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1 Introduction

Mortality and longevity modeling: a complex analysis involving several
investigation fields:

• statistics

• demography

• medical sciences

• actuarial sciences

• . . . . . .

In what follows, nothing original but a roadmap to understand the
diversity of “formulae” and “models” and the role of hypotheses in
representing the impact of aging
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2 The antecedents

See:
S. Haberman. Landmarks in the history of actuarial science (up to 1919). Actuarial
Research Paper No. 84, Faculty of Actuarial Science & Insurance, City University,
London, 1996. Available at:
http://openaccess.city.ac.uk/2228/1/84-ARC.pdf

Data: earliest life tables

• 220 dC: Ulpiano

• . . . . . .

• 1662: John Graunt

• 1693: Edmond Halley

• 1740: Nicholas Struyck

• . . . . . .

http://openaccess.city.ac.uk/2228/1/84-ARC.pdf
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The antecedents (cont’d)

Earliest “formulae”

Need for summarizing a hundred of numbers (the life table) via a small
set of parameters

 

Abraham De Moivre

French mathematician,
author of pioneering
contributions on:

• probability
• trigonometry and complex

numbers
• approximation formulae
• Fibonacci’s sequence
• . . .
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The antecedents (cont’d)

Author of
“Annuities on Lives”
(1st edition: 1725)
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The antecedents (cont’d)

De Moivre’s law, 1725:

S(x) = 1 −
x

ω
(hypothesis: ω = 86)

Lambert’s law, 1776:

S(x) =
(a − x

x

)2

− b
(

e
x

c − e
x

d

)

Babbage’s law, 1823:

S(x) = 1 − a x − b x2
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3 Gompertz and beyond

Gompertz: the first “model”

Benjamin Gompertz

Self-taught
mathematician
and actuary

His formula (1825):
the first
biometric model,
based on
“ageing effect”
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Gompertz and beyond (cont’d)

The “ageing effect”

In terms of force of mortality:

∆µx = β ϕ(x) ∆x + O(∆x)

with β > 0 and ϕ(x) increasing with age x

Gompertz observed an exponential behavior (over a broad age range)
of the force µx

Hence: ϕ(x) = µx and

µx = α eβx

See: Gompertz [1825, 1860], Olshansky and Carnes [1997]
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Gompertz and beyond (cont’d)

Remark 1

Gompertz stated the hypothesis in terms of survival functions, instead of
force of mortality, concept introduced by T. R. Edmonds in 1832

Remark 2

Gompertz however noted that:

• two components contribute to mortality
⊲ ageing
⊲ “accidental” causes, independent of age
(idea developed by Makeham)

• it is impossible to represent with one “simple” function the age-pattern
of mortality over the whole life span
(see the contribution by Thiele)
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Gompertz and beyond (cont’d)

Some generalizations

First Makeham’s law, 1867:

µx = γ + α eβ x

Remark

First example of mortality “by causes”; see the following

Second Makeham’s law, 1890:

µx = γ + δ x + α eβ x

See: Makeham [1867, 1890]
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Gompertz and beyond (cont’d)

Lazarus’ law, 1867:

µx = α1 e−β1 x + γ + α2 eβ2 x

Generalize the first Makeham’s law, aiming

to represent, via negative exponential term,

infant mortality decreasing with age

 

See: Graf [1906]

Remark

Abandoned because of computational intractability, almost unknown at
international level, currently known as Siler’s law; see Siler [1983]
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Gompertz and beyond (cont’d)

Thiele’s law, 1871:

µx = α1 e−β1 x

+ α3 e−β3(x−θ)2

+ α2 eβ2 x

Generalize first Makeham’s law, aiming to

represent age-pattern of mortality over the

whole life span, infant and young-adult mor-

tality included

 

See: Thiele [1871]

Remark

Abandoned because of computational intractability; developed by Heligman

and Pollard, in terms of odds
qx

1 − qx

. See: Heligman and Pollard [1980]
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Gompertz and beyond (cont’d)

Among the recent proposals

D. O. Forfar, J. J. McCutcheon, A. D. Wilkie: General family of
“Gompertz-Makeham” models

µx = GM(r,s)
x =

r
∑

i=1

αi xi−1 + exp
(

r+s
∑

i=r+1

αi xi−(r+1)
)

In particular:

(r, s) = (0, 2) ⇒ Gompertz’s law
(r, s) = (1, 2) ⇒ first Makeham’s law
(r, s) = (2, 2) ⇒ second Makeham’s law

Various GM(r,s)
x applied to CMI data

See: Forfar et al. [1988]

(A model or a formula . . . ?)
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Gompertz and beyond (cont’d)

From Gompertz to Makeham: interpretations

Makeham’s generalization can be interpreted in terms of a “shock”
model (see, for example, Doray [2008])

Alternative interpretation provided by Lindholm [2017]

Assume that:

• all the individuals in a cohort follow a common baseline force of
mortality µy = eβ y (particular case of the Gompertz law),
combined with an individual random variable Z, due to
unobservable heterogeneity (proportional “frailty”)

• Z follows a specific translated gamma distribution

⇒ The force of mortality in the cohort is given by Makeham law, with
parameters depending on the parameters of the translated gamma
distribution
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4 Perks, Beard, and the logistic models

Perks’ laws

To fit mortality data, W. Perks proposed:

µx =
α eβx + γ

δ eβx + 1

µx =
α eβx + γ

δ eβx + ǫ e−βx + 1

See: Perks [1932]

⇒ horizontal asymptote for the force of mortality
⇒ mortality “deceleration”

⊲ Should the hypothesis of exponential behavior (Gompertz,
Makeham, ecc.) be rejected ?

⊲ What is the “object” of deceleration ?
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Perks, Beard, and the logistic models (cont’d)

Beard and the “frailty”

See: Pitacco [2019] and references therein

Assume that:

⊲ a cohort consists of heterogeneous individuals, w.r.t mortality
because of unobservable risk factors

⊲ the heterogeneity effect is quantified, for each individual, by a
random positive real number, named frailty level

⊲ the individual frailty level remains unchanged over the whole
individual life span

For an individual age y with frailty level z ⇒ force of mortality µy(z)

Probability distribution of the frailty inside the cohort at age y ⇒ pdf
gy(z)
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Perks, Beard, and the logistic models (cont’d)

Standard force of mortality (that is, for z = 1):

µy = µy(1)

Average force of mortality inside the cohort:

µ̄y =

∫ +∞

0

µy(z) gy(z) dz

Specific models and results are based on:

1. relation between µy(z) and µy = µy(1)

2. distribution of the frailty at a given age x, e,g. x = 0: g0(z)

3. model for µy

In particular, combining:

1. multiplicative hypothesis: µy(z) = z µy

2. Gamma distribution of the frailty, with parameters δ, θ

3. Gompertz’s law for the standard force of mortality µy = α eβ y
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Perks, Beard, and the logistic models (cont’d)

we find:

µ̄y =
α′ eβy

δ′ eβy + 1

that is, the Gompertz - Gamma model : Beard’s law ⇒ particular case
of the first Perks’ law, with parameters α′, δ′ depending on the
parameters δ, θ of the frailty distribution

⇒ logistic force of mortality
⇒ mortality deceleration in the cohort implied by the frailty model

See: Beard [1959], Vaupel et al. [1979]

Naïve interpretation of the logistic shape

Assume that a (homogeneous) cohort only consists of individuals with a low frailty level;
according to mortality observations:

⊲ force of mortality µy(z1)

⊲ maximum attained age ω(z1)

with z1 = hypothetical frailty level
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Perks, Beard, and the logistic models (cont’d)

Similar results for homogeneous cohorts only consisting of individuals with mean (z2)
and high (z3) frailty level respectively

    

Force of 
mortality 

 

(z1) (z2) (z3) 

z = z1 
z = z2 z = z3 

Age   

Set of forces of mortality depending on the frailty level z
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Perks, Beard, and the logistic models (cont’d)

Referring to a cohort consisting of individuals with diverse frailty levels, the average force
of mortality in the cohort increases at a decreasing rate because:

⊲ individual remaining exposed to risk of death have a gradually decreasing frailty
level

⊲ the average frailty decreases

    

Force of 
mortality 

 

Age   

Average force of mortality in the cohort
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Perks, Beard, and the logistic models (cont’d)

A number of generalizations proposed; for example:

⊲ force of mortality expressed by
◦ Makeham’s law (Beard [1959])
◦ Weibull’s law (Manton et al. [1986])

⊲ frailty distribution given by:
◦ inverse Gaussiam (Hougaard [1984, 1986], Manton et al.

[1986], Butt and Haberman [2002, 2004])
◦ shifted Gamma distribution (Martinelle [1987])
◦ generalized Gamma distribution, including, as particular

cases, lognormal and Weibull distributions
(Balakrishnan and Peng [2006])

For a more general framework, see: Duchateau and Janssen [2008],
and Wienke [2003]

Critical aspects of frailty models: Yashin et al. [2001]

A survey on mortality heterogeneity: Pitacco [2019]
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Perks, Beard, and the logistic models (cont’d)

Some recent logistic models

Kannisto’s law (Kannisto [1994]):

µx =
α eβx

α eβx + 1

(that is, first Perks’ law with γ = 0 and δ = α)

Thatcher’s law (Thatcher [1999]):

µx =
ν α eβx

α eβx + 1
+ κ

Simplified version, to analyze mortality trends at high ages:

µx =
α eβx

α eβx + 1
+ κ
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Perks, Beard, and the logistic models (cont’d)

Some remarks . . .

All models are wrong,
but some are useful

George E. P. Box (1978)

The practical question is
how wrong do they have to be
to not be useful

George E. P. Box (1987)
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Perks, Beard, and the logistic models (cont’d)

Mortality deceleration

And what about the deceleration phenomenon ?

A first achievement:

• the frailty model (under rather general conditions) implies the
deceleration of the average force of mortality in a cohort

What can be argued by analyzing multi-cohort populations ?

The following question is still open:

• does the deceleration affect the individual force of mortality
(whatever the frailty level) ?

A lively debate, involving statistics, biology, medical sciences, etc.

See: Pitacco [2016] and references therein
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Perks, Beard, and the logistic models (cont’d)
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Perks, Beard, and the logistic models (cont’d)
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Perks, Beard, and the logistic models (cont’d)

 Individual  frailty  

Heterogeneity 
(one-cohort  
population) 

Mixing cohorts in 
mortality analysis  

Heterogeneity 
(multiple-cohort  

population) 

Logistic  models  

Deceleration 
in the age-pattern 
of mortality  

Higher variance of:  
- number of survivors 
- cash flows of life annuity 

portfolios 

Causes  

Primary 
effect  

Appropriate 
modeling 

Secondary 
effects  
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Perks, Beard, and the logistic models (cont’d)

Among recent contributions, Bebbington et al. [2011] propose a
classification of “deceleration” definitions, noting that:

Mortality deceleration is the observed but yet to be
understood phenomenon that the increase in the late-life
death rate slows down after a certain species-related
advanced age
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5 The aging process: Markov models

Frailty models proposed by Beard [1959, 1971], Vaupel et al. [1979]
⇒ constant individual frailty over the whole lifespan

⊲ frailty due to genetic factors

Alternative approaches ⇒ variable individual frailty, i.e. dynamic
approaches to capture the individual aging process

A number of interesting contributions, many focusing on actuarial
problems, starting from the seminal contribution by Levinson [1959]
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The aging process: Markov models (cont’d)

Unobservable heterogeneity: dynamic settings

Levinson [1959]:

⊲ Every population is heterogeneous in respect of mortality; even if
split into classes (e.g. the class of insureds accepted as “normal
risks”), each class is heterogeneous ⇒ homogeneous
subclasses

⊲ Heterogeneous population split into a given number of
homogeneous strata

⊲ Definition of mortality strata ⇒ each stratum consists of
individuals with the same probability of death (regardless of age)

⊲ Individuals move from one stratum to another one, in particular
because of ageing, and in general because of deterioration
⇒ an example of dynamic setting

⇒ approach which in modern terms may be considered multistate

⊲ Ultimate aim: construction of life tables allowing for strata;
application to US life tables
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The aging process: Markov models (cont’d)

Le Bras [1976]: individual frailty as a Markov process

• Framework: mortality modeling to define the limit age
• Basic idea: a mortality law must be the result of assumptions on

the structure of a process describing the evolution of individual
mortality throughout the whole life

• Assumptions:
⊲ each individual has an “initial frailty” (faute)
⊲ definition of “transition” probabilities: the probability of an

increase in frailty (nouvelle faute) and the probability of death
are proportional to the current frailty level (Markov hypothesis)

⊲ the resulting mortality law approx follows the Gompertz pattern
up to some age, then tending to a limit ( ⇒ logistic-like shape)
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The aging process: Markov models (cont’d)

The Markov framework

Lin and Liu [2007]:

• A finite-state Markov process is adopted to model human mortality

• Individual health status is represented by the physiological age,
and modeled by the Markov process
⊲ each Markov state represents an outcome of the physiological

age

• Random time of death then follows a phase-type distribution

• Frailty
⊲ measured by the physiological age
⊲ distributed according to the distribution of individuals among

age classes



34/45

The aging process: Markov models (cont’d)

Liu and Lin [2012]:

• Generalize the previous model by introducing uncertainty in
mortality ⇒ subordinated Markov model
⊲ the aging process of a life is assumed to follow a finite-state

Markov process
⊲ stochasticity of mortality is governed by a subordinating

gamma process

• The model is applied to the evaluation of mortality-linked
securities hedging the longevity risk, i.e. longevity bonds
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The aging process: Markov models (cont’d)

Su and Sherris [2012]:

• Refer to a portfolio of life annuities

• Mortality in the portfolio alternatively given by:
⊲ fixed individual frailty, Gamma distributed or Inverse Gaussian

distributed
⊲ Markov ageing model

• Both models for heterogeneity have implications for annuity
markets

• Extent to which life annuity rates vary with age shows the financial
significance of heterogeneity implied by the models
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The aging process: Markov models (cont’d)

Sherris and Zhou [2014]:

• Biometric risk components in a life annuity portfolio
⊲ idiosyncratic longevity risk ⇒ diversifiable via risk pooling
⊲ aggregate longevity risk ⇒ systematic risk, non-diversifiable

via risk pooling
⊲ heterogeneity w.r.t. mortality ⇒ weakens the diversification

of idiosyncratic longevity risk

• Heterogeneity alternatively represented by fixed-frailty model and
dynamic model

• Main result: increasing pool sizes increases tail risk when a
mortality model includes systematic risk ⇒ higher capital
allocation required
⊲ effect not captured by standard models of heterogeneity
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6 Concluding remarks

We have analyzed diverse approaches to representing the age-pattern
of mortality

In particular, starting from pioneering contributions, we have singled
out:

• the impact of unobservable heterogeneity (viz frailty)

• the deceleration of mortality at high ages

• the biological process of aging

Special attention has been placed on the role of “hypotheses” in
defining a mortality model, since Gompertz
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Concluding remarks (cont’d)

    

Data 

Objectives: 
� fitting 
� smoothing 

Hypotheses 

Formulae Models 

Models vs Formulae
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Many thanks
for your kind attention !
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