CEPAR Colloquium Presentation A structured investigation of retirement income products

Luke Zhou Supervisors: Dr. Héloïse Labit-Hardy, Dr. Andrés Villegas, Dr. Jonathan Ziveyi

Monday, December 2, 2019

Introduction

Problem: wide range of retirement income products, difficult to compare guarantee structure and determine value for the policyholder

Research aim

- ► Modelling: to develop a mathematical framework to represent the guarantee structure in retirement income products
- Evaluation: to comprehensively evaluate such products using utility maximisation and quantitative measures, informed by the behavioural economics literature

Integrated with this aim is the development of a computational framework in R. This will enable the framework to be applied to:

- new products which are proposed in the future
- new models for mortality rates or financial returns.

Modelling framework

Figure 1: Modelling framework

Annuity product innovation / Product landscape

Focus on guarantee structure

Product	Financial risk	Longevity risk		
Froduct	i illaliciai risk	Idiosyncratic	Systematic	
Life annuity	Provider	Provider	Provider	
Longevity-indexed	Provider	Provider	Individual	
life annuity	Flovidei	riovidei	marviduai	
Tontine	Provider	Pool	Pool	
Mortality-linked fund	Individual	Provider	Provider	
Longevity-indexed	Individual	Provider	Individual	
fund	marviduai	Trovidei	muividuai	
Group self annuitisation	Pool	Pool	Pool	
Account-based	Individual	Individual	Individual	
pension	marviduai	muividuai	marviduai	

Table 1: Risk-sharing in retirement income products

A unifying framework: The fund equation

The fund equation for an individual policyholder is given by:

$$F_t$$
 = F_{t-1} $\underbrace{(1+\Theta_t)}_{\text{mortality credit financial return}} - \underbrace{b_t}_{\text{payout structure}}$ $F_0 = S - b_0$

where $b_t = f(F_{t-}, ...)$ and S is the policyholder's initial investment (Pitacco et al. 2009).

Modelling assumptions

- ► Mortality environment: Lee-Carter model fitted to Australian Male data from 1967–2016 with simulated idiosyncratic risk
- Financial environment:
 - ▶ Risk-free asset which is assumed to return 4%
 - lacktriangle Stock follows a GBM with $\mu=0.11$ and $\sigma=0.17$
 - ▶ GBM is calibrated to Australian All Ordinaries (Accumulation) data from 1980–2018
- ▶ Initial capital for each individual: \$100,000
- ▶ Pool characteristics: 1000 lives initially all at age 60
- ► Number of simulations: 5000

For products where the financial risk is taken by the individual, we assume all individuals follow the same strategy of investing 30% in stocks, and 70% in the risk-free asset. For other products, the investment strategy is decided by the provider.

Product benefit profile

Product benefit profile – Account-based pension

Product benefit profile – Account-based pension

Product riskiness

Figure 7: Insurer's cash flows

Capital distribution

Figure 8: Comparison of simulated capital distribution

Applying loadings to products

- We need to turn this one-time capital into a price charged to the policyholder.
- We approximate the required capital each period C_t^* as a constant proportion of the policyholder's fund value at each time
- In each period, the contributor of capital should receive a return equal to $C_t^* \times \text{CoC}$, where the cost of capital CoC is set at 11%.
- ▶ We then calculate the NPV discounting using the risk-free rate, and express as a percentage of *S*.

Product	Price (%)	
Life annuity	5.13	
LLLA	4.07	
Tontine	3.74	
MLF	6.27	
LIF	3.22	
GSA	0	
ABP	0	

Apply loadings to products

The policyholder's initial investment with loadings S^* should equal their investment without loadings S plus the loading charged p, which is a percentage of S, i.e.:

$$S^* = Sp + S$$

Since the fund equation does not assume loadings, we set the same loaded price S^* for all contracts and solve for the equivalent unloaded price $S = \frac{S^*}{1+\rho}$.

Product comparison from the annuitant perspective

- ▶ We re-simulate the products according to the loadings in the previous slide
- ► They are now able to be fairly compared, taking into the cost of meeting the financial and longevity guarantees

We focus on two measures applied to the *loaded benefit payouts*:

- ► Risk-based metrics
 - Distribution of benefit payout at certain ages
 - Actuarial present value
 - Australian Government Actuary risk measure
- Utility

Note: The mortality assumption for the utility metric $_tp_x$ is defined as the simulated pool's mortality, with 1000 lives.

Actuarial present value (Money's worth)

Present Value of Benefit distribution

Results - AGA risk measure

- ▶ We calculate the truncated semi-deviation with reference to the initial benefit.
- Average across all simulations
- ▶ We calculate the measure based on nominal payments.

Product	Initial benefit (\$)	AGA (%)	Rank
Life annuity	5872	0	1
LLLA	5932	5.99	5
Tontine	5951	10.31	7
MLF	5810	1.08	2
LIF	5981	1.34	3
GSA	6174	2.61	4
ABP	4000	9.93	6

Utility - CRRA

We now present results under the CRRA utility framework.

ABP ignores the bequest component.

- $\triangleright \mathsf{CRRA} \colon \mathit{U}(c_t) = \tfrac{c_t^{1-\rho}-1}{1-\rho}$
- Set $\rho = 2$ as the relative risk aversion parameter (Hanewald, Piggott, and Sherris 2013).
- Discounted utility: $U_0 = E_0 \left[\sum_{t=0}^{\omega-x} {}_t p_x \beta^t U(c_t) \right]$
- Set $\beta = 0.98$ as the time preference parameter

Product	Certainty equivalent	Ranking
Life annuity	5872.46	6
LLLA	5921.34	5
Tontine	5937.25	4
MLF	7217.9	3
LIF	7422	2
GSA	7658.78	1
ABP	5689.27	7

Ranking of products

Conclusions

- We have demonstrated a framework to model and evaluate retirement income products
- ► This framework takes into account the differences in guarantee structure, and hence, the riskiness of the products
- ► Financial risk appears to be more of a concern throught the lifetime
- ► Longevity risk is acute at very old ages
- ▶ The code is modular and can be easily extended to new products using R
- ▶ The ranking of products differs according to the evaluation metric chosen

Limitations and extensions

- ► We need to further analyse the impact of different financial and mortality models on our results
- We can incoporate more sophistcated methods for the calculation of the capital and prices
- We can extend this framework to incorporate other features and hybrid products

Thank you!

Appendix - benefit payout with loadings

Appendix - policyholder's fund value with loadings

Appendix - comparison of fund value

References I

Hanewald, Katja, John Piggott, and Michael Sherris. 2013. "Individual post-retirement longevity risk management under systematic mortality risk." *Insurance: Mathematics and Economics* 52 (1). Elsevier B.V.: 87–97. doi:10.1016/j.insmatheco.2012.11.002.

Pitacco, Ermanno, Michel Denuit, Steven Haberman, and Annamaria Olivieri. 2009. *Modelling longevity dynamics for pensions and annuity business*. Oxford: Oxford University Press.