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Abstract

Cohort effects have been identified in many countries. However, some mortality

models only consider the modelling and projection of age-period effects. Others,

that incorporate cohort effects, do not consider cohort specific survival curves that

are important for pricing and hedging purposes. In this paper, we consider mod-

elling mortality development on a cohort basis, propose and assess a multi-cohort

mortality model in an affine framework. We model the mortality intensity with

common factors that affect all the cohorts as well as cohort specific factors that

only affect specific cohorts, so that the correlations among cohorts are not perfect.

In particular, we consider a three-factor case. The three-factor multi-cohort model

is established using Danish male mortality data. The two common factors are ex-

tracted using a Kalman Filter algorithm and cohort specific factors are estimated

by minimizing the residual calibration error. The calibration results demonstrate

the need for cohort effects. The out-of-sample forecast performance of the pro-

posed model, the RH model (age-period-cohort model developed of Renshaw and

Haberman (2006)) and the CBD model (age-period model developed of Cairns et al.

(2006)) are compared to actual mortality data. The results show that the proposed

model produces more consistent estimates of cohort survival curves.
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1 Introduction

A cohort is a group of individuals who are born in a particular year and share specific

experience within a certain time period. This paper considers modelling mortality devel-

opment on a cohort basis. One of the reasons why a cohort mortality model is important

is mortality forecasting. Given differences in medicine, education and the like, it is ob-

vious that mortality rates for different cohorts evolve in different patterns. The survival

probability of a specific cohort depends on future mortality intensity movements which

are affected by both common effects and cohort specific effects. Better forecasts of cohort

survival curves provide a basis for accurate pricing and hedging of mortality-linked prod-

ucts issued by insurance companies and annuity providers. Life insurance companies and

pension funds need to manage longevity risk. Their hedging strategies involve contracts

that are contingent on future mortality evolution of specific cohorts. Mortality-linked

derivative pricing and hedging provide another reason. For example, the future coupon

payments of longevity bonds (also known as survivor bonds) depend on the percentage

of chosen cohorts of retirement age (e.g. 65) on the issue date still alive on the future

coupon payment dates. Even the price of more complicated securities, such as survivor

swaps, q-forwards, and option-type longevity derivatives, requires assumptions on cohort

survival curves.

The analysis of UK mortality data by Gallop (2008) shows that there are clear signs of

cohort effects. Cohorts born in the 1920s and 1930s exhibit higher rates of mortality

improvement than other cohorts. A number of possible reasons have been put forward

including differences in education, medical advances and smoking patterns between co-

horts (see Willets (2004) for an overview). Cohort effects have also been identified in

other countries such as Denmark, Japan, France, Italy and Switzerland by Andreev and

Vaupel (2005). However, some mortality models - that include Lee and Carter (1992),

Brouhns et al. (2002) and Blackburn and Sherris (2013) - only consider the modelling

and projection of age-period effects. Others incorporating cohort effects, for example

Renshaw and Haberman (2006), do not consider cohort specific survival curves which are
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important for pricing and hedging purposes. In this paper, we present and assess a cohort

mortality model that can deliver tractable representations of cohort survival curves.

Dahl and Moller (2006) consider a single cohort mortality model with the mortality

intensity

µ(x, t) = µo(x+ t)ζ(x, t), (1)

where (µo(x+ t))t∈[0,T ] is the initial mortality intensity at all ages and takes the form of

a Gompertz-Makeham mortality law. Here, ζ(x, t) describes the change in the mortality

from time 0 to t for a person aged x+ t and is modelled via a time-inhomogeneous CIR

process.

We modify Dahl and Moller’s mortality model for cohort i such that

µi(x, t) = µo,ix (t) + ζ i(x, t), (2)

so that this model can be calibrated in an affine framework. The affine framework is

very well developed in interest rates modelling theory (see Duffie and Kan (1996), Dai

and Singleton (2000)), the main advantage being its tractability and flexibility. Another

advantage of the affine framework is its ease of application in pricing and risk man-

agement. Similar to the short rate models in interest rate theory, the pricing of life

contingent contracts and risk analysis can be carried out under a risk-neutral measure

using a correspondingly adjusted discount rate. Biffis (2005) considers a mortality model

in a financial market and shows how to value several basic life insurance contracts in the

affine framework.

We extend the single cohort model to multiple cohorts. As pointed out by Jevtic et al.

(2013), a desirable model should capture the characteristics of the whole mortality surface.

They propose a two-factor model that produces high correlations among cohorts. Their

model fails to capture the dynamics of mortality intensity at older ages. We model the

mortality intensity with common factors that affect all the cohorts as well as cohort

specific factors that only affect specific cohorts, so that the correlations among cohorts
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are not perfect. We estimate our model using Danish mortality data, and show that this

model has good empirical fit.

The present paper is organized as follows. The next section outlines the general case of

the model. Then, Section 3 discusses the special case of an affine three-factor model.

Section 4 fits the model to Danish mortality data. Section 5 presents simulation results

of our model. A comparison with Renshaw and Haberman’s model and the CBD model

is provided in Section 6. Concluding remarks are given in Section 7.

2 Model Specification

In this section, we present the general case of our cohort mortality model (Section 2.1)

and illustrate how an affine framework can be extended to mortality rates modelling

(Section 2.2).

2.1 The General Case

We consider the whole mortality surface comprising a number of cohorts. Each cohort

is labelled by i ∈ I ⊂ R indicating the year in which this cohort is born. We take as

a starting point an initial curve for mortality intensity at all ages (µo,ix (t))t∈[0,T ] for the

cohort i aged x + t at time t. Let (µi(x, t))t∈[0,T ] represent the mortality intensity for

cohort i aged x+ t at time t. At time 0, we have µi(x, 0) = µo,ix (0).

For the initial curve, we neglect the cohort specific effects and assume that the diffusion

processes affecting each cohort are driven by some common factors. We then model the

cohort specific effects via a diffusion process ζ i = (ζ i(x, t))t∈[0,T ]. The mortality intensity

process for cohort i aged x+ t at time t is modelled via

µi(x, t) = µo,ix (t) + ζ i(x, t). (3)
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The risk-neutral survival probability is defined as

Si(x, t, T ) = EQ[e−
∫ T
t µi(x,s)ds|F(t)] = EQ[e−

∫ T
t (µo,ix (s)+ζi(x,s))ds|F(t)], (4)

where Q is the risk-neutral measure.

2.2 The Affine Mortality Framework

Equation (4) shows that the mortality model should have two components:

(a) the change of measure from data-generating measure P to risk-neutral measure Q;

(b) the dynamics of the mortality intensity µ under the risk-neutral measure Q.

A market for longevity risk does not exist at present. Several longevity-linked derivatives

have been proposed in the literature and some transactions have been completed in

practice involving longevity risk. These derivatives are not actively traded in the market

and hence there is no market data to rely on. Since the market is incomplete, there is

no unique risk-neutral measure Q. In the literature, some authors adopt a risk premium

implied by longevity-linked products or institution standards like Cairns et al. (2009)

and Biffis (2005). Cairns et al. (2009) propose to use the risk premium implied by the

EIB bond, which is the first longevity bond but has not been actually traded. The EIB

bond was designed to help financial institutions look for potential instruments to hedge

their systematic longevity risks. It turned out that the EIB bond was not successful with

investors, and that it did not generate sufficient demand to be launched. Biffis (2005)

proposes to set the risk-neutral measure Q according to the International Accounting

Standards Board’s proposal. The risk-neutral measure Q restricted to financial market

risks can be easily inferred from observable security prices in the market. As for the choice

of Q restricted to mortality market risks, Biffis (2005) proposes to use the risk-adjusted

discount rate in the embedded value method. Another common way is to adopt a zero

market price assumption. One example is Schrager (2006), where the author fixes the

market price of mortality risk to zero to price a guaranteed annuity option.
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Since the focus of this paper lies on evaluating the empirical performance of the proposed

multi-cohort mortality model and not on exploiting the market price of longevity risk,

we follow the argumentation of Blackburn and Sherris (2013) and define this risk-neutral

measure to be the best-estimate measure Q̄ that is in accordance with historical mortality

data. In our affine mortality model (b) is replaced by the following assumption:

(b)’ the mortality intensity is an affine (constant-plus-linear) function, R(Y), of factors

where Y ∈ RN is a vector of factors, and the factors are affine diffusions (with both of the

drift and the variance-covariance matrix being affine) under the best-estimate measure

Q̄.

The instantaneous mortality intensity µi(x, t) of a given cohort i and initial age x at time

t is given by

µi(x, t) = δ0 + δ′1Y
i(t), (5)

where δ0 ∈ R and δ1 ∈ RN . For the values of δ0 and δ1, a narrower but more usual

assumption is δ0 = 0 and δ1 = 1 (see Blackburn and Sherris (2013), Jevtic et al. (2013)).

Yi(t) is a vector of N factors.

The process Yi for a given cohort i is an affine diffusion process if Yi solves the following

stochastic differential equation

dYi(t) = H(Yi(t))dt+G(Yi(t))dWQ̄(t), (6)

with

H(Yi(t)) = −ΦYi(t),

G(Yi(t)) = Σs(Yi(t)),

where s(Yi(t)) is a diagonal N × N matrix with the jth diagonal element sj(Y
i
j (t)) =√

s0j + s1jY i
j (t), and s0j, s1j ∈ R. Φ,Σ ∈ RN×N are constants. WQ̄(t) is an N-

dimensional standard Brownian motion under the best-estimate measure Q̄.
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Gaussian processes (when s1j = 0, j = 1, ..., N) and square-root processes (when s1j 6= 0,

j = 1, ..., N) shown above are the best known examples of affine diffusions. The two

classes differ with respect to their assumptions about the variance-covariance matrix

G(Yi(t))G(Yi(t))T . Gaussian processes have a constant variance-covariance matrix,

which means s1j = 0 for j = 1, ..., N in our model. By setting s0j = 1 (Σ is free),

Equation (6) becomes a linear SDE

dYi(t) = −ΦYi(t)dt+ ΣdWQ̄(t). (7)

Inspired by interest rate theory, we define the average force of mortality curve for year t,

initial age x as

µ̄i(x, t, T ) = − 1

T − t
log[Si(x, t, T )], (8)

in the same way of defining yield curve. In affine mortality models the average force of

mortality is also an affine function of the state vector Yi(t)

µ̄i(x, t, T ) = −A
i(t, T )

T − t
− Bi(t, T )T

T − t
Yi(t), (9)

where Ai(t, T ) and Bi(t, T )T are coefficients that only depend on τ = T−t. The derivation

is provided in the Appendix A.

3 The Affine Three-Factor Multi-Cohort Model

In this section, we provide a three-factor example of the proposed multi-cohort model.

For simplicity, we assume δ0 = 0 and δ1 = 1. For cohort i (i ∈ I ⊂ R), Yi(t) is a vector

of three factors and can be divided into two parts

Yi(t) =

X(t)

Zi(t)

 , (10)
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where X(t) is a vector of two common factors that affect all the cohorts (I ⊂ R), and

Zi(t) is the cohort specific factor that only affects the cohort i (i ∈ I ⊂ R). Thus the

mortality intensity process for cohort i aged x+ t at time t is modelled via

µi(x, t) = µo,ix (t) + ζ i(x, t), (11)

where µo,ix (t) = X1(t) +X2(t) and ζ i(x, t) = Zi(t).

We shall first illustrate the dynamics of initial mortality intensity (Section 3.1) and cohort

mortality intensity (Section 3.2) separately, and then derive the correlations across cohorts

(Section 3.3).

3.1 Initial Mortality Intensity Modelling

The common factors for all the cohorts are estimated using a Kalman Filter extracted

from the mortality surface of age-period mortality data. We drop superscript i and

subscript x in the remaining section.

The initial instantaneous mortality intensity µo(t) at time t is

µo(t) = X1(t) +X2(t), (12)

where the state variables X(t) = (X1(t), X2(t)) have the dynamics under best-estimate

measure Q̄ expressed as

dX1(t)

dX2(t)

 = −

k11 0

0 k22


X1(t)

X2(t)

 dt+

σ11 0

0 σ22


dW Q̄

1 (t)

dW Q̄
2 (t)

 , (13)

with W Q̄
1 (t) and W Q̄

2 (t) being two uncorrelated standard Wiener processes under Q̄.
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The corresponding initial survival probability is exponentially affine.

So(t, T ) = EQ̄[e−
∫ T
t µo(s)ds|Ft]

= eB1(t,T )X1(t)+B2(t,T )X2(t)+C(t,T ), (14)

whereB1(t, T ), B2(t, T ) and C(t, T ) are solutions to a set of ordinary differential equations

which can be represented as

B1(t, T ) = −1− e−k11(T−t)

k11

,

B2(t, T ) = −1− e−k22(T−t)

k22

,

C(t, T ) =
1

2

2∑
i=1

σ2
ii

k3
ii

[
1

2
(1− e−2kii(T−t))− 2(1− e−kii(T−t)) + kii(T − t)]. (15)

Using the same algorithm as specified in Appendix A, we can prove this by substituting

Equation (13) into Equation (46). Consequently, the initial average force of mortality

curve is given by

µ̄o(t, T ) = − 1

T − t
log[Sox(t, T )]

=
1− e−k11(T−t)

k11(T − t)
X1(t) +

1− e−k22(T−t)

k22(T − t)
X2(t)− C(t, T )

T − t
. (16)

We define the P-measure to link state variables with age-period mortality data in each

period. The dynamics of the two state variables under this measure can be represented

as dX1(t)

dX2(t)

 = −

kP11 0

0 kP22


X1(t)

X2(t)

 dt+

σ11 0

0 σ22


dW P

1 (t)

dW P
2 (t)

 . (17)

3.2 Cohort Mortality Intensity Modelling

The instantaneous mortality intensity µi(x, t) of a given cohort i aged x+ t at time t is

µi(x, t) = X1(t) +X2(t) + Zi(t), (18)
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where X1(t), X2(t) are common factors and Zi(t) is the cohort specific factor. The state

variables (X1(t), X2(t), Zi(t)) have the dynamics under best-estimate measure Q̄ given as


dX1(t)

dX2(t)

dZi(t)

 = −


k11 0 0

0 k22 0

0 0 ki33



X1(t)

X2(t)

Zi(t)

 dt+


σ11 0 0

0 σ22 0

0 0 σi33



dW Q̄

1 (t)

dW Q̄
2 (t)

dW iQ̄
3 (t)

 , (19)

where W Q̄
j (t) is a standard Wiener process under Q̄ for j = 1, 2, 3.

The survival probabilities for year t, initial age x can then be represented as

Si(x, t, T ) = EQ̄[e−
∫ T
t µi(s)ds|Ft]

= eB1(t,T )X1(t)+B2(t,T )X2(t)+B3(t,T )Zi(t)+A(t,T ), (20)

where B1(t, T ), B2(t, T ), B3(t, T ) and A(t, T ) are governed by ordinary differential equa-

tions 
dB1(t,T )

dt

dB2(t,T )
dt

dB3(t,T )
dt

 =


1

1

1

+


k11 0 0

0 k22 0

0 0 ki33



B1(t, T )

B2(t, T )

B3(t, T )

 ,

dA(t, T )

dt
= −1

2

3∑
j=1

(Σ′B(t, T )B(t, T )′Σ)j,j,

with boundary conditions B1(T, T ) = B2(T, T ) = B3(T, T ) = A(T, T ) = 0.

The solution to the above system of ODEs is

B1(t, T ) = −1− e−k11(T−t)

k11

,

B2(t, T ) = −1− e−k22(T−t)

k22

,

B3(t, T ) = −1− e−ki33(T−t)

ki33

,

A(t, T ) =
1

2

3∑
i=1

σ2
ii

k3
ii

[
1

2
(1− e−2kii(T−t))− 2(1− e−kii(T−t)) + kii(T − t)]. (21)
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The above relationship can be proved by substituting Equation (19) in Equation (46).

The average force of mortality curve for year t, initial age x is given by

µ̄i(x, t, T ) = − 1

T − t
log[Si(x, t, T )]

=
1− e−k11(T−t)

k11(T − t)
X1(t) +

1− e−k22(T−t)

k22(T − t)
X2(t) +

1− e−ki33(T−t)

ki33(T − t)
Zi(t)− A(t, T )

T − t
.

(22)

3.3 Correlations Across Cohorts

The dynamics of the instantaneous mortality intensities for any two cohorts i and j (i 6= j

and i, j ∈ I ⊂ R) are governed by the stochastic differential equations such that

dµi(x, t) = [−k11X1(t)− k22X2(t)− ki33Zi(t)]dt+ σ11dW
Q̄
1 (t) + σ22dW

Q̄
2 (t) + σi33dW

iQ̄
3 (t),

(23)

dµj(x, t) = [−k11X1(t)− k22X2(t)− kj33Zj(t)]dt+ σ11dW
Q̄
1 (t) + σ22dW

Q̄
2 (t) + σj33dW

jQ̄
3 (t),

(24)

where W Q̄
1 (t), W Q̄

2 (t), W iQ̄
3 (t) and W jQ̄

3 (t) are independent Brownian motions. This can

be directly seen from equation (18) and equation (19).

With the above two equations, we can easily deduce the instantaneous correlation between

µi(x, t) and µj(x, t), which is given by

Corr(dµi, dµj)t =
σ2

11 + σ2
22√

σ2
11 + σ2

22 + (σi33)
2
√
σ2

11 + σ2
22 +

(
σj33

)2
. (25)

The dynamics of mortality intensities are driven by both common factors and cohort

specific factors. That has important implications for the correlations across cohorts. If

the volatilities of cohort specific factors are small, the correlation between these two

cohorts would be high because of the influence of common factors. If, on the other hand

side, the correlation would be low as a result of high variations in cohort specific factors.
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4 Calibration to Danish Male Mortality Data

In Section 3, we developed the requisite theory of a three-factor multi-cohort mortality

model as an affine function of the underlying state variables. To estimate parameters and

to assess the validity of this model as a tool for mortality modelling, in this section we

calibrate our cohort model to Danish mortality data (Section 4.1). We use the Danish

mortality data for males from the Human Mortality Database (HMD). We start with the

estimation of the two common factors (Section 4.2), and then estimate cohort specific

factors for 12 cohorts (Section 4.3).

4.1 Data Description

We test our model on Danish mortality data for two reasons. Firstly, Denmark has a

long period of mortality data dating back to the seventeenth century, which ensures the

quality of the data. Secondly, according to Andreev and Vaupel (2005), strong cohort

effects have been found in Danish mortality data. In Section 6, we will compare our

model with Renshaw and Haberman’s model (Renshaw and Haberman (2006)) and the

CBD model (Cairns et al. (2006)). Using Danish data allows us to see how these models

perform in forecasting cohort survival curve when cohort effects exist.

The Human Mortality Database includes death counts, exposure-to-risk and death rates

constructed in both age-period form and age-cohort form. To be consistent we use the

age-period data and extrapolate the cohort death rates qi50(t) for males born between

1790 to 1909 with a 10-year step by taking the diagonal of the age-period data. Thus

we use 12 cohorts with ages from 50 to 100. We focus on the older ages because we are

interested in the application to longevity-linked derivative pricing and risk management.

The actual survival probability and average force of mortality for cohort i aged x over
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duration τ = T − t is calculated as follows

S̃i(x, t, T ) = S̃i(x, τ) =
τ∏
s=1

(1− q̃i(t+ s− 1, x+ s− 1)),

µ̃i(x, τ) = −1

τ
logS̃i(x, τ), (26)

where q̃i(t, x) is the actual death rate at time t and age x.

The Danish cohort mortality data is shown in Figure 1. Figure 1a is the plot of sur-

vival probabilities for these 12 cohorts aged 50 to 100, while Figure 1b is the plot of

corresponding average force of mortality.
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(a) Survival probabilities

1790
1800

1810
1820

1830
1840

50

60

70

80

90

100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CohortAge

(b) Average force of mortality

Figure 1: Danish cohort mortality data for males born from 1790 to 1909

4.2 Estimation of Common Factors

The common factors for all the cohorts are extracted from the mortality surface of age-

period data and computed using a Kalman Filter. We begin with the state space equations

which have two parts: the measurement equation which represents the observed affine

relationship between the initial average force of mortality and the state variables, and the

state transition equation which describes the unobserved dynamics of the state variables.

We then use the Kalman Filter algorithm to recursively generate unobserved values of the

state variables conditioning on the observed values of the initial average force of mortality.
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Finally we choose the optimal parameter set which maximizes the log-likelihood function

(specified in Equation (34)).

4.2.1 State Space Equations

The dynamic affine model can be represented in a state space form such that the obser-

vations (initial average force of mortality) and states are jointly Markovian. This allows

the construction of an efficient filtering procedure to evaluate the likelihood.

We have defined the initial average force of mortality curve for year t = i + x aged x in

Equation (16), the measurement equation therefore is



µ̄o(t, t+ 1)

µ̄o(t, t+ 2)

...

µ̄o(t, t+ n)


=



1−e−k11

k11
1−e−k22

k22

1−e−2k11

2k11
1−e−2k22

2k22

...
...

1−e−nk11

nk11
1−e−nk22

nk22


X1(t)

X2(t)



−



1
2

∑2
i=1

σ2
ii

k3ii
[1
2
(1− e−2kii)− 2(1− e−kii) + kii]

1
2

∑2
i=1

σ2
ii

2k3ii
[1
2
(1− e−4kii)− 2(1− e−2kii) + 2kii]

...

1
2

∑2
i=1

σ2
ii

nk3ii
[1
2
(1− e−2nkii)− 2(1− e−nkii) + nkii]


+



ε1(t)

ε2(t)

...

εn(t)


.

(27)

Equation (27) can be rewritten in the following identical representation

yt = −BXt − C + εt, εt ∼ N(0, H), (28)

whereB = −



1−e−k11

k11
1−e−k22

k22

1−e−2k11

2k11
1−e−2k22

2k22

...
...

1−e−nk11

nk11
1−e−nk22

nk22


, C =



1
2

∑2
i=1

σ2
ii

k3ii
[1
2
(1− e−2kii)− 2(1− e−kii) + kii]

1
2

∑2
i=1

σ2
ii

2k3ii
[1
2
(1− e−4kii)− 2(1− e−2kii) + 2kii]

...

1
2

∑2
i=1

σ2
ii

nk3ii
[1
2
(1− e−2nkii)− 2(1− e−nkii) + nkii]


and H is an n-dimensional diagonal matrix.
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The state transition equation can be represented as

Xt = ΨXt−1 + ηt, ηt ∼ N(0, Q), (29)

where Ψ =

e−kP11 0

0 e−k
P
22

, Q =

 σ2
11

2kP11
(1− e−2kP11) 0

0
σ2
22

2kP22
(1− e−2kP22)

. The derivation is

outlined in Appendix B.

4.2.2 Kalman Filter Algorithm

With the state space representation described by Equations (28) and (29), we now outline

the Kalman filter algorithm to extract common factors. Denote the information available

at time t by Yt = (y1, y2, ..., yt), and the parameter set by ψ. In the forecasting step, we

forecast unknown values of state variables conditioning on the information at time t− 1

such that

X(t|t− 1) = EP [Xt|Yt−1] = Ψ(ψ)Xt−1, (30)

S(t|t− 1) = Ψ(ψ)S(t− 1|t− 1)Ψ(ψ)′ +Qt(ψ). (31)

We then use the information at time t to update our forecasts

X(t|t) = EP [Xt|Yt] = X(t|t− 1)− S(t|t− 1)B(ψ)′F−1
t vt, (32)

S(t|t) = S(t|t− 1)− S(t|t− 1)B(ψ)′F−1
t B(ψ)S(t|t− 1), (33)

where vt = yt − E(yt|Yt−1) = yt + C(ψ) + B(ψ)X(t|t − 1), Ft = cov(vt) = B(ψ)S(t|t −

1)B(ψ)′ +H(ψ), H(ψ) = diag(σ2
ε(τ1), ..., σ2

ε(τN)).

Every iteration will yield the value for the log-likelihood function shown below

log l(y1, ..., yT ;ψ) =
T∑
t=1

(−N
2

log(2π)− 1

2
log(Ft)−

1

2
v′tF

−1
t vt), (34)

where N is the number of observed average force of mortality. The estimated parameter
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set is determined as the one which maximizes the log-likelihood function.

4.2.3 Estimation Results

Applying this estimation method to the data, we obtain the fitted parameters for Danish

age-period data from year 1840 to 2011. Table 1 summarises the results.

Table 1: Kalman filter parameter estimates, log likelihood and RMSE

kP11 0.01914
kP22 0.00769
k11 -0.03891
k22 -0.10224
σ11 0.00039
σ22 0.00033
Log likelihood -47016.82570
RMSE 0.00332

Figure 2 shows the two common factors obtained. We find a similar structural change

as reported by Blackburn and Sherris (2013). When the authors calibrated their model

to Swedish data, they found that one of the factors decreased between 1910 and 1960,

and the downward trend stopped around 1960. As shown in Figure 2, the decreasing

trend of the first factor in our model stops around 1960. Compared to the first factor,

the second factor X2 shows a slowly improving trend in mortality with a lower volatility.

Figure 3 shows factor loadings of the two common factors. Both of these factor loadings

are increasing with age, while the loading on the second factor mostly affects older ages.

4.3 Estimation of Cohort Specific Factors

We denote all the parameters of cohort specific factors by θ. θ∗ is estimated by minimizing

the calibration error. The optimization problem is shown below

θ∗ = argmin
θ

√√√√ 50∑
τ=1

(µ̃i(x, τ)− µ̄i(x, τ))2. (35)
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Table 2 summarises the estimation results for 12 cohorts born from 1790 to 1909 with

a ten-year time step. We notice that σi33 has very low values for some cohorts. Up to

five decimal places, the values of σi33 for two oldest cohorts and the 1890 cohort are zero.

This issue is also reported by Luciano and Vigna (2005). The authors fit 16 UK cohorts

with Feller processes, among which the volatility parameters for some cohorts are close

to zero. We also observe an general increasing trend of initial values through cohorts.

It indicates that though some cohorts perform differently than others, there is a general

mortality improvement through cohorts.

Figure 4 shows the calibration residuals for the three-factor multi-cohort model. From the

residuals we can see that the model provides a good fit. Except for several extreme points

at very old ages, the remaining residuals are very small. Figure 5 shows the mean absolute

17



Table 2: Estimation Results for Cohort Specific Factors

ki33 σi33 Zi(t)
1790 -0.15727 0.00000 -3.90E-05
1800 -0.01837 0.00000 -0.00183
1810 -0.07744 0.00090 -0.00179
1820 -0.09664 0.00034 -0.00031
1830 -0.07529 0.00060 -0.00106
1840 -0.07735 0.00070 -0.00127
1850 -0.09205 0.00074 -0.00173
1860 -0.12273 0.00018 -0.00015
1870 -0.09558 0.00027 -0.00055
1880 -0.11127 0.00027 -0.00046
1890 -0.12658 0.00000 -0.00073
1900 -0.06085 0.00225 0.00099

percentage error (MAPE) of the estimated survival probabilities for all the cohorts born

from 1790 to 1900. We use a different scale for ages over 90. The MAPE is below 5%

under the age of 90, and does not exceed 20% to the age of 100.
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Figure 4: Calibration Residuals

5 Simulation Results for the Survival Curves

In Section 4, we have shown empirical evidence that the multi-cohort model has a satis-

factory empirical fit to historical mortality data. This section presents how the calibrated

model can be used to forecast the survival curve of the 1910 cohort. The choice of the
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1910 cohort is made because it is the last cohort that the HMD provides death rates till

an age of 100. This choice guarantees that we have the observed mortality survival curve

as a comparison with our forecast survival curves.

The affine mortality model enables us to forecast cohort survival curves at future times.

The states are simulated using

X1(t+ 1) = e−k11X1(t) +

√
σ2

11

2k11

(1− e−2k11)ξ1(t+ 1), (36)

X2(t+ 1) = e−k22X2(t) +

√
σ2

22

2k22

(1− e−2k22)ξ2(t+ 1), (37)

Zi(t+ 1) = e−k33Zi(t) +

√
σ2

33

2k33

(1− e−2k33)ξ3(t+ 1), (38)

where ξj(1), ξj(2),..., j = 1, 2, 3, are independent standard normal random variables. This

algorithm is specified in Appendix C.

Luciano and Vigna (2008) summarise two different ways in which the prediction can be

carried out. The first one is forecasting within one cohort, the main idea of which is to

forecast unknown future mortality improvements with the parameters calibrated using

the observed mortality data of the same cohort. This method is adopted by Luciano and

Vigna (2008) and Jevtic et al. (2013) in their forecasting process. The second one is to
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forecast the mortality improvements using mortality trends by observing behaviours of

other cohorts. In our multi-cohort mortality model, we focus on the cohort effects of

different cohorts so we choose the second method.

To observe the mortality trends, we take the 1900 cohort as an example. Using the

calibration results in Table 1 and 2, the calibrated correlation can be directly derived by

Equation (25). We report the correlations between the 1900 cohort and other 5 cohorts in

Table 3. We can observe that the 1900 cohort is generally more correlated with younger

cohorts than older cohorts. We also note that the correlations across cohorts are not as

high as the calibrated correlations reported by Jevtic et al. (2013), but are in line with the

correlation matrices given in Chang and Sherris (2015). Chang and Sherris (2015) show

that their correlation matrices are more realistic according to the historical experience.

Table 3: Calibrated correlations between the 1900 cohort and other cohorts

1850 1860 1870 1880 1890
1900 0.13047 0.20919 0.19541 0.19634 0.22146

With the above observation, we model the cohort effect of the 1910 cohort using the cal-

ibration results of 10 younger cohorts, born from 1900 to 1909 with a one-year step. The

estimation results are reported in Table 4. We consider three different parametrizations,

Case I, Case II and Case III as shown in Table 5. Case III stands for the parametriza-

tion of the 10 younger cohorts by taking the average of the values of these 10 cohorts.

Two alternative sets of simulation results, Case I and Case II, are presented to provide

comparisons with Case III. The cohort specific effect as described in Case I has simi-

lar behaviour to cohorts born between 1840 and 1850, and the cohort specific effect as

described in Case II has similar behaviour to cohorts born between 1870 and 1880.

Based on Table 5 and the formulas shown above ((36)-(38)), we perform 100,000 simu-

lations for 50-year-old males born in 1910, the results are presented in Figure 6. Actual

survival probabilities of the 1910 cohort are marked with asterisks. With the values

of parameters specified in Case I, Case II and Case III, we show three correspondingly

simulated survival curves. We can observe from the figure that there are no significant
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Table 4: Estimation Results for Cohort 1910 to 1919

ki33 σi33 Zi(t)
1900 -0.06085 0.00225 0.00099
1901 -0.05887 0.00186 0.00116
1902 -0.06585 0.00176 0.00089
1903 -0.06674 0.00180 0.00119
1904 -0.06363 0.00186 0.00113
1905 -0.07214 0.00129 0.00090
1906 -0.06445 0.00161 0.00116
1907 -0.06476 0.00179 0.00090
1908 -0.06707 0.00166 0.00079
1909 -0.06962 0.00157 0.00099

Table 5: Parametrization for Cohort Specific Factors

ki33 σi33 Zi(t)
Case I -0.0848 0.0007 -0.0015
Case II -0.1034 0.0003 -0.0005
Case III -0.0654 0.0017 0.0010

differences between the simulated curve based on the assumptions in Case III and the

true survival curve, while the differences are distinguished with the assumptions specified

in Case I and Case II.

6 Comparison of Cohort Survival Curves

In this section, we compare our cohort model with the age-period-cohort model devel-

oped by Renshaw and Haberman (2006) (RH model hereafter) and the age-period model

developed by Cairns et al. (2006) (CBD model hereafter). We follow the notations used

by Cairns et al. (2009). Cairns et al. (2009) have compared a range of mortality models

qualitatively as well as quantitatively. They have evaluated properties such as the good-

ness of fit and the robustness of parameter estimates. In this research, we mainly focus

on evaluating the ability of these three models in projecting cohort survival curves. To

forecast future cohort mortality development, our cohort model uses a similar number of

parameters to the CBD model but much fewer than the RH model.

We compare the simulated survival curves for the 1895, 1900, 1905 and 1910 cohorts. In
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Figure 6: Actual and simulated survival probabilities for the 1910 cohort

order to project cohort survival curve for the cohort born in 1895 (aged 50 in 1945), we

fit all the models to the age-period mortality data of Denmark males from 1840 to 1944,

aged 50 to 100. For each cohort born after 1895, we add in extra five-year age-period

data and re-estimate the parameters. Then we do out-of-sample forecasting for the four

cohorts and compare simulated survival probabilities with the true survival probabilities

calculated using the actual death rates (which are available in HMD).

Renshaw and Haberman (2006) extend the original Lee-Carter model by including cohort

effects. Following Cairns et al. (2009), in this section we define q(t, x) to be the death

rate at time t and age x. Then the RH model can be represented as

log q(t, x) = β1(x) + β2(x)κ2(t) + β3(x)γ3(t− x), (39)

where β1(x) terms denote the main age effects, β2(x)κ2(t) terms denote the age specific

period effects and β3(x)γ3(t − x) denote the age specific cohort effects. In Figure 7, we

plot the fitted βj, j = 1, 2, 3, κ2 and γ3 based on data from 1840 to 1944, 1949, 1954 and

1959 respectively.

The forecasts of period effects and cohort effects are generated using autoregressive in-
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Figure 7: Parameter estimates in Denmark, males by the RH model
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tegrated moving average (ARIMA) processes. In the context of Danish male mortality

data, the forecasts of κ2(t) are generated using ARIMA(0,1,1) processes and the forecasts

of γ3(t− x) are generated using ARIMA(0,1,0) processes.

We note the changes in the shapes of β2(x) and β3(x) in Figure 7b and 7c when the

RH model is fitted to different periods of data. The lack of robustness in parameter

patterns of the RH model is also noted by Cairns et al. (2009) and Haberman and

Renshaw (2009) when U.S. and UK data are used. If the parameter estimates are strongly

influenced by the length of historical period chosen, the reliability of the estimation may

be questionable.

Cairns et al. (2006) develop a two-factor age-period model which is called the CBD model.

Their model structure is

logit q(t, x) = κ1(t) + κ2(t)(x− x̄), (40)

where x̄ is the mean age in the sample range, κ1(t) and κ2(t) are time t-measurable

stochastic processes. In Figure 8, we plot the fitted κ1 and κ2 based on data from 1840

to 1944, 1949, 1954 and 1959.

To make forecasts, the vector of factors, κ(t) =

κ1(t)

κ2(t)

, is modelled as

κ(t+ 1) = κ(t) + µ+ Cε(t+ 1), (41)

where µ is a constant 2 × 1 vector, C is a constant 2 × 2 upper triangular matrix and

ε(t) is a two-dimensional standard normal random variable. With the fitted values of κ1

and κ2 as shown in Figure 8, we have the estimated µ̂ and Ĉ for the four periods of data

in Table 6. Both Figure 8 and Table 6 reveal that the parameter estimates for the CBD

model are very robust. We can hardly distinguish the fitted κ1 and κ2 when we change

the data period.

Both the RH model and the CBD model do not directly model mortality dynamics of
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Figure 8: Parameter estimates in Denmark, males by the CBD model

Table 6: Estimated µ̂ and Ĉ for the CBD model

µ̂ Ĉ

1840-1944(
−0.00384
0.00025

) (
0.07846 0.00148

0 0.00265

)
1840-1949(
−0.00437
0.00023

) (
0.07822 0.00154

0 0.00261

)
1840-1954(
−0.00410
0.00023

) (
0.07659 0.00154

0 0.00258

)
1840-1959(
−0.00411
0.00021

) (
0.07552 0.00151

0 0.00254

)
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specific cohorts. When forecasting future mortality development using these two models,

we will have a age-period surface of q(t, x). Because our interest lies in cohort survival

curves, we read off the diagonal of q(t, x) for cohort specific mortality rates. Thus the

survival probabilities of cohort i (in this case i = t − x) at age x over period τ can be

calculated using the following equation

Si(x, τ) =
τ∏
s=1

(1− q(t+ s− 1, x+ s− 1)). (42)

Figure 9 shows the comparison of the three simulated survival curves with the true

survival curve for the four cohorts aged 50 to 100 on a logarithmic scale. In order to

gain more precise insights into the characteristics of these survival curves, we use several

measures as well. The results are reported in Table 7.

• The complete expectation of life at age 50 in our case is

o
e50 =

50∑
k=1

kp50 +
1

2
. (43)

• The entropy of the survival function at age 50 is defined as

H(T50) = −
∫ 100

50
S(x) lnS(x)dx∫ 100

50
S(x)dx

, (44)

where T50 denotes remaining lifetime of a person aged 50. This variability measure

is used to describe the concentration of deaths. The value of H declines as deaths

becoming more concentrated, and it reaches 0 if the survival curve has a perfectly

rectangular shape.

• The interquartile range concerning the distribution of T50 is defined as

IQR(T50) = x′′ − x′, (45)

where x′ and x′′ represent the 25-th percentile and 75-th percentile of the probability
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Figure 9: Actual and simulated curves for − log(Si(50, τ))
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distribution of T50 respectively (i.e. S(x′) = 0.75, S(x′′) = 0.25). The IQR decreases

as the lifetime distribution becoming more concentrated.

Table 7: Demographic measures for true mortality data and three mortality models

Model
o
e50 H(T50) IQR(T50)

1895 cohort
True data 24.92903 0.36930 15.01527

Cohort model 25.16629 0.36070 14.82586
CBD model 25.57882 0.37469 14.84059
RH model 24.30963 0.40874 17.84513

1900 cohort
True data 24.78705 0.37090 14.84774

Cohort model 25.63367 0.38297 15.65102
CBD model 26.28802 0.37073 15.10790
RH model 26.54408 0.40059 17.44723

1905 cohort
True data 24.68097 0.37249 15.18163

Cohort model 25.14916 0.38188 15.69336
CBD model 26.21475 0.36765 14.62593
RH model 26.08103 0.40418 17.17652

1910 cohort
True data 24.98933 0.37159 15.18776

Cohort model 25.10262 0.37955 15.55184
CBD model 26.25764 0.43855 16.13864
RH model 25.69156 0.40562 16.97058

We can make following observations.

• The survival curve projected by the CBD model is less flexible than those projected

by other models, thus the CBD model is less likely to capture the cohort effects

than the mortality models taking account cohort effects. Moreover, the CBD model

tends to overestimate the expectation of life, especially for younger cohorts. This

tendency becomes more evident when this model is used to forecast survival curves

for the 1915, 1920 and 1925 cohorts.

• While the RH model provides more flexibility in the shape of the survival curves, the

estimation results for the RH model are very sensitive to the period of data employed

as we have mentioned earlier. The concern that the survival curve projected by the
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RH model may become unreasonable arises when we add in five-year data to forecast

the survival curve for the 1915 cohort. In Figure 7, κ2(t) shows a declining trend

up to the year of 1959. However, when we fit the model to the data from 1840

to 1964, κ2(t) keeps decreasing around the year of 1920, then shows an increasing

trend afterwards. κ2(t) stands for the period effect in the RH model, a decreasing

κ2(t) explains the improvement of mortality trend through time.

• Both Figure 9 and Table 7 indicate that the cohort model provides a better fit

to the actual mortality data. It captures cohort specific effects so that it has the

capability to generate more flexible and reasonable cohort survival curves.

7 Concluding Remarks

We investigate the theoretical properties and the empirical performance of a multi-cohort

mortality model in the affine framework. In particular, we consider a three-factor case.

The cohort mortality intensity is driven by common factors as well as cohort specific

factors. Under the influence of cohort specific factors, our model allows for imperfect

correlation across cohorts. A good feature of our model is that both cohort survival

probabilities and correlation structure across cohorts are provided in closed-form. The

three-factor multi-cohort model is then implemented on Danish male mortality data. We

find that factor loadings of different cohorts have different trends, which indicates the

existence of cohort effects.

Investigating cohort dynamics is crucial for pricing and risk management application. In

this paper we compare cohort survival curves projected by our model with those projected

by the RH model and the CBD model. Results from the comparison suggest that cohort

survival curves projected by our cohort model is the closest to the actual mortality data.

An interesting question left for further research is the weighting of the latent factors,

which is expressed in the value of δ1. For simplicity we just follow Blackburn and Sherris

(2013) and Jevtic et al. (2013) and assume δ1 = 1 for all the cohorts. A further refinement
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is to allow the scalars to take different values for specific cohorts. That has important

implications for the correlation structure across cohorts.

Appendix

A. Partial Differential Equation for Survival Probabilities

For simplicity, in the following we drop cohort indicator i to show the derivation algo-
rithm. The process Y is an affine diffusion, which means that Y solves the following
stochastic differential equation

dY(t) = H(Y(t))dt+G(Y(t))dWQ(t). (46)

Survival probabilities can now be solved using the Feynman-Kac approach. We treat the

conditional expected value EQ[e−
∫ T
t µ(s)ds|Ft] as the solution of the PDE for the survival

probability F (Y, τ), where τ = T − t,

S(t, T ) = EQ[e−
∫ T
t µ(s)ds|Ft]. (47)

From the above equation we have F (Y, 0) = 1 and F (Y, τ) is strictly positive. By Itô’s
Lemma, F (Y, τ) is also an Itô process that

dF (Y(t), τ) = HF (Y(t), τ)dt+ FY (Y(t), τ)G(Y(t))dWQ(t), (48)

where

HF (Y, τ) = −Fτ (Y, τ) + FY (Y, τ)TH(Y) +
1

2
tr[G(Y)G(Y)TFY Y (Y, τ)]. (49)

Fτ , FY and FY Y are partial derivatives of F and tr denotes trace. We also have

HF (Y, τ)−R(Y)F (Y, τ) = 0. (50)

With our assumptions on H(Y), G(Y) and R(Y) as

R(Y) = δ0 + δ′1Y(t),

H(Y(t)) = −ΦY(t),

G(Y(t)) = Σs(Y(t)).

Duffie and Kan (1996) prove that the PDE can have a closed-form solution

F (Y(t), τ) = exp(A(τ) +B(τ)TY(t)). (51)

From equation (49), we can deduce that

HF (Y, τ)

F (Y, τ)
= −A′(τ)−B′(τ)TY+B(τ)H(Y)+

1

2

N∑
i=1

N∑
j=1

Bi(τ)Bj(τ)Gi(Y)Gj(Y)T . (52)
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We also know that HF (Y, τ) = F (Y, τ)R(Y). By matching the coefficients, A(τ) ∈ R,
B(τ) ∈ RN solve the ODEs

A′(τ) = −δ0 +
1

2

N∑
j=1

(B(τ)TΣ)2
js0j,

B′(τ) = −δ1 − ΦTB(τ) +
1

2

N∑
j=1

(B(τ)TΣ)2
js1j,

with A(0) = B(0) = 0.

B. Discretization of the Stochastic Differential Equations

We drop all the superscripts and subscripts. Just consider the following diffusion process

dX(t) = −kX(t)dt+ σdW (t). (53)

Denote
f(X(t)) = −kektX(t), (54)

we have the following partial derivatives

∂f(X(t))

∂t
= −k2ektX(t)

∂f(X(t))

∂X(t)
= −kekt

∂f 2(X(t))

∂X(t)2
= 0. (55)

Applying Itô’s theorem to f(X(t)), we have

f(X(t))− f(X(0)) =

∫ t

0

∂f(X(s))

∂s
ds+

∫ t

0

∂f(X(s))

∂X(s)
dX(s) +

1

2

∫ t

0

∂f 2(X(s))

∂X(s)2
d(X(s))2

=

∫ t

0

−k2eksX(s)ds+

∫ t

0

−keksdX(s)

=

∫ t

0

−k2eksX(s)ds+

∫ t

0

−keks(−kX(s)ds+ σdW (s))

= −
∫ t

0

keksσdW (s). (56)
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Plug equation (54) in equation (56)

−kektX(t) + kek∗0X(0) = −
∫ t

0

keksσdW (s)

−kektX(t) = −kX(0)−
∫ t

0

keksσdW (s)

X(t) = e−ktX(0) +

∫ t

0

e−k(t−s)σdW (s). (57)

It is easy to obtain

X(t) = e−kX(t− 1) + σ

∫ t

t−1

e−k(t−s)dW (s). (58)

Therefore, given X(t − 1), X(t) is normally distributed with mean e−kX(t − 1) and
variance σ2

∫ t
t−1

e−2k(t−s)ds = σ2

2k
(1− e−2k). We can also write

Xt = e−kXt−1 + ηt, (59)

where ηt ∼ N(0, σ
2

2k
(1− e−2k)).

C. Generating Sample Paths for Multi-factor Models

Gaussian processes in RN have the form

dYi(t) = −ΦiYi(t)dt+ ΣidWi(t), i ∈ I ⊂ R. (60)

It follows that the components of (Y i
1 , ..., Y

i
N) satisfy

dY i
j (t) = −kijY i

j (t)dt+ σijdW
i
j (t), j = 1, 2, ..., N, i ∈ I ⊂ R. (61)

The above SDE has solution

Y i
j (t) = e−k

i
jtY i

j (0) + σij

∫ t

0

e−k
i
j(t−s)dW i

j (s). (62)

From this it follows that, for any 0 < u < t,

Y i
j (t) = e−k

i
j(t−u)Y i

j (u) + σij

∫ t

u

e−k
i
j(t−s)dW i

j (s). (63)

We can conclude that given Y i
j (u), Y i

j (t) is normally distributed with mean e−k
i
j(t−u)Y i

j (u),

and variance (σij)
2
∫ t
u
e−2kij(t−s)ds =

(σi
j)2

2kij
(1− e−2kij(t−u)).

Given Y i
j (t), to simulate Y i

j at time t+ 1 we can therefore set

Y i
j (t+ 1) = e−k

i
jY i

j (t) +

√
(σij)

2

2kij
(1− e−2kij)ξij(t+ 1), (64)
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where ξij(1), ξij(2), ... are independent standard normal random variables.

The algorithm we chosen is an exact simulation method. For simplicity, one can also use
the Euler scheme

Y i
j (t+ 1) = (1− kij)Y i

j (t) + σijξ
i
j(t+ 1) (65)

to simulate Y i
j at time t+ 1.
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