SUSTAINABLE AND EQUITABLE PENSIONS WITH MEANS TESTING

George Kudrna Chung Tran Alan Woodland CEPAR ANU UNSW

Presented at 26th Annual Colloquium of Pensions and Retirement Research UNSW, Sydney

2 July 2018

- Population ageing (projected to accelerate in developed countries over next several decades), with
 - (i) Changing population age structure
 - Australia => support ratio $(\frac{20-64}{65+})$ to decline to 2.4 in 2050 from 4 in 2015 (United Nations, 2015)
 - (ii) Mortality improvements and greater life expectancy
 - Life-expectancy
 - (iii) Life expectancy gaps by socio-economic status (particularly by income)
 - Life-expectancy gaps

• These demographic changes will have vast implications for public pensions (particularly PAYG pensions), causing

(i) Increasing fiscal costs with spending on public pensions in

- Australia => 4.9% of GDP in 2050, compared to 3.6% in 2015 (OECD, 2013)
- OECD28 countries (average) => 11.7% of GDP in 2050, compared to 9.5% in 2015 (OECD, 2013)
- (*ii*) Equity concerns about targeting public pensions towards more-affluent, longer-lived individuals (Auerbach et al, 2017)
 - Driven by (widening) life-expectancy gaps between high and low skilled groups of individuals.

- Parametric public pension reforms widespread across developed world over last decade (OECD, 2015), aming to improve
 - (i) Fiscal sustainability
 - **Examples**: Reductions in benefit levels or pension formulae, lowering benefit indexation, increasing access ages, increasing payroll taxes
 - (ii) Adequacy and equity of pensions
 - **Examples**: Increasing coverage and benefit levels, changes to pension entitlements and benefit formulae, means testing of benefits

- Focuses on means testing of public pensions as a response mechanism to population ageing, with objectives to examine
 - Implications of means-tested pensions for fiscal sustainability and equity of public pensions under *different ageing scenarios*
 - Long run effects of relaxing & tightening pension means test via altering the taper
- Employs a general equilibrium OLG model, with
 - 1) Private-heavy pension system => Australian case (This talk)
 - 2) PAYG social security DB pension system => OECD prototype

• Our results show that means testing public pensions

- improves fiscal sustainability with
 - reduced public pension expenditure & increased tax base
- improves intra-cohort equity due to
 - directing pension payments to those in need
- increases labour supply & savings due to
 - $\bullet\,$ increased incentives => lower pensions to more affluent types & lower income tax rates

• These effects shown to be more pronounced under population ageing

- Model description
- Calibration & data comparison
- Experiments & results
- Sensitivity & extensions
- Conclusions

- Type: Dynamic general equilibrium with overlapping generations
- Sectors: Household, firm, government and foreign sectors
- Markets: Labour, capital and goods markets
- Market structure: Small open economy

HOUSEHOLD SECTOR: DEMOGRAPHICS

- Overlapping generations of heterogeneous households => cohorts aged 20 to 100 years of 5 skilled types
- Stationary demographic structure with size of *i*-type cohort at age *j* given by

$$\textit{pop}_j^i = rac{s_j^i}{(1+n)^{j-1}}$$

where, n: population growth rate, $s_j^i = \prod_{z=1}^j \pi_z^i$: skill-specific (unconditional) survival rates, π_j^i : conditional survival probabilities.

• Total population then given by

$$P = \sum_{i \in I} \omega^i \sum_{j \in J} pop_j^i$$

where ω^i : intra-generational shares (0.2 for each quintile).

HOUSEHOLD SECTOR: LIFETIME UTILITY

 Households of each skill type i assumed to choose consumption, c, and leisure, l, at age j to maximize expected lifetime utility

$$U^{i} = E\left[\sum_{j=1}^{J} \left(\prod_{z=1}^{j} \pi_{z}^{i}\right) \beta^{j-1} \frac{\left[\left(c_{j}^{i}\right)^{\rho} \left(l_{j}^{i}\right)^{1-\rho}\right]^{\left(1-\frac{1}{\gamma}\right)}}{1-\frac{1}{\gamma}}\right], \quad (1)$$

where

- π_i^i : conditional survival probabilities with $\pi_{i=1}^i = 1$
- β : subjective discount factor
- γ : intertemporal elasticity of substitution
- ρ : share parameter for leisure

HOUSEHOLD SECTOR: BUDGET CONSTRAINT

• Expected lifetime utility in (1) to be maximized subject to per-period budget constraint

$$egin{aligned} a^i_j - a^i_{j-1} &= r \cdot a^i_{j-1} + l e^i_j + a p^i_{j \ge 65} + s p^i_{j \ge 60} \ &+ s t^i_{j < 65} + \widehat{b}^i_{45 < j < 65} - c^i_j - t a x^i_j, \end{aligned}$$

where

 $\begin{array}{ll} a_j^i: \text{private assets} & r \cdot a_{j-1}^i: \text{investment income} \\ ap_j^i: \text{age pension} & sp_j^i: \text{superannuation payouts} \\ \widehat{b}_j^i: \text{bequest payment} & le_j^i = we_j^i(1-l_j^i): \text{labour earnings} \\ st_j^i: \text{social transfers} & tax_j^i = t(y_j^i) + \tau^c c_j^i: \text{household taxes} \end{array}$

• Aggregates: e.g.,
$$C = \sum_{i \in I} \omega^i \sum_{j \in J} c_j^i \cdot pop_j^i$$
.

MODELING AGE PENSION

• Age pension paid to households $j \ge 65$ and subject to income test:

$$ap_{j}^{i}=\max\left\{\min\left\{p^{\max},p^{\max}- heta\left(\widehat{y}_{j}^{i}-\underline{y}
ight)
ight\}$$
 , $0
ight\}$,

where \hat{y}_j^i : assessable income; p^{\max} : maximum pension; θ : taper rate; y: income threshold.

Association between age pension and assessable income

CALIBRATION: ASSUMPTIONS & PARAMETER VALUES

- Benchmark economy assumed to be in a steady state calibrated to key macro & fiscal data in 2013-14
- Household utility & production technology of Cobb-Douglas forms
 - Some parameters taken from literature (e.g. $\gamma = 0.5$) and some calibrated to replicate observed macro data (e.g. $\beta = 0.982$)
- Policy settings & values of policy parameters (e.g. age pension & tax policy settings) as of 2013-14
- Demographic structure assumed to be stationary with
 - population growth rate (n = 1.6%); survival rates for third quintile $(\pi_i^{i=3})$ derived from ABS 2012-14 life tables

CALIBRATION: LIFE EXPECTANCY GAPS

Life expectancy (*LE*) gaps at age 20 in our model between highest & lowest quintiles ≈ 6 years (Clarke & Leigh, 2011) and between fourth & second quintiles ≈ 3 years (assumed)

Conditional survival probabilities

MODEL PERFORMANCE: LIFE CYCLE DATA

HOURS WORKED PER WEEK

MODEL PERFORMANCE: LIFE CYCLE DATA

ANNUAL PUBLIC PENSION PAYMENTS

MODEL PERFORMANCE: MACRO & INCOME DATA

Comparison of bondhmark solution with Australian magro and income data

37 . 11	Benchmark	Australia	
Variable	model	2013-14	
Expenditures on GDP (% of GDP)			
Private consumption	55.50	54.61	
Investment	15.08	17.95	
Government consumption	27.90	27.60	
Trade balance	1.51	-0.29	
Calibration targets			
Capital-output ratio	3.10	3.10	
Investment-capital ratio	0.09	0.09	
Foreign assets-capital ratio	-0.18	-0.18	
Average hours worked	0.33	0.33	
Net income shares $(\%)$ (selected skilled	types)		
Lowest quintile	6.1	7.5	
Third quintile	17.9	16.9	
Highest quintile	40.2	40.8	
Gini coefficient (in net income)	0.36	0.33	

Notes: Australian macro and income data taken from ABS data sets.

- Examine the effects of public pension systems with different taper (θ) (In this talk, focus on two cases)
 - (i) Universal pension system with $\theta = \mathbf{0}$
 - (ii) Strict means-tested system with heta=1
- A range of demographic scenarios considered (In this talk, focus on two scenarios)
 - (a) No population ageing (old-age dependency ratio of 0.25)
 - Same (existing) $n \& \pi^i_i$ as in benchmark model
 - (b) Population ageing (old-age dependency ratio of 0.45)
 - Reduced n & increased πⁱ_j (for 2060 from ABS, 2013) & increased life expectancy gaps

RESULTS: MACRO & FISCAL EFFECTS (NO AGEING)

• Macro & fiscal effects indexed to benchmark case with **Taper=0.5** (=100) under each demographic scenario

-) (a via bla	Demographic scenario		
Taper scenario	Variable	No ageing	Ageing	
Taper = 0	- Labour supply	96.9		
	- Domestic assets	88.0		
	- Age pension	167.3		
	- Income tax rate	122.5		
Taper = 1	- Labour supply	101.2		
	- Domestic assets	108.0		
	- Age pension	82.4		
	- Income tax rate	91.7		

Notes : For ageing scenario, benchmark with taper = 0.5 assumes government consumption (G) to balance the budget, with adjusted G kept constant to assess effects of taper = 0 or 1 with budget-equilibrating income taxes.

RESULTS: MACRO & FISCAL EFFECTS (AGEING)

• Macro & fiscal effects indexed to benchmark case with **Taper=0.5** (=100) under each demographic scenario

-	Variable	Demographic scenario		
Taper scenario	variable	No ageing	Ageing	
Taper = 0	- Labour supply	96.9	93.0	
	- Domestic assets	88.0	74.2	
	- Age pension	167.3	176.3	
	- Income tax rate	122.5	151.8	
Taper = 1	- Labour supply	101.2	101.3	
	- Domestic assets	108.0	123.0	
	- Age pension	82.4	77.1	
	- Income tax rate	91.7	80.8	

Notes : For ageing scenario, benchmark with taper = 0.5 assumes government consumption (G) to balance the budget, with adjusted G kept constant to assess effects of taper = 0 or 1 with budget-equilibrating income taxes.

RESULTS: AGE PENSION SHARES (NO AGEING)

• Age pension shares by income types under **Taper=0** or **1** (in % and indexed to benchmark with **Taper=0.5** (=100))

		Demographic scenario			
Taper	Incomo tuno	No ageing		Ageing	
scenario	income type	Share	Share	Share	Share
		(%)	(Index)	(%)	(Index)
Taper = 0	- Low income	0.37	62		
	- Middle income	0.20	85		
	- High Income	0.43	246		
Taper = 1	- Low income	0.71	121		
	- Middle income	0.20	84		
	- High Income	0.09	52		

Notes : Low income = lowest & second quintiles, Middle income = third quintile, High income = fourth & highest quintiles.

cepar

RESULTS: AGE PENSION SHARES (AGEING)

• Age pension shares by income types under Taper=0 or 1 (in % and indexed to benchmark with Taper=0.5 (=100))

		Demographic scenario			
Taper	Incomo tuno	No ageing		Ageing	
scenario	income type	Share	Share	Share	Share
		(%)	(Index)	(%)	(Index)
Taper = 0	- Low income	0.37	62	0.36	59
	- Middle income	0.20	85	0.20	85
	- High Income	0.43	246	0.44	270
Taper = 1	- Low income	0.71	121	0.79	130
	- Middle income	0.20	84	0.16	67
	- High Income	0.09	52	0.06	35

Notes : Low income = lowest & second quintiles, Middle income = third quintile, High income = fourth & highest quintiles.

cepar

RESULTS: WELFARE EFFECTS (NO AGEING)

• Equivalent variation - % change in consumption & leisure needed in benchmark with Taper=0.5 to reproduce remaining utility with Taper=0 or 1 under each scenario

Tanar cooperie	Income type	Demographic scenario		
		No ageing	Ageing	
Taper = 0	- Low income	-0.46		
	- High Income	-1.75		
	- Average	-0.89		
Taper = 1	- Low income	0.12		
	- High Income	0.92		
	- Average	0.33		

Notes : Low income = average for lowest & second quintiles, High income = average for fourth & highest quintiles, average = average welfare across all five quintiles

RESULTS: WELFARE EFFECTS (AGEING)

• Equivalent variation - % change in consumption & leisure needed in benchmark with Taper=0.5 to reproduce remaining utility with Taper=0 or 1 under each scenario

Tapar cooparia	Income type	Demograph	Demographic scenario		
		No ageing	Ageing		
Taper = 0	- Low income	-0.46	-1.31		
	- High Income	-1.75	-5.24		
	- Average	-0.89	-2.80		
Taper = 1	- Low income	0.12	0.37		
	- High Income	0.92	2.75		
	- Average	0.33	1.21		

Notes : Low income = average for lowest & second quintiles, High income = average for fourth & highest quintiles, average = average welfare across all five quintiles

cepar

• Sensitivity checks

1) Alternative budget-balancing consumption tax instrument

- Lower consumption tax rate under higher taper => negative effects on the economy and equity (relative to lower income taxes)
- 2) Endogenous interest rate framework
 - Lower interest rate under higher taper => positive effects on the economy but negative equity effects (relative to constant interest rate)

• Extensions

- Uninsurable wages
- Intended bequests
- Transition path effects

CONCLUSIONS

- Long run results show that population ageing strengthens the case for means testing public pensions =>
 - significantly improving fiscal sustainability with
 - reduced public pension expenditure & increased tax base
 - increasing labour supply & savings due to
 - $\bullet\,$ increased incentives => lower pensions to more affluent types & lower income tax rates
 - improving intra-cohort equity due to
 - directing pension payments to those in need

• Political challenges

- How to means test (contributory) PAYG DB pensions?
- Requiring pensioners to report their wealth => big issue in some countries

Thank you for your attention!

Contact: George Kudrna g.kudrna@unsw.edu.au sites.google.com/site/georgekudrna

HIGHER LIFE EXPECTANCY: AUSTRALIA VS. WORLD

LIFE EXPECTANCY GAPS BY INCOME (US) Chetty et al (2016), using US data

George Kudrna (2018)

2 July 2018 29 / 30

INCREASING LIFE EXPECTANCY GAPS OVER TIME (US) Chetty et al (2016), using US data

cepar