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Abstract

Multi-country risk management of longevity risk provides new opportunities to hedge mor-

tality and interest rate risks in guaranteed lifetime income streams. This requires consideration

of both interest rate and mortality risks in multiple countries. For this purpose, we develop

value-based longevity indexes for multiple cohorts in two different countries that take into ac-

count the major sources of risks impacting life insurance portfolios, mortality and interest rates.

To construct the indexes we propose a cohort-based affine model for multi-country mortality

and use an arbitrage-free multi-country Nelson-Siegel model for the dynamics of interest rates.

Index based longevity hedging strategies have the advantages of efficiency, liquidity and lower

cost but introduce basis risk. Graphical risk metrics are a way to effectively capture the rela-

tionship between an insurer’s portfolio and hedging strategies. We illustrate the effectiveness of

using a value–based index for longevity risk management between two countries using graphical

basis risk metrics. To show the impact of both interest rate and mortality risk we use Australia

and UK as domestic and foreign countries, and, to show the impact of mortality only, we use

the male populations of the Netherlands and France with common interest rates and basis risk

arising only from differences in mortality risks.
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1 Introduction

Longevity risk is an important risk factor for life insurance companies and defined benefit (DB)

pension plans that provide lifetime annuity-type payouts. It is a systematic risk and cannot be

averaged out by applying the law of large numbers. Reinsurers have been reluctant to accommodate

this risk due to liquidity constraints. Blake and Burrows [2001] suggest transferring this risk to

financial markets as such markets have proved to be effective in inducing liquidity, an important

ingredient for mitigating other forms of risk such as equity, commodity, credit, interest risks, among

others. The first financial market solution for longevity risk management was executed by Lucida

and J.P. Morgan in the form of a q-forward linked to J.P. Morgan’s LifeMetrics longevity index

in 2008. Since then, there has been a gradual increase in the number of transactions involving

longevity risk transfer occurring among pension funds, insurance companies and investment banks

as presented in Table 1. Such transactions lay the foundations for a potential market in trading

longevity risk.

Though the first longevity hedge was an index-based hedge, most of the hedging transactions that

followed have been customized indemnity-based hedges. Compared to an indemnity-based hedge,

an index-based hedge is more desirable due to its greater liquidity potential and lower transaction

costs [Lin and Cox, 2005, Coughlan et al., 2011, Cairns and El Boukfaoui, 2017]. An index plays a

crucial role of facilitating liquidity and providing a benchmark for pricing and hedging of securities.

To promote a liquid longevity market, the development of underlying longevity indexes is critical

in inducing liquidity and transparency.

Date Hedger Provider Type Description Size (£m)

Jan-08 Lucida J.P. Morgan Value hedge
10-year q-Forward
(LifeMetrics Index)

N/A

Jul-08 Canada Life J.P. Morgan Cash flow hedge 40-year survivor swap 500

Feb-09 Aviva
Royal Bank
of Scotland

Cash flow hedge
+ value hedge

10-year collared
survivor swap + final
commutation payment

475

Jan-11
Pall UK

Pension Fund
J.P. Morgan Value hedge

10-year q-Forward
(LifeMetrics Index)

70

Jul-14
British Telecom
Pension Scheme

Prudential Insurance
Co of America

Cash flow hedge Longevity swap 16,000

Jan-15
Merchant Navy Officers

Pension Fund
Towers Watson Cash flow hedge Longevity swap 1,500

Table 1: Selected market transactions of longevity-linked instruments.

Source: http://www.longevity-risk.org/Pres Coughlan.pdf

An initial effort to construct a longevity index was undertaken by Credit Suisse in 2005, who

launched the first market-wide longevity index based on historical and projected life expectancy for
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the US population. This index is no longer being actively maintained by Credit Suisse. Two influ-

ential longevity indexes are still operational, namely the LLMA index by Life & Longevity Markets

Association (LLMA)1 and the Xpect index by Deutsche Börse.2 J.P. Morgan developed an internal

toolkit called LifeMetrics which is now the intellectual property of LLMA. It has been designed

for pension plans, their sponsors, insurers, reinsurers and investors affiliated with J.P. Morgan to

manage their longevity risk portfolios. The LLMA longevity index is a body of data relating to the

mortality, survivorship and life expectancy of a specified group of individuals, calculated according

to robust and well defined algorithms and processes for England & Wales, Germany, Netherlands

and the US. The Deutsche Börse’s main purpose in launching its longevity indexes has been the

desire to evaluate liability-based longevity risks and create a basis for financial instruments, such

as securitization of life insurance and pension insurance risks. Xpect provides mortality data and

indexes for Germany, Netherlands and England & Wales on a monthly basis. Xpect also developed

the Xpect-Club Vita indexes which are based on mortality data of three different groups of UK

pensioners. For the forecasting of future cohort mortality rates, Xpect uses the Lee-Carter model

as the underlying mortality model.

Developing a robust value-based longevity index, which can be used as a reference by market

participants to design more effective financial instruments for managing longevity risk remains a

significant impediment to the efficient and effective pricing and hedging of longevity risk. Despite

the different indexes which have been proposed, none has proved to be universally effective as

the basis for financial market transactions. Liabilities of insurance companies and pension funds

involve interest rate risk as well as longevity risk. To manage this risk, there is a need to consider

both interest rates and mortality. An initial step in constructing a value-based longevity index was

proposed by Chang and Sherris [2015], who focus on the Australian market. They show that using

a value-based longevity index is more effective for hedging purposes than mortality indexes alone.

Multi-country risk management of longevity risk provides new opportunities to hedge mortality

and interest rate risks in guaranteed lifetime income streams. This requires consideration of both

interest rate and mortality risks in multiple countries.

We develop value-based longevity indexes for multiple cohorts in two different countries that take

into account the major sources of risks impacting life insurance portfolios; mortality and interest

rates. The index is defined as the discounted value of lifetime income of a unit of currency per

annum for a specific cohort in a domestic country and a foreign country. Such indexes quantify

1http://www.llma.org
2http://www.xpect-index.com
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changes in the costs and risks of longevity across countries, opening up an additional opportunity

for managing these risks. Our focus on value-based longevity indexes is practically motivated. They

not only capture the impact of the most significant risks, but the underlying models can be used

as a basis for pricing and hedging longevity-linked securities.

We use a multi-country continuous time affine model for the mortality dynamics and an arbitrage-

free Nelson-Siegel (AFNS) model for interest rate evolutions for both the domestic and foreign

countries. For the mortality, we propose a multi-factor joint affine term structure mortality model

on a cohort basis with mortality intensities in domestic and foreign countries affected by common

risk factors as well as country specific factors. This modelling approach has the benefit of producing

closed form survival curves that can readily be applied in practice and can be efficiently estimated

using maximum likelihood and Kalman filters.

For interest rates, we use the arbitrage-free Nelson-Siegel (AFNS) model developed by Christensen

et al. [2011]. Diebold and Li [2006] apply these dynamics to the yield curve model of Nelson and

Siegel [1987] and show that the model provides a good empirical fit. Christensen et al. [2011]

prove that with a time-invariant yield-adjustment term, the empirically successful dynamic Nelson-

Siegel (DNS) model can be made arbitrage free. The AFNS model combines the DNS factor

loading structure and the arbitrage free property of an affine term structure model. We use the

independent-factor AFNS model since it outperforms the correlated-factor AFNS model in out-of-

sample forecasts [Christensen et al., 2011].

A major factor when hedging longevity risk with instruments based on indexes is the quantification

of basis risk. Basis risk refers to the mismatch between the experience of the hedged exposure and

that of the underlying index. In recent years the pace of globalization has dramatically increased.

Globalization of the economy creates new markets and opportunities as well as new risk exposures.

For example, longevity indexes from foreign countries may be used to hedge longevity risk in a

domestic country when there are no local longevity indexes. The basis risk from a cross–country

index–based hedge arises from the differences in the future mortality of the different country pop-

ulations, the difference in the risk exposure being hedged from the country population as well as

differences in interest rate developments. We are motivated by studies that show that there is

positive correlation between the mortality experience of two different populations [Li and Hardy,

2011].

Various ways of quantifying basis risk have been extensively discussed in literature. Coughlan

et al. [2011] develop a framework to analyse longevity basis risk by proposing the use of metrics
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such as mortality rates, life expectancies and liability cash flows. Other authors try to assess

its impact on the effectiveness of longevity hedges. For example, Ngai and Sherris [2011] adopt

expected shortfall to examine the impact of different levels of the ratio between annuitant mortality

rates and population mortality rates; Cairns et al. [2014] use variance as the risk measure, and

quantify basis risk arising from using England & Wales mortality as the underlying index to hedge

the Continuous Mortality Investigation (CMI) mortality. In an alternative approach, Chan et al.

[2016] propose a graphical risk metric to assess population basis risk. The graphical risk metric is

a visual approach to showing hedging outcomes, which can be readily interpreted and well suited

to practical applications.

We adopt the graphical risk metric developed in Chan et al. [2016] in assessing the basis risk arising

from cross–country hedging of longevity exposure of a domestic country with a foreign country. We

use examples to illustrate the implementation and performance of the multi-country indexes. We

use the UK as the foreign country with Australia as the domestic since the UK market has a larger

potential market for longevity-linked instruments and existing longevity indexes and an obvious

candidate to hedge longevity exposure in the Australian market with a much smaller market. In so

doing, we simultaneously hedge both mortality and interest rate risk exposures. We also illustrate

the hedge effectiveness of a portfolio exposed to mortality risk only by considering the Netherlands

and France with common interest rates but different mortality experiences.

We contribute to the literature in three important ways. First, from a modelling perspective, the

paper develops a multi-country affine continuous–time mortality model allowing the construction

of longevity indexes for different cohorts in both domestic and foreign countries. Second, from a

practical perspective, the value-based longevity indexes allows the simultaneous hedging of mor-

tality and interest rate risks. Third, we assess basis risk in the index-based longevity hedges using

a graphical risk metric allowing visual assessment of the interaction between the portfolio to be

hedged and the hedging instruments that can be more informative than a single measure of hedge

effectiveness.

The remainder of this paper is organized as follows. Section 2 develops the multi-country

continuous-time mortality model. Section 3 introduces the arbitrage-free Nelson-Siegel (AFNS)

model used to model the dynamics of interest rate and provides the calibration results. Based on

the mortality and interest rate models, Section 4 covers the construction of a value-based longevity

index and applies the graphical basis risk metric using Australia and UK data. Finally we illustrate

the hedging result for populations from the Netherlands and France with common interest rates
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and only mortality risk. Concluding remarks are presented in Section 5.

2 Multi-Country Mortality Model

2.1 Model Setup

There has been a shift in mortality modelling from deterministic models to stochastic models in

recent years. There are several reasons behind the need for an effective stochastic mortality model.

Unanticipated mortality improvements have proved to be a significant challenge for insurance com-

panies and pension funds [Cairns et al., 2006]; solvency and accounting requirements have required

a risk and market-based approach; and, the development of longevity-linked transactions, indexes,

securities and derivatives requires the integration of mortality risk analysis into stochastic valuation

models [Biffis et al., 2010].

In respect of stochastic financial models, the affine term structure models [Duffie et al., 1996, Dai

and Singleton, 2000] have proved invaluable for interest rate risk management. Their flexibility and

analytic tractability have been shown to be fundamental for valuation and risk management. In

particular, with the increasing pace of financial integration and cooperation, the empirical perfor-

mance and application of multi-country affine term structure models have gained popularity in the

international financial markets [Ahn, 2004, Egorov et al., 2011, Hodrick and Vassalou, 2002, Tang

and Xia, 2007].

In the longevity market, a variety of cross-country mortality models have been considered in the

literature, most of which are discrete-time models (see Enchev et al. [2016] for an overview).

Continuous-time models have significant benefits for the valuation and hedging of life insurance lia-

bilities when the mortality model is to be integrated with interest rate risk models. The continuous-

time affine term structure models (ATSMs) have recently been adapted for mortality modelling and

have been shown to be successful in capturing the dynamics of mortality improvements [Blackburn

and Sherris, 2013, Jevtić et al., 2013, Biffis, 2005, Schrager, 2006, Xu et al., 2015]. Regardless of

the need of a multi-country mortality model, there has not been any development of such a model

in the affine framework. To fill this gap, we develop a multi-country ATSM to model mortality

dynamics. Furthermore, we assess if the multi-country ATSM is consistent with empirical data

while maintaining tractability. Our analysis makes both theoretical and empirical contributions to

the literature.

This section presents a multi-factor joint ATSM for a domestic country, d, and a foreign country,
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f . The multi-factor model considered is a three-factor model with one common factor and two

local country-specific factors. We define a complete filtered probability space (Ω,F ,F, Q̄), where

Ω is the set of possible states of nature, F = {Ft}0≤t≤T satisfying the usual conditions of right

continuous and Q̄ completeness where Q̄ is interpreted as the best-estimate probability measure

which is estimated from observed mortality data.

Assume that the domestic and foreign cohort instantaneous mortality intensities, µd(x, t) and

µf (x, t) respectively for an individual age x at time t are affine functions of latent state variables

µd(x, t) = δ0 + δ′1Y
d
x(t),

µf (x, t) = δ0 + δ′1Y
f
x(t), (1)

where δ0 ∈ R and δ1 ∈ R
2. Here, Yd

x(t) and Y
f
x(t) are vectors of two factors defined as

Yd
x(t) =







X(t)

Zdx(t)






and Yf

x(t) =







X(t)

Z
f
x (t)






, (2)

where X(t) is the common factor that affects both countries, Zdx(t) and Z
f
x (t) are local factors that

only affect a specific country. For notational convenience, we suppress the dependence on x in the

following definitions of all the factors. We use a cohort model for mortality so that we follow a

cohort through time and as time passes an individual ages.

Rather than assuming no connection between the mortality rates of the two populations, this model

allows dependence through the common factor driving mortality developments of both populations.

The state variables (X(t), Zd(t), Zf (t))′ follow affine diffusions under the best-estimate measure Q̄

such that













dX(t)

dZd(t)

dZf (t)













= −













φ1 0 0

0 φ2 0

0 0 φ3

























X(t)

Zd(t)

Zf (t)













dt+













σ1 0 0

0 σ2 0

0 0 σ3

























dW
Q̄
µ (t)

dW
d,Q̄
µ (t)

dW
f,Q̄
µ (t)













, (3)

where φ1, φ2, φ3, σ1, σ2 and σ3 represent the best-estimate parameters, W Q̄
µ (t), W d,Q̄

µ (t) and

W
f,Q̄
µ (t) are independent standard Wiener processes.

A two-country joint mortality model as specified above is said to be decomposable as it can be

decomposed into two single-country mortality models [Egorov et al., 2011]. Egorov et al. [2011]

states that a two-country joint affine model, like the one presented above, is decomposable if the
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common factors do not depend on local factors. Since our two-country model is an independent-

factor model (factors do not depend on each other), it can be decomposed into two single-country

term structure models.

Given the dynamics of (X(t), Zd(t))′ under Q̄, the domestic cohort survival probabilities at initial

age x and time t can be represented as3

Sd(x, t, T ) = EQ̄[e−
∫ T

t
µd(x,s)ds|Ft]

= eB
d
1
(t,T )X(t)+Bd

2
(t,T )Zd(t)+Ad(t,T ), (4)

where Bd
1(t, T ), B

d
2(t, T ) and A

d(t, T ) are governed by ordinary differential equations







dBd
1
(t,T )
dt

dBd
2
(t,T )
dt






=







1

1






+







φ1 0

0 φ2













Bd
1(t, T )

Bd
2(t, T )






, (5)

dAd(t, T )

dt
= −

1

2

2
∑

j=1

((Σd)′Bd(t, T )Bd(t, T )′(Σd))j,j , (6)

with boundary conditions Bd
1(T, T ) = Bd

2(T, T ) = Ad(T, T ) = 0 and Σd being a diagonal matrix

with elements, σj for j = 1, 2. The solution to the above system of ODEs can be represented as

Bd
1(t, T ) = −

1− e−φ1(T−t)

φ1
,

Bd
2(t, T ) = −

1− e−φ2(T−t)

φ2
,

Ad(t, T ) =
1

2

∑

i=1,2

σ2i
φ3i

[
1

2
(1− e−2φi(T−t))− 2(1− e−φi(T−t)) + φi(T − t)]. (7)

The corresponding domestic average force of mortality curve is an affine function of the state

variables X(t) and Zd(t) which can be represented as

µ̄d(x, t, T ) = −
1

T − t
log[Sd(x, t, T )]

=
1− e−φ1(T−t)

φ1(T − t)
X(t) +

1− e−φ2(T−t)

φ2(T − t)
Zd(t)−

Ad(t, T )

T − t
. (8)

3See Dai and Singleton [2000] for the analysis of a single-country model.
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Similarly, the foreign average force of mortality curve is given by

µ̄f (x, t, T ) = −
1

T − t
log[Sf (x, t, T )]

=
1− e−φ1(T−t)

φ1(T − t)
X(t) +

1− e−φ3(T−t)

φ3(T − t)
Zf (t)−

Af (t, T )

T − t
, (9)

where

Af (t, T ) =
1

2

∑

i=1,3

σ2i
φ3i

[
1

2
(1− e−2φi(T−t))− 2(1− e−φi(T−t)) + φi(T − t)].

The corresponding foreign cohort survival function is

Sf (x, t, T ) = EQ̄[e−
∫ T

t
µf (x,s)ds|Ft]. (10)

Note that all the coefficients φ1, φ2, φ3, ψ1, ψ2, ψ3, σ1, σ2 and σ3 depend on age x. As a result, the

domestic and foreign survival functions depend also on age x through Bd
1(t, T ), B

d
2(t, T ), A

d(t, T ),

B
f
1 (t, T ), B

f
2 (t, T ) and A

f (t, T ).

2.2 Empirical Analysis

For the empirical analysis, we calibrate the joint mortality model by taking Australia as the domestic

country and the UK as the foreign country. We choose the UK as the foreign country for two reasons.

Firstly, the UK is one of the largest economies in the world with a well developed financial and life

insurance market. Secondly, the study of UK mortality shows that there are clear signs of cohort

effects in the UK [Gallop, 2008] which leads to the need for an internally consistent mortality model

of cross-country cohort mortality. We show that the joint affine mortality model is rich enough to

address this issue.

We use male mortality data for the age range 65 to 100 for cohorts born from 1857 to 1911 with

5-year intervals for both countries as full data for these cohorts are available in both countries over

this period. Since the sample for ages above 100 is rather small, we take 100 as the maximum age.

Thus we use 11 cohort groups with ages from 65 to 100.

The data source is the Human Mortality Database4 (HMD). The average force of mortality as

defined in Equation (8) and (9) is shown in Figure 1. From Figure 1 we note that the average force

of mortality of Australian cohorts is generally lower and more volatile than that of UK cohorts. In

4http://www.mortality.org/

9



Figure 2 we compare the average force of mortality of four Australian and UK cohorts (from the

oldest cohort to the youngest cohort), where we observe lower mortality rates in Australia across

all cohorts. This figure also reveals that there has been significant mortality improvements through

time, with higher rates associated with the 1857 cohort and much lower rates associated with the

1911 cohort.
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(a) Australian cohort mortality data
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(b) UK cohort mortality data

Figure 1: Average force of mortality for males born from 1857 to 1911, aged 65 to 100.

This joint affine mortality model is rewritten in a state space form and the parameters estimated

using the Kalman Filter algorithm [Harvey, 1990]. The Kalman Filter method is widely used

in the estimation of term structure models that can be rewritten in a state space form [Babbs

and Nowman, 1999, Jong, 2000, Christensen et al., 2011]. The state space form involves the

measurement equation and the state transition equation. The measurement equation represents

the affine relationship between the average force of mortality (or yield rates) and the state variables,

whilst the state transition equation describes the dynamics of the state variables. Details of the

Kalman Filter algorithm are provided in Appendix A.

In our joint affine mortality model, the measurement equation is

µ̄t = −BYt −A+ εt, εt ∼ N(0, H), (11)
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(b) 1877 cohort
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(c) 1897 cohort
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(d) 1911 cohort

Figure 2: Average force of mortality of selected cohorts, aged 65 to 100 for Australia and UK
respectively.

where

µ̄t =

































µ̄dt (τ1)

...

µ̄dt (τk)

µ̄
f
t (τ1)

...

µ̄
f
t (τk)

































, B = −

































1−e−φ1τ1

φ1τ1
1−e−φ2τ1

φ2τ1
0

...
...

...

1−e−φ1τk

φ1τk

1−e−φ2τk

φ2τk
0

1−e−φ1τ1

φ1τ1
0 1−e−φ3τ1

φ3τ1
...

...
...

1−e−φ1τk

φ1τk
0 1−e−φ3τk

φ3τk

































, Yt =













X(t)

Zd(t)

Zf (t)













,

A =

































1
2τ1

∑

i=1,2
σ2

i

φ3i
[12(1− e−2φiτ1)− 2(1− e−φiτ1) + φiτ1]

...

1
2τk

∑

i=1,2
σ2

i

φ3i
[12(1− e−2φiτk)− 2(1− e−φiτk) + φiτk]

1
2τ1

∑

i=1,3
σ2

i

φ3i
[12(1− e−2φiτ1)− 2(1− e−φiτ1) + φiτ1]

...

1
2τk

∑

i=1,3
σ2

i

φ3i
[12(1− e−2φiτk)− 2(1− e−φiτk) + φiτk]

































,

and H is the covariance matrix for the Gaussian observation noise. Since the volatility of the

measurement error varies with age, we assume H to be an n-dimensional diagonal matrix with
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elements σ2ε(τi) (i = 1, 2, ..., N) taking an exponential form

σ2ε(τi) = ε1exp(ε2τi), (12)

where ε1 and ε2 are two constants. With this specification the volatility of the measurement error is

exponentially increasing with age reflecting the increasing volatility of observed mortality rates at

older ages as the size of the population reduces. This is often referred to as the “Poisson” variation.

The state transition equation is

Yt = ΨYt−1 + ηt, ηt ∼ N(0, Q), (13)

where

Ψ =













e−ψ1 0 0

0 e−ψ2 0

0 0 e−ψ3













, Q =













σ2

1

2ψ1
(1− e−2ψ11) 0 0

0
σ2

2

2ψ2
(1− e−2ψ2) 0

0 0
σ2

3

2ψ3
(1− e−2ψ3)













.

The estimated parameters are reported in Table 2. Figure 3 plots the mean absolute percentage

errors (MAPE) of survival probabilities where it can be noted that while the two country affine

mortality model does a better job in the UK than in Australia, the model provides a satisfactory

fit in both countries. Both countries have similar profiles over the age range in terms of model fit.

Australian population sizes are smaller and this reflects in the slightly higher errors at older ages.

Another reason for the higher errors at the older ages is mortality heterogeneity. The model assumes

a single mortality rate for each age and does not account for a possible distribution of mortality

rates, as would occur with mortality heterogeneity, which would lead to a higher variability at older

ages. Modifications to the model to account for these factors are the topic of future research.

Table 2: Estimated multi-country mortality model parameters. The maximized log likelihood for
the parameter estimates is 9847, ε1 = 1.51× 10−6 and ε2 = 0.01.

i φi ψi σi

1 -0.0847 0.0090 0.0004
2 -0.0329 0.0223 0.0012
3 -0.0302 0.0071 0.0011
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Figure 3: In-sample mean absolute percentage error of survival probabilities, for cohorts born from
1857 to 1911, aged 65 to 100

3 Interest Rate Model

In order to develop our value-based indexes, we require an interest rate term structure model for

multiple countries. We require a term structure to value longevity-linked cash–flows, and we need to

incorporate interest rate risk into the hedging. Several term structure models have been proposed

in the literature, with one class being the affine term structure models (ATSMs). This class

encompasses the models of Vasicek [1977], Cox et al. [1985], Duffie et al. [1996] among others. It is

a tractable class of Markov arbitrage-free models. Another class is the Heath-Jarrow-Morton model

[Heath et al., 1992] and its several extensions. Models belonging to this class are forward rate models

and evolve the whole yield curve forward in time. These models are usually non-Markovian and in

general computationally intractable. We adopt the ATSM class due to its theoretical tractability

and ease of application.

We adopt the arbitrage-free Nelson-Siegel (AFNS) model developed in Christensen et al. [2011]

which has proved to better capture the full effects of shifts in the term structure. We also adopt

the assumption that the risk factors in the interest rate model are independent from those of the

mortality model [Biffis, 2005].

The AFNS model belongs to the affine term structure model class while maintaining the yield curve

representation introduced by Nelson and Siegel [1987]. The standard Nelson-Siegel model does not

satisfy the no-arbitrage condition, but is well known for its good empirical fit of the observed term
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structure. We choose the well-specified AFNS model since it combines the no-arbitrage property of

ATSMs and the good empirical fit of Nelson-Siegel models. On the one hand it is flexible enough to

cover most yield curve dynamics; on the other hand it has closed-form expressions for zero-coupon

prices which can greatly facilitate pricing applications [Dai and Singleton, 2000].

3.1 Model Setup

Denoting the domestic and foreign zero-coupon bond prices contracted at time t with T − t to

maturity by P d(t, T ) and P f (t, T ), by definition we have

P d(t, T ) = e−(T−t)yd(t,T ), (14)

P f (t, T ) = e−(T−t)yf (t,T ), (15)

where yd(t, T ) and yf (t, T ) are the corresponding domestic and foreign zero-coupon yield rates.

To specify the dynamics of the AFNS model, we take the domestic country as an example (full

details of the AFNS model can be found in Christensen et al. [2011]). Christensen et al. [2011]

show that the domestic yield function of the AFNS model is given by

yd(t, T ) = Ld(t) +
1− e−λ

d(T−t)

λd(T − t)
Sd(t) +

[

1− e−λ
d(T−t)

λd(T − t)
− e−λ

d(T−t)

]

Cd(t)−
V d(t, T )

T − t
, (16)

where λd is the Nelson-Siegel parameter, Ld(t), Sd(t) and Cd(t) are the time-varying level, slope

and curvature factors, V d(t,T )
T−t is the yield-adjustment term. In the independent-factor case the

yield-adjustment term is

V d(t, T )

T − t
=
(T − t)2

6
(sd1)

2

+

[

1

2(λd)2
−

1

(λd)3
1− e−λ

d(T−t)

(T − t)
+

1

4(λd)3
1− e−2λd(T−t)

(T − t)

]

(sd2)
2

+

[

1

2(λd)2
+

1

(λd)2
e−λ

d(T−t) −
1

4λd
(T − t)e−2λd(T−t) −

3

4(λd)2
e−λ

d(T−t)

−
2

(λd)3
1− e−λ

d(T−t)

(T − t)
+

5

8(λd)3
1− e−2λd(T−t)

(T − t)

]

(sd3)
2,

where sd1, s
d
2 and sd3 are elements in the volatility matrix of the three factors.
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Under the risk-neutral Q-measure, Ld(t), Sd(t) and Cd(t) have the following dynamics













dLd(t)

dSd(t)

dCd(t)













= −













0 0 0

0 λd −λd

0 0 λd

























Ld(t)

Sd(t)

Cd(t)













dt+













sd1 0 0

0 sd2 0

0 0 sd3

























dW
d,Q
1 (t)

dW
d,Q
2 (t)

dW
d,Q
3 (t)













, (17)

while under the real-world P -measure













dLd(t)

dSd(t)

dCd(t)













=













κd1 0 0

0 κd2 0

0 0 κd3





































θd1

θd2

θd3













−













Ld(t)

Sd(t)

Cd(t)

























dt+













sd1 0 0

0 sd2 0

0 0 sd3

























dW
d,P
1 (t)

dW
d,P
2 (t)

dW
d,P
3 (t)













, (18)

with κd1, κ
d
2, κ

d
3, θ

d
1 , θ

d
2 and θd3 being the real-world parameters for the domestic country.

Similar assumptions are made for the financial market in the foreign country so that the foreign

yield to maturity is

yf (t, T ) = Lf (t) +
1− e−λ

f (T−t)

λf (T − t)
Sf (t) +

[

1− e−λ
f (T−t)

λf (T − t)
− e−λ

f (T−t)

]

Cf (t)−
V f (t, T )

T − t
. (19)

Equation (16) and (19) will be used in the estimation of AFNS model in Section 3.2.

3.2 Empirical Analysis

Following the mortality framework presented in Section 2, we model a financial market consisting

of Australian and UK treasury bonds. We use zero-coupon yields provided by the Reserve Bank of

Australia and the Bank of England. To calibrate the interest rate model, we consider the period

from January 2009 to March 2015, using end-of-month observations of 1-, 2-, · · · , 10-year yields

from Australia and the UK. Since the yield rates are only provided for maturities up to 10 years

in Australia, we employ maturities up to 10 years for both countries to maintain consistency.

Figure 4 provides time series plots of zero coupon yields for both Australia and UK. The yield

curves are typically upward sloping but change unpredictably depending on the economic outlook

between the respective countries. Descriptive statistics for the two data sets are presented in Table

3. We can also observe the upward sloping trend from the mean of yields. In both countries the

mean increases with maturity. We can also observe that yields are highly persistent, there are

sizeable autocorrelations at 1 month and even at 6 months.

The AFNS model is represented in a state-space form and estimated using a Kalman filter algorithm.
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(a) Australian zero-coupon yield rate curve
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(b) UK zero-coupon yield rate curve

Figure 4: Time series of zero coupon yields in Australia and UK

Table 3: Summary statistics for zero coupon yields. All yield data are monthly, from January 2009
through to March 2015. ρ̂(τ) denotes the autocorrelation at displacement τ .

Australia

Maturity Mean Standard Deviation Minimum Maximum ρ̂(1) ρ̂(6) ρ̂(12)
1Y 3.31 0.9691 1.75 4.92 0.9449 0.7414 0.4853
2Y 3.37 1.0046 1.71 5.05 0.9444 0.7402 0.5287
3Y 3.51 1.0493 1.69 5.21 0.944 0.7283 0.5202
4Y 3.65 1.0736 1.71 5.39 0.945 0.7192 0.4990
5Y 3.78 1.0726 1.78 5.49 0.9458 0.7129 0.4783
6Y 3.90 1.0575 1.88 5.55 0.9463 0.7087 0.4604
7Y 4.00 1.035 1.99 5.6 0.9457 0.7049 0.4447
8Y 4.09 1.0096 2.1 5.64 0.9442 0.6992 0.4311
9Y 4.18 0.9859 2.2 5.68 0.942 0.6933 0.4182
10Y 4.26 0.9659 2.29 5.72 0.9397 0.6864 0.4074

UK

Maturity Mean Standard Deviation Minimum Maximum ρ̂(1) ρ̂(6) ρ̂(12)
1Y 0.50 0.1933 0.17 0.95 0.8851 0.6396 0.4912
2Y 0.79 0.4305 0.07 1.72 0.9369 0.6722 0.4069
3Y 1.14 0.5918 0.16 2.38 0.9443 0.6812 0.3967
4Y 1.48 0.6798 0.35 2.80 0.9443 0.6847 0.4021
5Y 1.78 0.7295 0.57 3.08 0.9419 0.6830 0.4074
6Y 2.06 0.7606 0.80 3.33 0.9386 0.6769 0.4094
7Y 2.30 0.7824 1.02 3.62 0.9353 0.6692 0.4085
8Y 2.52 0.7978 1.22 3.85 0.9323 0.6613 0.4063
9Y 2.71 0.8084 1.31 4.05 0.9301 0.6549 0.4040
10Y 2.88 0.8145 1.39 4.24 0.9285 0.6501 0.4022
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To display the state-space representations of the domestic and foreign AFNS model, we drop the

superscript d and f for simplicity. The measurement equation is

yt = −BYt −A+ εt, εt ∼ N(0, H), (20)

where

yt =













yt(τ1)

...

yt(τk)













, B = −













1 1−e−λτ1

λτ1
1−e−λτ1

λτ1
− e−λτ1

...
...

...

1 1−e−λτk

λτk

1−e−λτk

λτk
− e−λτk













, Yt =













L(t)

S(t)

C(t)













, A =













V (τ1)
τ1
...

V (τk
τk













.

The state transition equation is

Yt = (I − e−K∆t)Θ + e−K∆tYt−1 + ηt, ηt ∼ N(0, Q), (21)

where

K =













κ1 0 0

0 κ2 0

0 0 κ3













, Θ =













θ1

θ2

θ3













.

Since we use monthly data, we have ∆t = 1
12 and Q =

∫ ∆t
0 e−KsΣΣTe−(KTs)ds where

Σ =













s1 0 0

0 s2 0

0 0 s3













.

Estimates for the independent-factor AFNS model are presented in Table 4. They are generally

consistent with the estimates presented in Christensen et al. [2011].

Table 4: Estimates for the independent-factor AFNS model. The maximized log likelihood is
4672.62 for Australia and 4144.24 for UK.

Australia UK

i κdi θdi sdi λd κ
f
i θ

f
i s

f
i λf

1 0.0576 0.0702 0.0062 0.5232 0.0436 0.0702 0.0068 0.7449
2 0.2312 -0.0252 0.0046 0.2313 -0.0252 0.0046
3 1.0623 -0.0136 0.0059 1.0623 -0.0115 0.0046

For the in-sample fit, residual means and their root mean square errors (RMSE) are provided in

Table 5. The lower log likelihood value together with the generally larger residual means and RMSEs
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obtained for UK market show that the AFNS model performs better for the Australian market, but

overall the AFNS model shows good in-sample performance in both countries. Additional evidence

on goodness-of-fit is provided in Figure 5 which plots the mean yield curves of the empirical data and

estimated AFNS models for both countries. From Figure 5 we can directly see that the calibrated

curves perform well.

Table 5: Residual means and their root mean square errors for maturities measured in years. Means
and RMSEs are in basis points.

Australia UK

Maturity Mean RMSE Mean RMSE

1Y 1.16 3.15 3.53 4.93
2Y -1.62 3.04 2.21 2.92
3Y -0.49 3.02 -1.87 4.35
4Y 0.62 2.76 -5.50 5.12
5Y 0.62 2.56 -6.86 4.45
6Y 0.12 2.05 -5.76 3.01
7Y -0.33 1.42 -2.76 1.74
8Y -0.48 1.23 1.29 2.30
9Y -0.13 1.82 5.70 4.01
10Y 0.53 2.65 9.96 5.88
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Figure 5: Empirical and estimated mean yield curves in Australia and UK, from January 2009 to
March 2015.

4 Longevity Indexes and Cross Country Hedging

In this section we present the value-based indexes for both domestic and foreign countries. Li and

Hardy [2011] show that the lack of a multi-country mortality model may lead to assessed basis risk

being inaccurate. This arises from a positive correlation between the two populations that should
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not be neglected. Li and Hardy [2011] assess this problem using variants of the Lee-Carter model

[Lee and Carter, 1992] that allow dependence between two populations (see Enchev et al. [2016] for

other multi-country mortality models). We use our multi-country continuous time mortality model

with a common factor capturing the correlation structure between the two populations to capture

the positive correlation between two populations.

We also use a graphical risk metric to assess the basis risk arising from hedging both longevity

risk and interest rate risk in a domestic country with foreign indexes. To show the impact of

both interest rate and mortality risk we use Australia and UK as domestic and foreign countries,

respectively.

4.1 Value-based Longevity Index

The longevity index we use is value-based, allowing for better quantification of risk, and the index

includes both longevity risk and interest rate risk. Our index is the value of a unit stream of

life-time nominal income commencing at age 65. It is similar to an annuity value quoted by a life

insurer except that it includes no risk loading, no expense loading and no profit loading. It captures

the impact of mortality and interest rates through the models we have proposed and calibrated.

The value-based index also reflects the liability of a life insurer issuing a life annuity, or a pension

fund paying a non-indexed defined benefit pension. As mortality is currently a non-tradable asset,

the value-based longevity index provides an index that reflects the cost of providing retirement

income and the liability of an annuity provider. The development of a value-based longevity index,

including multi-country indexes, along with an improved framework for modelling and managing

longevity risk has the potential to reduce the capital costs of providing long-term retirement prod-

ucts and the solvency risk for life annuity and pension providers through a better understanding of

the risk and more effective risk reduction techniques.

With the calibrated mortality and interest rate models we compute the value-based longevity

indexes for both countries as

I idx (t) =
x∗−x
∑

j=1

P d(t, t+ j)Sd(x, t, t+ j), (22)

Iifx (t) =
x∗−x
∑

j=1

P f (t, t+ j)Sf (x, t, t+ j), (23)

where x∗ is the maximum age. Each index is defined as the discounted value at t of lifetime annual
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income of one unit of currency for each cohort in country d or f .

4.2 Basis Risk Metric

The value-based longevity index is designed to track the cost of lifetime annual income on retire-

ment. We use UK longevity indexes associated with the following cohorts; 1950, 1945, 1940 and

1935 (whose members have already retired aged 65, 70, 75 and 80 respectively at the end of De-

cember 2015) and assume that mortality swaps can be obtained referenced to these UK indexes.

Although we construct value-based longevity indexes for Australia, we assume that there are no

liquid contracts that can be referenced to such indexes.

We consider an annuity provider exposed to life annuity payments for a pool consisting of an

Australian cohort and hedging the longevity risk arising from this Australian cohort by trading

mortality swaps indexed to the UK mortality experience, whose survivor index is represented in

Equation (23). Because in practice there are multiple cohorts to hedge, we assess three alternatives

on how the annuity provider can select the most appropriate UK cohort for hedging the Australian

cohort.

Table 6 shows the three examples considered; for Australian cohorts born in 1940 and 1945, we

use UK cohorts which are of the same age, 5 years older and 5 years younger. For the Australian

cohort born in 1950, we use UK cohorts born in 1949, 1945 and 1950 since the 1950 cohort is the

youngest UK cohort available in retirement.

Table 6: Selected domestic cohort and foreign cohorts for Example I, II and III, which are presented
below.

Example Australian Cohort UK Cohort

I 1950 1940 1945 1950
II 1945 1940 1945 1950
III 1940 1935 1940 1945

The Australian annuity provider is exposed to the risk of paying $1 annually to each annuitant

until the last remaining annuitant dies. The survivor index for each domestic cohort is presented

in Equation (22). Let

Hd = Iidx (t)− E(Iidx (t)), (24)

and

Hf = Iifx (t)− E(Iifx (t)), (25)

be the exceedances of I idx (t) and Iifx (t) over their expected values respectively.
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As suggested in Chan et al. [2016], we base the graphical risk metric onHd andHf rather than Iidx (t)

and I
if
x (t), as in practice we are primarily interested in deviations from the expected outcomes,

and also because the use of Hd and Hf ensures all resulting risk metrics are centred at the origin,

thereby enabling a direct comparison of the risk metrics for different foreign cohorts.

Denoting hf as the hedge ratio, we use hf units of the foreign index for each unit of domestic

index. Our primary hedging objective is to maximise hedge effectiveness, that is, to minimize the

uncertainty in (Hd − hfHf ). Thus the optimization problem becomes that of finding the optimal

hf units of foreign index that minimizes the variance of (Hd − hfHf ), that is

Var(Hd − hfHf ) = Var(Hd)− 2hfCov(Hd, Hf ) + (hf )2Var(Hf )

= Var(Hf )

[

hf −
Cov(Hd, Hf )

Var(Hf )

]2

+Var(Hd)−

[

Cov(Hd, Hf )
]2

Var(Hf )
. (26)

To minimize the above equation, we have

hf =
Cov(Hd, Hf )

Var(Hf )
. (27)

The risk metric is illustrated with joint prediction regions at different confidence levels (see Chan

et al. [2016]). For a confidence level of 1− α (where 0 ≤ α ≤ 1)

Pr
[(

Hd, hfHf
)

∈ Jα

]

= 1− α, (28)

where Jα is the joint prediction region at the 1− α confidence level.

We use simulation to generate future paths of mortality rates as well as interest rates. The basis

risk metric is constructed using the following steps:

• Step 1: Simulate 20,000 best-estimate domestic and foreign cohort survival curves for the

cohorts presented in Table 6, using parameter estimates for the multi-country mortality model

(see Table 2).

• Step 2: Simulate 20,000 yield rates for Australia and the UK at the end of December 2015,

using parameter estimates for the independent-factor AFNS model as shown in Table 4, and

then calculate the corresponding discount bond prices.

• Step 3: Calculate values of domestic and foreign indexes (Equation (22) and (23) respectively)

using the cohort survival curves and zero-coupon bond prices obtained in previous steps, and
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then calculate realized Hd and Hf .

• Step 4: Calculate hf such that hf = Cov(Hd,Hf )
Var(Hf )

, the results are presented in Table 7.

• Step 5: For each realized x = (Hd, hfHf )′ calculate its Mahalanobis distance to the

best estimate µ = (0, 0)′. Mahalanobis distance measures the distance between an ob-

servation of x and the distribution characterized by mean µ and covariance matrix S,

DM (x) =
√

(x− µ)′S−1(x− µ) (details of Mahalanobis distance can be found in Mahalanobis

[1936] and Gnanadesikan and Kettenring [1972]). With Hd and Hf defined in Equation (24)

and (25), µ = (0, 0)′ in our case.

• Step 6: Draw a convex hull that encloses 20, 000(1− α) realizations with the shortest Maha-

lanobis distances.
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(c) 1940 domestic and foreign cohorts
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(d) 1935 domestic and foreign cohorts

Figure 6: The means of simulated cohort survival curves for selected cohorts. 20,000 simulations
are performed using the three-factor joint ATSM developed in Section 2.

The means of simulated survival curves in the first step are shown in Figure 6. We note that
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survival probabilities of an Australian cohort are consistently higher than that of the UK cohort

born in the same year. This is consistent with the trend in historical data as plotted in Figure

1 and Figure 2, in which the average force of mortality of an Australian cohort is generally lower

than that of the UK cohort born in the same year. The lower average force of mortality produces

the higher survival probabilities in the Australian population.

For each domestic cohort, we consider three existing foreign indexes around similar ages as specified

in Table 6. Table 7 reports the optimal hedge ratios for each cohort which are calculated from

Equation (27).

Table 7: The calculated values of hf , where hf refers to the optimal hedge ratio.

Example Domestic Cohort i Foreign Index hf = Cov(Hd,Hf )
Var(Hf )

I 1950 I
1940f
75 (t) 0.9997

I
1945f
70 (t) 0.8540

I
1950f
65 (t) 0.7507

II 1945 I
1940f
75 (t) 0.8423

I
1945f
70 (t) 0.7188

I
1950f
65 (t) 0.4815

III 1940 I
1935f
75 (t) 0.8423

I
1940f
75 (t) 0.6882

I
1945f
70 (t) 0.4359

Figure 7 shows an example of the basis risk metric with α being 10%, 20%, 30%, 40% and 50%.

In this example, we consider the risk exposures to be both longevity risk and interest rate risk

of the 1950 domestic cohort. These risk exposures are hedged by a foreign longevity index born

in the same year which is I1950f65 (t). The red dots are the 20,000 realized (Hd, hfHf ). For each

realization, if a perfect hedge occurs (Hd = hfHf ), the red dot will lie on the 45-degree line; if an

under hedge occurs (Hd > hfHf ), the red dot will lie below the 45-degree line; if an over hedge

occurs (Hd < hfHf ), the red dot will lie above the 45-degree line. The convex hull (the smallest

convex set) drawn is a 100(1−α) per cent joint prediction region for Hd and hfHf , by construction

it contains a randomly selected pair of Hd and hfHf in the simulated sample with a probability of

(1 − α). To be more specific, the innermost part (surrounded by the circle of the lightest colour)

encompass 50% of possible pairs of Hd and hfHf (where α = 50% and the confidence interval is

1−α = 50%, see Equation (28)), surrounded by 60%, 70%, 80% and 90% (surrounded by the circle

of the darkest colour) respectively. With this risk metric, the probability of occurrence is related

to the ranges of possible hedging outcomes.
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Figure 7: Basis risk metric using I1950f65 (t) to hedge risks associated with the domestic 1950 cohort.
The optimal hedge ratio is 0.7507.

Given α = 10%, Figure 8 compares risk metrics of three foreign indexes for each domestic cohort.

Note that the 45-degree line indicates the perfect hedge, and the deviation from the 45-degree line

indicates the extent of over- or under-hedge. We can conclude from Figure 8 that, while with the

optimally chosen hf , all foreign indexes provide satisfactory hedges to the domestic cohorts, the

best hedge is the foreign index of the same cohort since it best matches the 45-degree line.

To further explore this, we take the 1950 domestic cohort as an example. Figure 9 gives plots of the

simulated surplus distribution of the 1950 domestic cohort hedged with 1950, 1945 and 1940 foreign

cohorts respectively. From Figure 9 we can see that the surplus is more centred around zero if the

1950 domestic cohort is hedged with the 1950 foreign cohort, and the distribution deteriorates if

an older foreign cohort is used. Figure 9 shows that the 1950 foreign cohort dominates the other

foreign cohorts in providing an effective hedge against both mortality and interest rate risks.
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(a) Example I: 1950 domestic cohort
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(b) Example II: 1945 domestic cohort
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(c) Example III: 1940 domestic cohort

Figure 8: Comparison of basis risk metrics. Each sub-figure shows a comparison of basis risk
metrics hedged with three different foreign indexes.
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Figure 9: Surplus distribution of risks associated with 1950 domestic cohort hedged using foreign
indexes.
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4.3 Stochastic Mortality Basis Risk with Deterministic Interest Rates

Most longevity indexes include only mortality risk. They effectively assume that interest rate is

fully hedged in any application. To consider only basis risk associated with stochastic mortality

evolutions, we redo the analysis presented in Subsection 4.2 where in place of the stochastic interest

rates we fix the initial yield curves for both Australia and the UK across various maturities. We use

the yield rates for the two countries as of the 31st of December 2015. We maintain the stochastic

mortality evolutions as presented in (1) with the resulting survival functions presented in equations

(4) and (10) for the Australian and UK populations respectively.

Figure 10 shows the convex hulls for varying levels of significance, α. In comparison with Figure 7,

we note that the red dots in Figure 10 are more concentrated around the the 45-degree line high-

lighting the reduction in basis risk associated with the assumption of deterministic interest rates.

However, besides the concentration around the 45-degree line, the two plots are very consistent with

each other across all levels of significance with α = 10% encompassing most of the realizations.

Even though interest rates are assumed to be deterministic, the difference in the term structure

between the two countries has a significant influence on the basis risk arising from differences in

the interest rates.

From Figure 11 we note consistence with findings in Figure 8a where the best hedging instrument

for the 1950 domestic cohort is 1950 UK index.
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Figure 10: Basis risk metric using I1950f65 (t) to hedge risks associated with the domestic 1950 cohort
when the interest rates are extracted from the initial forward curve as of the 31st of December 2015.
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Figure 11: Comparison of basis risk metrics when the 1950 domestic cohort is hedged with three
different foreign indexes.

4.4 Common Interest Rates and Different Mortality Experiences

Since many countries in Europe share a common currency and interest rate market we use France

and Netherlands data to show the impact on basis risk of a common interest rate term structure.

We use the Netherlands as the domestic country and France as the foreign country. Since both

countries are in the eurozone where interest rates are set by the European Central Bank, the basis

risk only arises from different mortality experiences. Instead of calibrating an interest rate model,

we use a constant discount rate of 5% as suggested in Coughlan et al. [2011]. This allows us to

focus on hedging effectiveness where basis risk is purely caused by differences in mortality. We

recalibrate the mortality model described in Section 2 using mortality experiences in France and

Netherlands. We use male mortality data aged 65 to 100 for cohorts born from 1857 to 1911 for

both countries which are available in the Human Mortality Database.

Table 8: Estimated multi-country mortality model parameters. The maximized log likelihood for
the parameter estimates is 9321, ε1 = 1.41× 10−6 and ε2 = 0.05.

i φi ψi σi

1 -0.0792 0.0088 0.0004
2 0.0237 0.0070 0.0011
3 0.0975 0.0295 0.0014

Table 8 reports the estimated parameter values and Figure 12 plots the in-sample mean absolute

percentage errors of survival probabilities for France and Netherlands (equivalent to Table 2 and

Figure 3). Comparing Table 8 with Table 2 it is interesting to note that, although local factors

behave differently, the parameter values related to the common factor of France and Netherlands

are similar to those of the common factor for Australia and the UK. The mean absolute percentage
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errors for cohorts in France and Netherlands shown in Figure 12 are generally consistent with those

in Australia and UK.
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Figure 12: In-sample mean absolute percentage error of survival probabilities, for cohorts born
from 1857 to 1911, aged 65 to 100

The French longevity indexes are used to hedge the risk exposures of an annuity provider in the

Netherlands. We consider the case where French longevity indexes for cohorts 1940, 1945 and

1950 are available. The calculated optimal hedge ratios are reported in Table 9. The approach for

calculating optimal hedge ratios is as described in Section 4.2. Because France and Netherlands

have common interest rates, we note that the correlation between Hd and Hf is much higher as

compared to that in the Australia and UK case.

Figure 13 shows the ranges of possible hedging outcomes using the three French longevity indexes

with a confidence interval of 90% (where α = 10%). In Figure 13 we observe that the best hedge is

obtained when the 1945 domestic cohort is hedged with the 1945 foreign index. Comparing Figure

13 with Figure 8(b), we note that the results obtained in the France and Netherlands case are

consistent with those obtained in the Australia and UK case where the best hedging instrument

is the foreign index of the same cohort. As expected, basis risk is relatively smaller in the France

and Netherlands case as the hedging outcomes are much closer to the 45-degree line and this is also

attributed by the absence of interest rate risk.

A specific example of basis risk metric, where the hedging instrument is the French longevity index

linked to the cohort born in 1945, is given in Figure 14 (equivalent to Figure 7). The area inside

the circle with the lightest colour consists of 50% of possible hedging outcomes, and is surrounded
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by 60%, 70%, 80% and 90% respectively.

Table 9: The calculated values of hf , where hf refers to the optimal hedge ratio.

Example Domestic Cohort i Foreign Index hf = Cov(Hd,Hf )
Var(Hf )

IV 1945 I
1940f
75 (t) 1.0585

I
1945f
70 (t) 0.9428

I
1950f
65 (t) 0.6298
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Figure 13: Comparison of basis risk metrics, α = 10%. The risks associated with 1945 domestic
cohort are hedged with the 1940, 1945 and 1950 foreign indexes.

5 Conclusion

This paper has proposed and developed a multi-country continuous-time mortality model which

allows for positive correlation of longevity improvements in different countries. Along with a multi-

country affine Nelson-Seigel term structure model, we propose and assess value-based longevity

indexes for multiple cohorts in different countries. The value-based longevity index can be used

to measure and hedge longevity risk and interest rate risk. It tracks the cost of lifetime nominal

annual income on retirement and provides a better measure of longevity risks for both individuals

as well as pension funds and life insurers.

We apply the models and longevity indexes to assess risk exposures of an Australian annuity

provider hedging using instruments based on UK longevity indexes. We use a graphical risk metric

to assess the basis risk arising from the index-based hedge. We show how optimal hedge ratios
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Figure 14: Basis risk metric using I1945f70 (t) to hedge risks associated with the domestic 1945 cohort.
The optimal hedge ratio is 0.9428.

based on foreign longevity indexes can hedge domestic risk exposure where no hedge instruments

on domestic indexes exist in the domestic country. We consider different domestic cohorts and each

of them is hedged with foreign longevity indexes on different cohorts. The simulation results show

that for all the three domestic cohorts considered, the best hedge is the foreign index of the same

cohort. It provides a better match to the 45-degree line in the graphical basis risk metric and a

more centred surplus distribution. The graphical approach provides a more complete summary of

the hedging effectiveness than any single risk measure.

We also apply the graphical risk metric to consider two countries with the same interest rate in

the eurozone. The populations used are the French population and the Netherlands population.

French longevity indexes are used to hedge risk exposures of an annuity provider in the Netherlands.

Because of the common interest rates the basis risk is reduced considerably compared to the UK

and Australia case. The value-based index can be used to assess hedging instruments if the two

populations share the same interest rates.

We assume a static hedging strategy using longevity swaps, which is a practical approach given the

illiquid longevity market [Ngai and Sherris, 2011]. Future research will consider dynamic hedging

strategies allowing for flexible hedge ratios and a wider range of hedging instruments.
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Appendix

A. Kalman Filter Algorithm

The measurement equation is

yt = −BYt −A+ εt, εt ∼ N(0, H), (29)

where A and B are given by (11) and (20), H is a diagonal matrix with elements σ2ε(τi). The state

transition equation can be represented as

Yt = a+ bYt−1 + ηt, ηt ∼ N(0, Q), (30)

where a, b and Q are given by (13) and (21). Denote the filtered values of the state variables and

their corresponding covariance matrix by Yt|t and St|t, and further denote the unknown parameters

by θ. In the forecasting step, we forecast unknown values of state variables conditioning on the

information at time t− 1 such that

Yt|t−1 = a+ bYt−1|t−1, St|t−1 = b′St−1|t−1b+Qt(θ). (31)

In the next step we use the information at time t to update our forecasts

Yt|t = Yt|t−1 − St|t−1B(θ)F−1
t|t−1vt|t−1, (32)

St|t = St|t−1 − St|t−1B(θ)F−1
t|t−1B(θ)′St|t−1, (33)

where

vt|t−1 = yt +A(θ) +B(θ)Xt|t−1, and Ft|t−1 = B(θ)′St|t−1B(θ) +H.

Every iteration will yield a value for the log-likelihood function shown below

log l(y1, ..., yT ; θ) =
T
∑

t=1

(

−
N

2
log(2π)−

1

2
log(Ft|t−1)−

1

2
v′t|t−1F

−1
t|t−1vt|t−1

)

, (34)

where N is the number of observed time series. The estimated parameter set θ̂ is determined as

the one which maximizes the log-likelihood function.
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