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Figure 1: Australia Mortality Improvement.
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Motivation
I Unexpected mortality improvements for senior populations have

substantial economic consequences.
I The estimated potential size of the global longevity risk market for pension

liabilities is between USD 60trn and USD 80trn (Blake et al. 2018).
I Each additional year of unanticipated life expectancy at age 65 can

increase pension liabilities by 4%– 5%.
I Diverse models such as the Lee-Carter fail to fully capture the human

mortality dynamics.
I A growing need for accurately modeling and forecasting mortality

rates and life expectancy.
I Even a small improvement in the mortality forecasting accuracy can

provide considerable financial savings among different entities.
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Motivation

Figure 2: Actual and projected period life expectancy at birth, Australia males, 1945-2055.
Source: CEPAR (2015).
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Mortality forecasting methodologies

A good overview of methodologies is given in the review papers Booth and
Tickle (2008), Wong-Fupuy and Haberman (2004), Pitacco (2004) and in
book Pitacco et al. (2009)
I Expert based
I Explanatory

I Structural Modelling (Explanatory or Econometric).
I Cause of death decomposition

I Extrapolation
I Trend modelling
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A timeline of “recent” mortality modelling methodologies
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Extrapolation mortality models.

I Extrapolative methods are still compelling for modeling and predicting
mortality rates in actuarial readership.

I Examples include
I Parametric mortality models such as the Lee-Carter model and

Cairns-Blake-Dowd (CBD).
I Non-parametric models such as functional principal analysis (Hyndman and

Shahid Ullah 2007).
I Bayesian probabilistic mortality models (Wiśniowski et al. 2015).
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Statistical Machine Learning Techniques for Mortality
Modeling

Statistical learning methods are used to complement the existing standard
stochastic mortality models rather than substituting them.
I Neural networks
I Clustering
I Trees
I Gaussian Processes
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Statistical Machine Learning Techniques for Mortality
Modeling: Neural Networks

I Nigri et al. (2019) integrated a recurrent neural network with a long
short-term memory architecture in Lee-Carter model.

I (Hainaut 2018) applied neural networks to learn the logarithm of the
mortality death rates directly from the features of the mortality data.

I Richman and Wuthrich (2018) extended Lee-Carter model for
multi-population modeling using Artificial Neural Network.
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Statistical Machine Learning Techniques for Mortality
Modeling: Clustering

I Piscopo and Resta (2017) applied spectral biclustering to Italian mortality
data.

I Hatzopoulos and Haberman (2011) applied fuzzy clustering to cluster the
35 European countries’ populations for the period 1960-2006 into similar
groups.

I Carracedo et al. (2018) applied the Spatio-temporal framework to identify
the significant clusters among the 26 European countries based on time
and the geographical location.
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Statistical Machine Learning Techniques for Mortality
Modeling: Other Methods

I (Ludkovski, Risk, and Zail 2016) used Gaussian Process (GP) regression
to model the mortality rates.

I Deprez, Shevchenko, and Wüthrich (2017) and Levantesi and Pizzorusso
(2019) integrated tree methods in Lee-Carter and its extensions.
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Statistical Machine Learning Techniques for Mortality
Modeling: Two detailed examples

In what follows we will discuss two examples of applying fairly standard
statistical learning approaches to mortality modelling:

1. Regularisation and cross-validation

2. Ensemble learning
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1. A Data Analytics Paradigm for the Construction,
Selection, and Evaluation of Mortality Models
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A Data Analytics Paradigm for the Construction,
Selection, and Evaluation of Mortality Models
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Mortality Models: Constructing Traditional Mortality Models
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Mortality Models: Generalised Age-Period-Cohort Models

Name Form Parameters

LC αx + β
(1)
x κ

(1)
t 2na + ny

LC2 αx + β
(1)
x κ

(1)
t + β

(2)
x κ

(2)
t 3na + 2ny

RH αx + β
(1)
x κ

(1)
t + β

(0)
x γc 3na + ny + nc

APC αx + κ
(1)
t + γc na + ny + nc

CBD κ
(1)
t + (x − x̄)κ(2)

t 2ny

M7 κ
(1)
t + (x − x̄)κ(2)

t + ((x − x̄)2 − σ2
x )κ(3)

t + γc 3ny + nc

sPLAT αx + κ
(1)
t + (x̄ − x)κ(2)

t + γc na + 2ny + nc

cPLAT αx + κ
(1)
t + (x̄ − x)κ(2)

t + (x̄ − x)+κ
(3)
t + γc na + 3ny + nc
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Mortality Models: CBD Model

ηx ,t = κ
(1)
t + (x − x̄)κ(2)

t

x

f(
x)

x

f(
x)
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Mortality Models: cPLAT Model

ηx ,t = αx + κ
(1)
t + (x̄ − x)κ(2)

t + (x̄ − x)+ κ
(3)
t + γt−x

x

f(
x)

x

f(
x)

x

f(
x)
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Mortality Models: Key research questions

1. What model features are desired for different applications?

2. Why do we only consider a fixed set of models?

3. How can we be confident we have selected the best model?
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Mortality Models: What is the “best” model?

Goodness-of-fit: Cairns et al. (2009) and Dowd et al. (2010b)
I Desirable theoretical properties, e.g. parsimony
I BIC, likelihood ratio test, and analysis of robustness

Forecasting: Cairns et al. (2011) and Dowd et al. (2010a)
I Biological reasonableness, plausibility, and robustness
I Ad-hoc backtests
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Our objective

Provide a comprehensive framework to construct, select, and evaluate
discrete-time mortality models for forecasting applications, using various
statistical learning and predictive analytics techniques.
I Construction based on regularisation techniques
I Selection based on cross-validation techniques
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A Data Analytics Paradigm for the Construction,
Comparison, and Selection of Mortality Models
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Data Analytics: Predictive Modelling
Objective: Predict response using linear combination of predictors,

yi = β0 +
p∑

j=1
xijβj + εj , (1)

where β0 and β = (β1, β2, ..., βp) are unknown parameters.

Typically, parameters are estimated by minimising OLS,

1
N

N∑
i=1

(yi − β0 −
p∑

j=1
xijβj)2. (2)

Problem: Interpretation and prediction accuracy.
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Data Analytics: Regularisation
Solution: Minimise

1
N

N∑
i=1

(yi − β0 −
p∑

j=1
xijβj)2, (3)

subject to `2-norm constraint (ridge regression),
p∑

j=1
β2

j ≤ t, (4)

or `1-norm constraint (lasso),
p∑

j=1
|βj | ≤ t. (5)
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Data Analytics: Lasso and Ridge Constraints

James et al. (2014)
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Data Analytics: Group Lasso
Consider the linear predictor structure,

y = Xβ =
J∑

j=1
Xjβj , (6)

where βj is a vector of coefficients for group j .

The group lasso minimises the objective function,

Q(β|X,η) = L(β|X,η) +
∑

pλ(‖βj‖), (7)

where pλ(·) is a penalty applied to the `2-norm of each group.

If group j is selected, βjk 6= 0 for all k ; else βjk = 0 for all k .
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A Data Analytics Paradigm for the Construction,
Comparison, and Selection of Mortality Models
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Construction: Data
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Age

Data Source: Human Mortality Database (30 Countries, 2 Genders)

Years: 1960 - 2015

Ages: 20 - 89
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Construction: “Formalised” Model-Building Framework
We start with a huge model,

ln(µx ,t) = αx +
B∑

i=1
f (i)(x)κ(i)

t + γt−x ,

where the suite of basis functions (f (i)(x)) included are:

f (i)(x) =



1, Unit
(x − x̄)n Polynomial
(x − n)+ Call
(n − x)+ Put
1x<n Below
1x>n Above

. (8)
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Construction: Our Model
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Construction: GLM Representation

ηx ,t = ln(µx ,t) = αx +
B∑

i=1
f (i)(x)κ(i)

t + γc ,

can be expressed as a GLM (Currie 2016),

η = Xβ =
B+1∑
j=0

Xjβj , X = [X0 : X1 : X2 : ... : XB : XB+1],

where,
β = {βi}B+1

i=0 , β0 = {αx}nx
x=1, βi = {κ(i)

t }nt
t=1, βB+1 = {γc}nc

c=1.
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Construction: Parameter Estimation
We minimise

Q(β|X ,η) = 1
2n‖η − Xβ‖+

B∑
i=1

pλ(‖κ(i)‖) + pλ(‖γ‖). (9)

with the minimax concave penalty (MCP)

pλ,γ(θ) =
λθ −

θ2

2γ , if θ ≤ γλ,
1
2γλ

2, if θ > γλ,
(10)

I Fix γ = 3
I λ controls the trade-off between goodness-of-fit and parsimony
I Use the R package grpreg (Breheny and Huang 2013)

## StMoMo: Start fitting with grpreg
## StMoMo: Finish fitting with grpreg

## StMoMo: Start fitting with grpreg
## StMoMo: Finish fitting with grpreg
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Construction: Estimated Parameters (USA Males)
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Construction: Estimated Parameters (USA Males)
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Construction: Fitted Values (USA Males)
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Construction: Fitted Values (USA Males)
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Selection and Evaluation: Cross Validation Framework

Training/Test Set: 1960 - 1990

Validation Set: 1991 - 2015

Test Set Width: Forecasting Horizon
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Selection: 5 Year Horizon (Training vs. Test error)
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Selection Results: Optimal Models

Data 1 Year Horizon Parameters

USA (F) αx + κ1
t + (x − x̄)κ2

t + γc 262
AUS (M) αx + κ1

t + (x − x̄)2κ2
t + (x − 25)+κ3

t + (25 − x)+κ4
t + γc 344

UK (M) αx + κ1
t + (x − x̄)κ2

t + (x − x̄)2κ3
t + γc 303

CAN (F) αx + κ1
t + (x − x̄)κ2

t + (25 − x)+κ3
t + γc 303

Data 10 Year Horizon Parameters

USA (F) αx + κ1
t + (x − x̄)κ2

t + γc 262
AUS (M) αx + κ1

t + (x − x̄)2κ2
t + γc 262

UK (M) αx + κ1
t + (x − x̄)κ2

t + (x − x̄)2κ3
t + γc 303

CAN (F) αx + κ1
t 111

48 / 94



Evaluation Results: Rankings for 1 Year vs 10 Year Forecasting

1 Year Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9
1 GL 27 10 16 5 1 0 1 0 0
2 LC2 21 14 6 7 7 4 1 0 0
3 cPLAT 4 13 3 6 6 17 9 2 0
4 LC 3 6 6 9 3 10 10 8 5
6 APC 1 10 12 15 14 4 2 2 0
8 sPLAT 0 1 7 7 15 12 13 5 0

10 Years Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9
1 GL 15 17 9 11 5 3 0 0 0
2 APC 15 11 13 15 2 3 1 0 0
3 LC 13 10 11 15 10 1 0 0 0
4 LC2 7 15 22 11 4 1 0 0 0
7 sPLAT 0 0 1 0 4 19 21 10 5
8 cPLAT 0 0 0 1 3 5 25 22 4
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Key Findings
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Key Takeaways
I Complex models perform well for short-term forecasting;
I Simpler models perform well for long-term forecasting;
I Complex models perform well on large populations;
I Complex models perform poorly on small populations;
I Simpler models perform relatively consistently across population size;
I Complex models produce very volatile outputs;
I Small populations do not support strong cohort effects.

No pre-defined model will perform well for all contexts.
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2. Mortality model combination using stacked regression
ensembles
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Model Combination: Motivation

I Forecasting model selection and combination are the two competing
approaches in the forecasting literature.

I Criteria to select a model
I Coefficient of determination
I Akaike Information Criterion (AIC)
I Bayesian Information Criterion (BIC)
I Cross-validation technique.

I These selection methods can lead to different model choices
I Difficult to identify one forecasting method that performs consistently well

over all time horizons and data sets.
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Model Combination: Motivation
I Model combination could be a successful alternative to model

selection
I Forecasts from a particular forecasting method can provide some useful

information that is not contained in forecasts from other forecasting
techniques.

I Combining models improves the forecasting accuracy and reduce model
uncertainty as the modeler is not forced to select one forecasting model.

I Forecasting combination is more apparent when it is hard to identify
the best model or the true data generating process.

I Multiple forecasting techniques usually generate varying forecasts.
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Model Combination: Motivation in a mortality context

I Comparing different mortality models does not always lead to the
selection of the one best mortality model (Janssen 2018).

I It is difficult to identify the best mortality model
I Different fitting periods lead to different mortality forecasts (Janssen and Kunst

2007).
I Modelling different life table statistics give different mortality forecasts

(Bergeron-Boucher and Kj 2019).
I No model dominates both qualitative and quantitative criteria (Cairns et al. 2007).
I No single mortality model performs the best in all the countries and time

horizons (Rabbi and Mazzuco 2018).
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Model Combination: Recent advances in a mortality context

I Shang (2012) applied the Bayesian Model Averaging (BMA) to combine
14 mortality forecasting models.

I Kontis et al. (2017) applied a probabilistic BMA to combine 21 mortality
models to project age-specific death rates for 35 industrialized countries.

I Shang and Haberman (2018) combined multiple mortality models using
the model confidence sets technique.
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Stacking Ensemble Techniques

I The original idea of the stacking ensemble was first introduced by
(Wolpert D. 1992).

I The stacking ensemble has been successfully applied and improved the
predictive accuracy on a wide range of problems:
1. Forecasting global energy consumption (Khairalla et al. 2018).
2. Credit risk assessment (Doumpos and Zopounidis 2007).
3. Planning and budgeting (Hansen and Nelson 2002).
4. Financial time series datasets (Ma and Dai 2016).
5. Forecasting Warfarin dosing (Ma et al. 2018).
6. Prediction of infectious disease epidemics (Ray and Reich 2018).

I The stacking ensemble has been used by most winning teams in the data
science competitions (Sill et al. 2009; Puurula, Read, and Bifet 2014).
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Ensemble Techniques
I Ensemble methods use multiple

learning algorithms to obtain
better predictive performance
than could be obtained from any
of the constituent learning
algorithms.

I Bagging and Boosting
I Stacked regression ensemble

combines the point predictions
from diverse and accurate
predictors (Wolpert D. 1992).

I If a set of base learners does not contain the true prediction function,
ensembles can give a good approximation of that function.

I Ensembles can perform better than individual base algorithms.
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Stacked Regression Ensemble
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Stacked Regression Ensemble
I Suppose that stacked regression estimate M base learners L1, · · · , LM

which produces the mortality forecasts f̂1(x), · · · , f̂M(x).
I Under the stacked regression setting, the mortality forecasts can be

combined by:

f̂stacking(x) =
M∑

m=1
wm f̂m(x).

I Our goal is to compute w1, · · · ,wM by minimizing the generalization error
of stacked regression ensemble:

minw1...wM

N∑
i=1

yi −
M∑

m=1
wm f̂m(xi)

2

.
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Creating the Diversity Among the Base Learners

I Using different base learners.
I Extrapolative mortality models based on different life table statistics:

death rates, death probabilities, survival probabilities, life table deaths and
life expectancy at birth (Bergeron-Boucher and Kj 2019).

I Fitting same mortality model to different historical fitting periods
(Janssen and Kunst 2007).
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Training the Base Learners using cross-validation

I Split the dataset D = {(yn, xn), n = 1, · · · ,N} into K folds.
I Train each base learners L1, · · · , LM on the training data set
DK = D −DK for each K th fold.

I For each base learners L1, · · · , LM , predict the outcomes of the target
variable y using the validation set DK in each fold based on the
corresponding DK = D −DK training set.

I Level-one data/metadata is given by these cross-validation predictions.
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Integration of Base Learners

I A lasso regression is used to learn the weights for combining the output of
base learners while minimizing the generalization error:

w = minw1...wM

tn∑
t=t1

xn∑
x=x1

ln(µx ,t)−
M∑

m=1
wm ̂ln(µx ,t)m

2

+ λ
M∑

m=1
|wm|.

I The final super learner algorithm is given by:

L̂Stacking(Dtest) =
M∑

m=1
ŵmL̂m(Dtest).
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Very Preliminary Results

I Use US and England and Wales male mortality data from HMD.
I We train the base learners using the mortality data from 1960 to 1990 for

ages 50-89 using StMoMo package.
I We fitted LC, RH, APC, CBD, Plat, and M7.
I The fitted models were used to predict the 1 to 15 steps ahead mortality

rates.
I Lasso regression is used as the meta learner to learn the optimal weights

for combining the predictions from the multiple base learners.
I Evaluation done using data for 1991-2016
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Model weights by horizon
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Mean Square Error by horizon
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MSE = 1
na(ny + 1)

tn∑
t=t1

xn∑
x=x1

(
̂ln(µx ,t)− ln(µx ,t)

)2
.
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Summary and future work

I The stacked regression ensemble outperformed other models and simple
averaging at least for longer horizons
I We need to compare with BMA and Model Confidence set for model combination

I Without even considering more base models than Genaralized APC
models, it seems it is still a good idea to combine the GAPC models as
they seem to give better mortality predictions.

I The optimal weights for combining the base models vary depending on
the forecasting horizon, and therefore, the models that form the final
ensemble prediction changes depending on the forecasting horizons.
I Develop weights that vary with forecasting horizons.
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Conclusion and outlook
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Conclusion outlook

I There is a thriving literature on the application of statistical/machine
learning techniques to mortality modelling
I Use of new techniques
I Data analytic mindset to approach more classical techniques

I We have shown two examples with very promising results
I Techniques will be made available in open-source code via StMoMo

I Important to have the problem in mind and adapt techniques rather than
applying off-the-shelf algorithms
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Conclusion outlook

I Space for application into more complex problems beyond modelling single
populations and all-cause mortality
I Multipopulation modelling
I Cause of death modelling

I Application of statistical/machine learning techniques to individual level
data
I Quantify mortality heterogeneity
I Impact of socio-economic factors
I Impact of risk factors
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Questions?
Email: a.villegas@unsw.edu.au
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Reserve slides
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Implementation in StMoMo
# install.packages("devtools")
# devtools::install_github("amvillegas/StMoMo", ref = "GroupLasso")
library('demography')
library('StMoMo')
DNKdata <- hmd.mx(country = "DNK", username = "a.villegas@unsw.edu.au",

password = password, label = "Denmark")
DNKStMoMo <- StMoMoData(DNKdata, series = "male")
DNKStMoMo

## Mortality data for Denmark
## Series: male
## Years: 1835 - 2016
## Ages: 0 - 110
## Exposure: central
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Implementation in StMoMo - Define model
#Create big model
strikes <- seq(25,85,5)
bModel <- StMoMo(link = "log-Gaussian", staticAgeFun = TRUE,

periodAgeFun = c("1", genPoly(1:5), genCall(strikes),
genPut(strikes)),

cohortAgeFun = "1")
bModel

## Gaussian model with predictor: log m[x,t] = a[x] + k1[t] +
f2[x] k2[t] + f3[x] k3[t] + f4[x] k4[t] + f5[x] k5[t] + f6[x]
k6[t] + f7[x] k7[t] + f8[x] k8[t] + f9[x] k9[t] + f10[x] k10[t] +
f11[x] k11[t] + f12[x] k12[t] + f13[x] k13[t] + f14[x] k14[t] +
f15[x] k15[t] + f16[x] k16[t] + f17[x] k17[t] + f18[x] k18[t] +
f19[x] k19[t] + f20[x] k20[t] + f21[x] k21[t] + f22[x] k22[t] +
f23[x] k23[t] + f24[x] k24[t] + f25[x] k25[t] + f26[x] k26[t] +
f27[x] k27[t] + f28[x] k28[t] + f29[x] k29[t] + f30[x] k30[t] +
f31[x] k31[t] + f32[x] k32[t] + g[t-x] 74 / 94



Implementation in StMoMo - Fit model with grouped
penalised regularisation

#Penalise all term
bMgrpfit <- grpfit(bModel, nlambda = 50, data = DNKStMoMo, ages.fit = 20:89,

years.fit = 1960:2016)

## StMoMo: Start fitting with grpreg
## StMoMo: Finish fitting with grpreg
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Implementation in StMoMo - Parameter paths
plot(extractStMoMo(bMgrpfit, 10), nCol = 3)
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Implementation in StMoMo - Parameter paths
plot(extractStMoMo(bMgrpfit, 15), nCol = 3)
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Implementation in StMoMo - Parameter paths
plot(extractStMoMo(bMgrpfit, 20), nCol = 3)
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Implementation in StMoMo - Parameter paths
plot(extractStMoMo(bMgrpfit, 25), nCol = 5)
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## StMoMo: Start fitting with grpreg
## StMoMo: Finish fitting with grpreg

## StMoMo: Start fitting with grpreg
## StMoMo: Finish fitting with grpreg
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Construction: Estimated Parameters (Denmark Males)
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Construction: Fitted Values (Denmark Males)

## StMoMo: Start fitting with grpreg
## StMoMo: Finish fitting with grpreg

## StMoMo: Start fitting with grpreg
## StMoMo: Finish fitting with grpreg
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Construction: Estimated Parameters (Denmark Females)
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Construction: Fitted Values (Denmark Females)

## StMoMo: Start fitting with grpreg
## StMoMo: Finish fitting with grpreg

## StMoMo: Start fitting with grpreg
## StMoMo: Finish fitting with grpreg
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Construction: Estimated Parameters (UK Males)
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Construction: Fitted Values (UK Males)
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