio 3) is now more attractive than the pure life annuity portfolio (Port-

folio 2). Both portfolios rank 2nd and 3rd after the inflation-indexed annuity.

5Findings by Ganegoda and Bateman (2007) suggest that the loading on a nominal life annuity for a
65 year old male in the general population is around 24 per cent in the Australian market, which is more
than double the previous estimates for Australian annuities reported in Doyle et al. (2004) using data for
2000.

34



The preference-based ranking of the portfolios changes significantly with a loading of

25% for annuity products. Now, the inflation-linked annuity (Portfolio 2), which was

the preferred strategy previously, is dominated by the pure GSA strategy (Portfolio 3).

Portfolio 8 which invests a large component in the GSA and the phased withdrawal,

both without loadings, now ranks third. The pure life annuity portfolio (Portfolio 1)

now ranks at 7th place.

Loadings in guaranteed annuity products are a significant factor influencing the de-

mand for these products. The importance of mutual risk sharing arrangements such as

GSA funds becomes much more significant in the presence of these loadings. This was

demonstrated in the two-period model and confirmed in the multi-period simulation

in a more realistic setting.

Portfolio No loading 10% loading 25% loading
CEC Rank CEC Rank CEC Rank

1 4,252.09 (2) 3,826.89 (3) 3,189.07 (7)
2 5,267.93 (1) 4,740.85 (1) 3,950.71 (2)
3 3,999.35 (3) 3,999.35 (2) 3,999.35 (1)
4 3,416.47 (7) 3,416.47 (7) 3,416.47 (5)
5 3,587.09 (6) 3,557.27 (6) 3,502.54 (4)
6 3,834.55 (5) 3,621.68 (5) 3,302.77 (6)
7 3,032.56 (9) 3,018.76 (9) 2,992.29 (9)
8 3,955.21 (4) 3,805.05 (4) 3,580.18 (3)
9 1,562.23 (10) 1,559.45 (10) 1,553.98 (10)
10 3,057.67 (8) 3,040.65 (8) 3,007.16 (8)

Table 11: Certainty equivalent consumption and preference-based ranking for each
product portfolio for different loadings on annuity products. (Age = 65, β = 0.98,
δ = 2, wealth = $75,000, no bequest)

Bequest

The two-period model showed the importance of the bequest motive on optimal port-

folios to manage systematic longevity risk. A bequest motive is included for a 65-

year-old individual with an initial wealth of $75,000. Table 12 gives the resulting

preference-based ranking of the ten product portfolios. For comparison, the second

column of Table 12 shows the ranking for the case of an individual initially aged 65
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Figure 7: Certainty equivalent consumption for each product portfolio for different
loadings on annuity products. (Age = 65, β = 0.98, δ = 2, wealth = $75,000, no bequest)

without bequest motive without a loading, and the third and fourth columns give the

results for a 10% and 25% loading on annuity products.

Introducing a bequest motive significantly impacts portfolios that contain phased with-

drawal (Portfolios 4, 5, 6, and 8). These portfolios are more attractive because they

include a bequest, which was unintended in the case where an individual had no

bequest motive. The preference-based ordering of all portfolios is very different com-

pared to the base case. The preferred strategy for an individual with bequest motive

is the diversified coinsurance Portfolio 8, with 35% in the life annuity, 35% in the GSA,

and 30% in self-annuitization. Portfolio 6, which combines the life annuity with 50%

self-annuitization, is ranked second followed by Portfolio 5, which mixes the deferred

annuity with 75% self-annuitization. The pure phased withdrawal strategy (Portfolio

4) ranks fourth, followed by Portfolio 10.

The results show that for an individual with a bequest motive, coinsurance portfo-

lio strategies that include phased withdrawal and GSA’s dominate full annuitization

depending on the extent of product loadings.
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Portfolio Base Case 10% loading 25% loading Bequest
1 (2) (3) (7) (7)
2 (1) (1) (2) (6)
3 (3) (2) (1) (8)
4 (7) (7) (5) (4)
5 (6) (6) (4) (3)
6 (5) (5) (6) (2)
7 (9) (9) (9) (9)
8 (4) (4) (3) (1)
9 (10) (10) (10) (10)

10 (8) (8) (8) (5)

Table 12: Preference-based ranking for the base case of an individual initially aged 65
without bequest motive with a retirement wealth of $75,000 that is offered all insurance
products without a loading and for different model variants.

5 Conclusions

The paper has assessed individual post-retirement longevity risk strategies for an in-

dividual facing both idiosyncratic and systematic longevity risk, inflation risk, and

allows for bequests and product loadings. The individual holds a portfolio of financial

and insurance products to optimize retirement consumption needs. Products include

life annuities as well as recent innovations such as GSA’s.

A theoretical framework based on state-contingent consumption and complete mar-

kets was presented and insight into the optimal strategy for an individual provided

using a two-period model. The impact of a bequest motive was also assessed allowing

for utility in the death state. The model showed that, with a bequest, strategies that

include a risk free bond were optimal and that loadings on products that change their

relative pricing have a significant effect on the optimal product portfolio required to

manage both systematic and idiosyncratic longevity risk.

Multi-period simulation was used to assess and compare a broader range of retirement

strategies with realistic simulations of economic variables and stochastic mortality

with systematic and idiosyncratic risk. The product portfolios included traditional

products such fixed life annuities, deferred annuities, inflation-indexed annuities, as

well as group self-annuitization (GSA) plans, and phased withdrawals. The analysis
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included product loadings and expected insolvency risk for annuity providers.

Individuals with no bequest motive, and with no product loadings, prefer annuitiz-

ation strategies with small holdings of GSA plans under systematic longevity risk.

With loadings on guaranteed life annuity products, GSA plans which are mutual and

non-guaranteed, increase significantly in the preferred portfolios, replacing even an-

nuitization products with inflation guarantees. For individuals with a bequest motive,

portfolio strategies including self annuitization and GSA’s dominate full annuitization.

Deferred annuity portfolios based on simple but reasonable retirement income portfo-

lios are not preferred. They must be constructed carefully to include an appropriate

level of consumption in the deferral period if they are to provide optimal consumption

outcomes for individuals.

Importantly, under realistic assumptions, recent product innovations that manage sys-

tematic longevity risk (GSA plans) play a significant role in preferred portfolios. Product

loadings for guarantee products can undermine the insurance welfare benefits of tra-

ditional annuity products.
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