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Abstract

This paper extends the Fourier-cosine (COS) method to the pricing and hedging of vari-
able annuities embedded with guaranteed minimum withdrawal benefit (GMWB) riders.
The COS method facilitates efficient computation of prices and hedge ratios of the GMWB
riders when the underlying fund dynamics evolve under the influence of the general class of
Lévy processes. Formulae are derived to value the contract at each withdrawal date using a
backward recursive dynamic programming algorithm. Numerical comparisons are performed
with results presented in Bacinello et al. (2014) and Luo and Shevchenko (2014) to confirm
the accuracy of the method. The efficiency of the proposed method is assessed by making
comparisons with the approach presented in Bacinello et al. (2014). We find that the COS
method presents highly accurate results with notably fast computational times. The valua-
tion framework forms the basis for GMWB hedging. A local risk minimisation approach to
hedging inter-withdrawal date risks is developed. A variety of risk measures are considered
for minimisation in the general Lévy framework. While the second moment and variance
have been considered in existing literature, we show that the value-at-risk may also be of
interest as a risk measure to minimise risk in variable annuities portfolios.

Keywords: Variable annuity, GMWB, COS method, hedging, risk minimisation

1 Introduction

The global market for variable annuities (VAs) represents a huge pool of assets. For instance,
the market share of VAs in the U.S. as of the second quarter of 2015 was estimated to be US$1.98
trillion (IRI, 2015). These VAs are a popular retirement product for several reasons, including
equity exposure, longevity protection, and the various guaranteed minimum benefits (GMBs)
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that insurers offer to protect their customers from downside market risks (Hanif et al., 2007;
Condron, 2008).

Guaranteed minimum withdrawal benefits (GMWBs) are the most popular form of GMBs,
which come in various forms including the guaranteed lifelong withdrawal benefit (GLWB), an
alternative that guarantees a fixed periodic withdrawal amount until death of the policyholder
(Bauer et al., 2008; Ledlie et al., 2008; Fung et al., 2014). These ensure a minimum withdrawal
amount at each withdrawal date over the term of the contract, regardless of the status of the
VA investment account. The insurer funds this guarantee with proportional, periodic charges
to the investment account.

The valuation of GMWBs is first considered in the academic literature by Milevsky and Sal-
isbury (2006). The authors recognise the sensitivity of the value of GMWBs to policyholder
behaviour. In practice, GMWB policyholders are able to choose how much to withdraw from
their accounts or whether to surrender the contract, corresponding to the full withdrawal of
the VA account. Milevsky and Salisbury (2006) define two types of policyholder withdrawal
behaviours – static and dynamic. Static policyholders withdraw at the constant guaranteed
withdrawal rate, whereas dynamic policyholders are entirely rational and maximise the value of
the GMWB by potentially surrendering the contract early or making partial withdrawals.

Due to the complicated nature of the option-like features of GMWBs, Milevsky and Salisbury
(2006) make several simplifying assumptions to value the contract in the static case. A notable
simplification is modelling the fund dynamics with geometric Brownian motion (GBM), which
is known to underestimate the tails of asset return distribution and assumes constant volatility
and interest rates (Kélani and Quittard-Pinon, 2015). Other simplifications include continuous
withdrawals and ignoring mortality risk.

The authors show that the contract can be bifurcated into a quanto Asian put and a term-annuity
certain which can be valued using standard numerical techniques. Under the same simplifying
assumptions, Dai et al. (2008) and Chen and Forsyth (2008) set up a singular and an impulse
stochastic optimal control problem. These techniques lead to solving Hamilton-Jacobi-Bellman
(HJB) equations using finite differencing techniques.

Using the numerical scheme presented in Chen and Forsyth (2008), Chen et al. (2008) provide
further analysis on the effect of various parameters on the price of GMWB riders. This analysis
includes studying the effects of the volatility parameter, a separate mutual fund fee, sub-optimal
policyholder behaviour, time to maturity, time between withdrawals, varying interest rates and
the use of a jump-diffusion process on the GMWB’s fair fee. Their results strengthen the findings
of Milevsky and Salisbury (2006), by showing that only under several simultaneous unrealistic
assumptions would the industry insurance fees at the time be enough to cover the expense of
the GMWB contract.

Various pricing techniques adapted from the quantitative finance literature have also been ap-
plied to the problem of pricing GMWBs. For example, Peng et al. (2012) assume GBM asset
dynamics but allow for stochastic interest rates evolving according to the Vasicek (1977) model
and then use a combination the Roger-Shi’s technique and Thompson’s method to find lower
and upper bounds for the fair fee, respectively (Rogers and Shi, 1995; Thompson, 1999). An-
other example is a “tree” based method presented in Yang and Dai (2013), where the authors
again assume GBM. Both papers show that the fair fee is highly dependent on the volatility
of the stochastic interest rate and instantaneous correlation between the underlying and the
interest rate. They argue that the stochastic interest rate assumption is especially important
for long-dated contracts.

Bacinello et al. (2014) consider the valuation of the GMWB rider when the underlying fund
dynamics evolve under the influence of Lévy processes. The valuation problem is formulated as
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a dynamic programming algorithm, which is solved by using the Fast Fourier Transform (FFT)
method. The scheme is also capable of incorporating features such as a “reset provision”, which
is a penalty structure used as a disincentive to excessive withdrawals.

Luo and Shevchenko (2014) develop a computationally efficient approach for pricing the GMWBs.
They use higher order Gauss-Hermite quadrature to numerically integrate cubic spline interpo-
lations. The algorithm can be used for both static and dynamic behaviour, but requires a known
probability density function of asset returns.

Recent innovations include algorithms that introduce further levels of stochasticity in GMWB
valuation frameworks. Ignatieva et al. (2016) apply a Fourier space time-stepping algorithm
to value the GMWB contract under a GBM regime-switching framework, subject to stochastic
mortality risk. The authors note that fees decrease with the force of interest. Gudkov et al.
(2016) assume stochastic volatility, stochastic interest rates, and stochastic mortality. The first
two are found to have significant influence on the resulting fair fees while the impact of mortality
on the fair fee is small.

Moenig and Bauer (2016) take a deeper look into the optimal decisions made by policyholders
by considering the impact of tax benefits on withdrawal behaviour. When accounting for such
benefits, they find that dynamic policyholder fair fees in the GBM framework are in line with
fees observed in the market.

Hedging of VA guarantees has attracted substantial academic interest of late, with a particular
focus on GMWBs. Coleman et al. (2007) use local risk minimisation strategies to hedge guar-
anteed minimum death benefits. Kolkiewicz and Liu (2012) take a similar approach to Coleman
et al. (2007), but instead hedge GMWBs. The authors show that under the Black and Scholes
(1973) framework, delta-gamma hedging outperforms the risk minimisation strategies only if the
withdrawals are very frequent. However, when jumps are introduced into the asset dynamics,
hedging the Greeks is ineffective, whereas the risk minimisation strategies perform well. Bernard
and Kwak (2016) extend the Coleman et al. (2007) hedging strategy by showing that the insurer
can use the periodic fees received to improve the performance of a hedging strategy.

Other strategies have also been considered, such as Goudenege et al. (2016), who hedge the
Greeks of a GMWB rider under both the Hull and White (1990) stochastic interest rate model
and the Heston (1993) stochastic volatility model. Ignatieva et al. (2016) also hedge the Greeks
in their regime-switching framework with an additional focus of hedging mortality risk. Carr
et al. (2016) perform a case study analysis of hedging the net present value of future cash
flows of a GMWB portfolio using a transformed multivariate normal distribution fitted to nine
indices. Feng and Vecer (2016) perform an analysis on risk capital by formulating the profit-loss
distribution of GMWBs using PDE methods.

In this paper we value the GMWB rider with the aid of the COS method. The COS method is
first presented in Fang and Oosterlee (2008) as an efficient numerical integration method for pric-
ing European-style options. A follow up paper showing how the method can be used to pricing
early-exercise options, such as the Bermudan option, is presented in Fang and Oosterlee (2009).
The two studies demonstrate the comparative efficiency of the COS method with existing effi-
cient numerical derivative pricing techniques, such as the convolutions (CONV) method (Lord
et al., 2008). Furthermore, the authors validate the robustness of the COS method through ac-
curate pricing of the derivatives when modelling assets driven by infinite activity Lévy processes,
such as CGMY, and the Heston (1993) stochastic volatility model.

Further uses of the COS method include pricing derivatives with multiple underlying assets
(Ruijter and Oosterlee, 2012), applying it to stochastic optimal control problems (Ruijter et al.,
2013), pricing equity-indexed life annuities (Deng et al., 2015), and for use in ruin theory appli-
cations (Chau et al., 2015a,b).
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In this paper, we provide an efficient algorithm for pricing VAs embedded with GMWB riders
using the COS method. Unlike the algorithm in Luo and Shevchenko (2014), the density function
does not need to be known in closed form. We then use the framework to further investigate
the use of risk minimisation hedging strategies, using concepts outlined in Kolkiewicz and Liu
(2012).

The algorithm we develop demonstrates superior computational efficiency as it can be adapted
to the general class of Lévy processes. These processes are general enough to include a wealth
of patterns and thus they account for the smile and skew effects observed in option prices
(Papapantoleon, 2008). We also extend the use of the COS method to develop hedging strategies
that seek to minimise a moment or quantile-based risk measure, such as the variance of the
hedging outcomes or the 95% Value at Risk (VaR) of the hedged portfolio loss distribution.
We show that the COS method is computationally more efficient in comparison with valuation
methodologies in existing literature for the same level of accuracy. The framework developed
is general enough to incorporate complex policyholder behavior decisions and sophisticated
contract features such as the reset provision. The local risk minimization strategies developed
can incorporate short-selling and budgeting constraints while remaining robust. The framework
developed proves to be compatible to both pricing, delta-gamma hedging, risk minimization
and VaR calculations, making it a strong candidate for quick and accurate valuations for the
industry.

The remainder of the paper is structured as follows. In Section 2 we first describe the asset and
account dynamics, and then continue to formulate the pricing problem and explain the use of the
COS method. Section 3 outlines the hedging framework, describing the local risk minimisation
problem as well as how the Greeks are hedged, and again explaining the use of the COS method.
Numerical results and analysis of the framework are presented in Section 4 before the paper is
concluded in Section 5.

2 GMWB Valuation Framework

2.1 Asset Dynamics

Lévy processes incorporate a large number of well known models, such as the GBM (Black and
Scholes, 1973), Variance Gamma (VG) (Madan and Seneta, 1990) and Carr Geman Madan Yor
(CGMY) models (Carr et al., 2002). Lévy processes may be defined in terms of their Lévy
triplet, (µ, σ2, ν), which fully specifies the process through its drift term, µ, diffusion coefficient,
σ, and Lévy measure, ν. The Lévy measure, intuitively, is the expected number of jumps of a
specific magnitude in a time interval of one (Papapantoleon, 2008). The general dynamics of a
Lévy process with triplet (µ, σ2, ν) are then given by

dLt = µdt+ σdWt + dM̃t, (2.1)

where Wt is a standard Brownian motion under the real measure P and M̃t is a compensated
compound Poisson process. These processes are linked to their probability distributions through
the Lévy-Khintchine formula, which expresses the characteristic function of a Lévy process with
triplet (µ, σ2, ν) as follows

φ(u) = exp

[
iµu− u2σ2

2
+

∫
R

(eiux − 1− iux1{|x|<1})ν(dx)

]
. (2.2)

Analogous to the frequently used GBM, when using Lévy processes in finance we model asset
prices with an exponential Lévy process. Thus, denoting St as the asset price process, and using
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a Lévy process that satisfies Equation (2.1) we have

St = S0e
Lt ,

where Lt is a Lévy process with triplet (µ, σ2, ν). This model shares some essential properties
with the GBM for pricing derivatives. Such properties include being bounded below by zero, and
having independent, stationary increments of the log-asset returns. Lévy processes are general
enough to include a wealth of patterns and thus they account for the smile and skew effects
observed in option prices (Papapantoleon, 2008). The general dynamics of an underlying asset
influenced by exponential Lévy processes, with Lévy triplet (µ, σ2, ν), can be represented as

dSt = St

(
dLt +

σ2

2
dt+

∫
R

(ex − 1− x)N(dt, dx)

)
, (2.3)

where dLt is defined in Equation (2.1) (Papapantoleon, 2008). The risk-neutral dynamics of the
underlying asset are given by substituting dLt in Equation (2.3) with dLQ

t , where LQ
t is a Lévy

process with a risk-neutral Brownian motion, WQ
t , and triplet(

r − σ2

2
−
∫
R

(ex − 1− x)ν(dx), σ2, ν

)
, (2.4)

such that Ste
−rt is a martingale under the risk-neutral measure. See Appendix A.1 for detail

about the solution to the integral component of the triplet in Equation (2.4).

2.2 The Variable Annuity Account Dynamics

In order to make direct comparisons to existing literature, we primarily adopt the variable
annuity account dynamics presented in Luo and Shevchenko (2014). Changes can also be made
to the framework in order to compare with Bacinello et al. (2014) in the static case.

The VA contract with an embedded GMWB rider provides the policyholder with two accounts,
namely an investment account and a guarantee account which guarantees the return of the
policyholder’s initial premium A0 over the term of the contract. This is achieved by guaranteeing
a withdrawal of G = A0

M at each of the M withdrawal dates, where G is called the guaranteed
rate. Both the investment account, Wt, and guarantee account, At, are bounded below by zero.
The two accounts start with a value of W0, which corresponds to the VA’s initial premium. The
investment account accumulates according to the dynamics of St, described in Equation (2.3).
However, at withdrawal dates, denoted here as tm (for m = 1, ...,M), with tM corresponding
to the maturity of the contract, both Wtm and Atm drop instantaneously by the withdrawal
amount γtm . Additionally, an insurance fee of α% p.a. is deducted from the investment account
continuously. If Wt hits zero before maturity of the contract, withdrawals will continue to be
made until the entire guarantee account is depleted.

To avoid confusion about the exact timing of withdrawals and valuations, we adopt the following
notation:

• t−m is the instant before the mth withdrawal date;
• tm is the exact moment at which a withdrawal occurs; and
• t+m is the instant after the mth withdrawal date.

This notation is graphically represented in Figure 1, which shows the mth withdrawal date being
expanded into the three times, t−m, tm and t+m. Each of the M withdrawal dates is split up in
the same way.

To illustrate how this notation is utilised, consider Figure 2, which shows an example path of
the GMWB investment and guarantee accounts. In this figure, tm corresponds to times 1, 2, 3, 4
and 5.
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Figure 1: Time index for the M withdrawal dates.

Figure 2: Example path of the investment and guarantee accounts for a five-year GMWB.
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Note that the guarantee account remains unchanged between withdrawal dates, as shown in
Figure 2. Mathematically, the guarantee account evolves as follows:

At+m = At−m+1
= max

[
At−m − γtm , 0

]
, (2.5)

where γtm is the withdrawal amount decided upon by the policyholder at withdrawal time tm.
The withdrawal amount can be either deterministic and pre-specified in the contract or a Ftm
measurable random variable, where Ftm corresponds to the filtration at time tm. When incor-
porating the reset provision1, the guarantee account instead evolves according to the following
formula:

At+m = At−m+1
=

max
[
At−m − γtm , 0

]
, if γtm ≤ G

max
[
min

[
At−m − γtm ,Wt−m

− γtm
]
, 0
]
, if γtm > G.

The investment account, under the risk-neutral dynamics, evolves according to:

Wt−m+1
= max

[(
Wt−m

− γtm
)
, 0
]
· exp

[
LQ
tm+1−tm

]
· exp [−α (tm+1 − tm)]

= max
[
Wt+m

, 0
]
· exp

[
LQ
tm+1−tm

]
· exp [−α (tm+1 − tm)] , (2.6)

where Wt+m
=
(
Wt−m

− γtm
)

, as highlighted in Figure 2. For comparison to Bacinello et al.

(2014) and for use in the hedging framework, the insurance fee will be deducted discretely at
withdrawal dates. In this case the investment account evolves as follows

Wt−m+1
= max

[
Wt+m

(1− α(tm+1 − tm)) , 0
]
· exp

[
LQ
tm+1−tm

]
.

Withdrawals above the guaranteed rate are subject to a proportional penalty fee, κ. Thus, the
cash flows actually received by the policyholder can be represented as

C(γtm) =

{
γtm if 0 ≤ γtm ≤ G,
G+ (1− κ) · (γtm −G) if γtm > G.

The discounted risk-neutral valuation of the contract at time tm, given the time t−m value of the
guarantee and investment accounts, may be found by solving the following equation

Vtm(Wt−m
, At−m) = sup

γ

[
EQ
[
e−r(T−tm) max[WtM , C (AtM )]

+
M−1∑
j=m

e−r(tj−tm)C(γtj )
∣∣∣Wt−m

, At−m , γtm

]]
, (2.7)

where γ is defined in the interval
[
0, ..., 0, At−m

]
. The equation (2.7) effectively represents the

risk-neutral expected present value of all future cash flows. The first term within the expectation
in Equation (2.7) implies that the terminal condition of the contract is

VtM (WtM , AtM ) = max [WtM , C (AtM )] . (2.8)

The supremum term in Equation (2.7) emulates rational withdrawal behaviour. However, with-
drawals can be made either statically or dynamically. To differentiate between the static and
dynamic policyholder behaviour types, we restrict the values that γtm can take as follows:

γtm ∈

{
{G}, in the static case; and[
0, At−m

]
, in the dynamic case.

(2.9)

1Reset provisions are a form of penalty that potentially ‘resets’ the guarantee account, following a
withdrawal above the guaranteed rate, to the minimum of the investment and guarantee account values
(Chen et al., 2008).
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2.3 The COS Method

2.3.1 Derivations

The COS method, as presented in Fang and Oosterlee (2008), relies on Fourier-cosine series
expansions. Any finite function, f(·), on [0, π] can be expressed in terms of its Fourier-cosine
expansion

f(θ) =
∞∑
k=0

′Ak · cos(kθ), with Ak =
2

π

∫ π

0
f(θ) cos(kθ)dθ,

where the apostrophe denotes that the first term in the summation is halved. Thus, by per-
forming the following change of variable:

θ =
y − a
b− a

π; y =
b− a
π

θ + a,

the function f(·) on the interval [a, b] can be expanded as follows

f(y) =

∞∑
k=0

′Ak · cos

(
kπ
y − a
b− a

)
, with Ak =

2

b− a

∫ b

a
f(y) cos

(
kπ
y − a
b− a

)
dy.

The coefficient term, Ak, can be re-expressed as an exponential term by recalling that exp(iω) =
cos(ω) + i sin(ω), such that

Ak =
2

b− a
Re

{∫ b

a
f(y) · exp

(
ikπ

y − a
b− a

)
dy

}
,

where Re{·} is the real part of a value and i =
√
−1 is the imaginary unit. We define ψ1(·), a

truncated version of the characteristic function ψ(·), such that

φ1(ω) =

∫ b

a
eixωf(x)dx ≈

∫
R
eixωf(x)dx = φ(ω).

Using the results above, a density function can be approximated in terms of its characteristic
function via

f(y) =
2

b− a

∞∑
k=0

′Re

{
φ1

(
kπ

b− a

)
· exp

(
−i kaπ
b− a

)}
cos

(
kπ
y − a
b− a

)

≈ 2

b− a

N−1∑
k=0

′Re

{
φ

(
kπ

b− a

)
· exp

(
−i kaπ
b− a

)}
cos

(
kπ
y − a
b− a

)
, (2.10)

where the approximation arises from truncating the infinite series to N terms, and by approxi-
mating φ1(·) with the actual characteristic function, φ(·).

Making use of the following result for the conditional characteristic functions of Lévy processes

φ(ω;x) = φ(ω) · eiωx,

it is also easy to approximate conditional density functions using the following formula

f(y|x) =
2

b− a

∞∑
k=0

′Re

{
φ1

(
kπ

b− a
;x

)
· exp

(
−i kaπ
b− a

)}
cos

(
kπ
y − a
b− a

)

≈ 2

b− a

N−1∑
k=0

′Re

{
φ

(
kπ

b− a

)
· exp

(
ikπ

x− a
b− a

)}
cos

(
kπ
y − a
b− a

)
. (2.11)
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Fang and Oosterlee (2008) recommend selecting the truncation range, [a, b], based on the ith

cumulants, ci, of the underlying density function, such that

[a, b] =

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
, (2.12)

where L is a constant chosen to cover the desired portion of the density function. Refer to
Appendix A.2 for the relevant cumulants.

2.3.2 Numerical Implementation

The value of the GMWB contract is found by implementing a backward recursive algorithm,
subject to the terminal condition in Equation (2.8). The backward recursion approach to this
type of optimal control problem relies on the dynamic programming principle, which essentially
says that the decision choice at a particular time will not affect previous optimal decisions
(Ruijter et al., 2013). The significance of this is that the optimal withdrawal at time tm only
depends on the investment and guarantee account values and the time, but is not affected by
withdrawal decisions made at time tn, for n < m.

By rearranging Equation (2.7), the valuation problem can be expressed recursively as

Vtm

(
Wt−m

, At−m

)
= sup

γ

[
EQ
[
C(γtm) + e−r(tm+1−tm)Vtm+1

(
Wt−m+1

, At−m+1
; γtm

) ∣∣∣Wt−m
, At−m , γtm

]]

= sup
γ

C(γtm) + e−r(tm+1−tm) EQ
[
Vtm+1

(
Wt−m+1

, At−m+1
; γtm

) ∣∣∣Wt−m
, At−m , γtm

]
︸ ︷︷ ︸

ζ

 .
(2.13)

The risk-neutral expectation term, denoted ζ in Equation (2.13), is approximated using the COS
method (Fang and Oosterlee, 2008).

The first step is to explicitly write ζ in integral form,

ζ = EQ
[
Vtm+1

(
Wt−m+1

, At−m+1
; γtm

) ∣∣∣Wt−m
, At−m , γtm

]
=

∫ ∞
−∞

Vtm+1

(
wt−m+1

, At−m+1
; γtm

)
gQ(wt−m+1

|Wt−m
, γtm)dwt−m+1

, (2.14)

where gQ(·) is the risk-neutral conditional probability density function of the investment account
value at the next withdrawal date, Wt−m+1

.

It is then possible to perform a change of variable, such that the integral is re-expressed in terms

of the underlying stock’s2 one-period return, y = ln
(
Stm+1

Stm

)
. The risk-neutral distribution of

the stock return is assumed to have a Lévy distribution, and thus its characteristic function
is known. The distribution between each withdrawal date is identically and independently

distributed due to the Lévy properties. Recall that Wt−m+1
= max

[
Wt+m

, 0
]
·exp

[
LQ
tm+1−tm

]
and

At−m+1
= At−m − γtm , so that Equation (2.14) becomes

ζ =

∫ ∞
−∞

Vtm+1

(
max

[
Wt+m

, 0
]
· ey, At+m ; γtm

)
fQ(y)dy,

2We will use ‘asset’ or ‘stock’ to mean the same thing. Therefore these two words will be used
interchangeably.
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where fQ(·) is the risk-neutral probability density function of the one-period stock return, which
follows a Lévy distribution. We then approximate ζ with ζ1 by truncating the integration range
to [a, b], such that

ζ ≈ ζ1 =

∫ b

a
Vtm+1

(
max

[
Wt+m

, 0
]
· ey, At+m ; γtm

)
fQ(y)dy, (2.15)

where a and b are calculated using Equation (2.12).

We expand the risk-neutral density function using the unconditional form of its COS approxi-
mation, Equation (2.10). Recall that the approximation involves truncating the Fourier-cosine
series to N terms and approximating φ1(·) with φ(·). This results in the subsequent approxima-
tion

ζ1 ≈ ζ2 =

∫ b

a
Vtm+1

(
max

[
Wt+m

, 0
]
· ey, At+m ; γtm

)
× 2

b− a

N−1∑
k=0

′Re

{
φQ
(

kπ

b− a

)
· exp

(
−i kaπ
b− a

)}
cos

(
kπ
y − a
b− a

)
dy,

where φQ(·) is the risk-neutral characteristic function corresponding to the one-period stock
return distribution. Now the components of ζ2 that are not functions of y are rearranged
outside of the integral. The final formula used for approximating ζ is

ζ ≈ ζ2 =
N−1∑
k=0

′Re

{
φQ
(

kπ

b− a

)
· exp

(
−i kaπ
b− a

)}
· Uk

(
Wt+m

, At+m

)
, (2.16)

where

Uk

(
Wt+m

, At+m

)
=

2

b− a

∫ b

a
Vtm+1

(
max

[
Wt+m

, 0
]
· ey, At+m ; γtm

)
· cos

(
kπ
y − a
b− a

)
dy. (2.17)

Since the terminal condition, Equation (2.8), is known in closed-form, a backwards recursion
can be set up to extract the time zero value of the contract.

The terminal condition means that the Uk coefficients at the maturity time-step can be expressed
in terms of analytically known functions ψk(·, ·) and χk(·, ·)

Uk(Wt+M−1
, At+M−1

) =
2

b− a

∫ b

a
VtM

(
max

[
Wt+M−1

, 0
]
· ey, At+M−1

; γtM−1

)
· cos

(
kπ
y − a
b− a

)
dy

=
2

b− a

∫ y∗

a
At+M−1

· cos

(
kπ
y − a
b− a

)
dy

+
2

b− a

∫ b

y∗
Wt+M−1

· ey · cos

(
kπ
y − a
b− a

)
dy

=
2

b− a

(
At+M−1

· ψk(a, y∗) +Wt+M−1
· χk(y∗, b)

)
, (2.18)

where y∗ = min

max

ln

 At+M−1

max
[
Wt+M−1

, 0
]
 , a

 , b
 , (2.19)

with ψk(·, ·) and χk(·, ·) as defined in Appendix B. This definition of y∗ ensures that each of the
split integrals is still within the range [a, b]. Also note that y∗ is well defined, regardless of the
account values being zero, by considering the following cases:

10



• max
[
Wt+M−1

, 0
]

= 0→ min[ln(∞), b] = b;

• At+M−1
= 0→ max[ln(0), a] = a; and

• max
[
Wt+M−1

, 0
]

= At+M−1
= 0 → ζ = 0→ integral calculation is unnecessary.

At other withdrawal times, the Uk coefficients are approximated numerically. Bringing this back
to the pricing formula, the value of the GMWB at time tm can be found recursively for different
values of Wt−m

and At−m as

Vtm

(
Wt−m

, At−m

)
= sup

γ

[
C(γtm) + e−r(tm+1−tm)

N−1∑
k=0

′Re

{
φQ
(

kπ

b− a

)
e

−ikaπ
b−a

}
· Uk

(
Wt+m

, At+m

)]
.

(2.20)

Due to the complex nature of this contract, particularly in the dynamic withdrawals case, the
fair insurance fee cannot be found analytically. Instead, the bisection method is used to find
the fair fee. This involves multiple iterations of calculating the GMWB’s time zero value for
different insurance fees until the value converges to W0. Since the initial value of a vanilla VA
contract is simply the premium paid, the fair fee for the GMWB will be determined as the fee
resulting in an unchanged intial value of the VA contract. The algorithm requires discretisation
of the A and W account values at each time step, thus adding an aspect of approximation.
Furthermore, the supremum term for γ must be approximated at each time step by considering
a selection of discrete points, rather than every possible value. Please refer to Appendix C for
further detail on the valuation algorithm for the static and dynamic case.

3 GMWB Hedging Strategies

Hedging can be performed with a wide variety of strategies. The portfolio manager has many
considerations, such as which uncertainty to hedge, how frequently to rebalance portfolios, how
the hedge is funded and the risk measures to consider. Hedging the Greeks, such as delta and
gamma, is a popular hedging strategy, but is known to only be entirely effective in complete
markets and when continuous portfolio rebalancing is possible (Derman et al., 1998). In practice,
transaction costs limit the portfolio rebalancing to discrete intervals, which introduces a hedging
error. Static hedges may be used to remove all risk from some derivative products if the hedging
portfolio is held until maturity. However, it is still impossible to perfectly hedge GMWBs, due to
a basis risk between the required hedges and the available hedging assets (Blamont and Sagoo,
2009). A major cause of this is a mismatch between the time to maturity of GMWBs and that
of actively traded derivative products.

We compare several possible hedging strategies under different assumptions and constraints.
Aside from the well known delta and delta-gamma hedging strategies, we also consider several
risk minimisation hedging strategies. These are strategies that seek to minimise a chosen risk
measure, generally based on real-world probabilities. We investigate risk minimisation strategies
that are either based on minimising the moments of the hedging outcomes, such as variance, or
based on the quantiles of the hedged portfolio loss distribution, such as minimising the portfolio
95% value-at-risk (VaR).

Upon maturity of a hedging position, either when the next set of hedging trades is made, or
at maturity of the derivative to be hedged, the insurer will experience a hedging error. This
could result in a loss or gain for the insurer. The performance of a hedging position can be
determined based on its hedging error. The outcome of the hedge is unknown when selecting
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the portfolio. Therefore, it is essential to consider the distribution of possible hedging errors. We
assume that the insurer is more concerned with minimising potential hedging losses, as opposed
to maximising potential gains. A perfect hedge would have zero hedging error regardless of the
realised stock return, and a bad hedge would cause unfavourable changes to the distribution,
such as increasing the likelihood of making a hedging loss and increasing the variance of the
hedging error. The remainder of this section outlines the techniques used to select GMWB
hedging portfolios.

3.1 Assumptions

Coleman et al. (2007) find that risk minimisation hedging can be much more effective with the
use of European options, rather than the underlying asset. For our analysis we assume that there
are actively traded derivatives on the asset underlying the VA from which a hedging portfolio
can be constructed with no transaction costs. Furthermore, it is assumed that the derivatives
can be purchased at the withdrawal dates such that they mature on the next withdrawal date.
Hedge portfolio rebalancing will occur only on withdrawal dates.

A common assumption in hedging theory is that short-selling of derivatives is allowed. In fact,
it is not always the case that insurers are allowed to short-sell derivatives (ASIC, 2012). Any
constraint on the amount of trading allowed can be factored into the portfolio selection process.
We consider each of the cases where short-selling is allowed, where short-selling is not allowed,
and when short-selling is limited. For hedging the Greeks, it is assumed that short-selling is
allowed, and that the underlying asset and a risk-free asset are also available for trading.

Another consideration is the budgeting constraint of the insurer. It may be that the insurer
wishes to allocate a certain proportion of the fees received from the GMWB contract to fund
the hedging portfolio. Funds are also generated through short-selling, subject to constraints.
Once again, it is easy to account for a diverse range of budgeting constraints.

3.2 Risk Minimisation Strategies

The approach for risk minimisation strategies is based on the strategy presented in Kolkiewicz
and Liu (2012). This method involves selecting an optimal portfolio of vanilla European options
to hedge GMWB contracts, by minimising the second moment of the hedging error. As an
example, the authors define the hedging error as the change in net liability of the hedged
portfolio at the next time period. In general this could be any uncertain value that is to be
hedged and that is dependent on the underlying asset. Although other assumptions can be used,
risk minimisation strategies generally act on real-world probabilities. The general structure of
the approach used to determine the hedging portfolio is outlined below.

Suppose that we want to hedge some uncertainty at time tm+1, that is dependent on the un-
derlying asset value, denoted Htm+1(Stm+1 |Stm , Vtm(Wt+m

)), with information of the time t+m
values of the stock and GMWB contract, by constructing a hedging portfolio of European
options with the same underlying asset as the GMWB. The hedging portfolio will be deter-
mined such that a chosen risk measure, ρ(·), is minimised resulting in the hedged uncertainty,
Hρ
tm+1

(Stm+1 |Stm , Vtm(Wt+m
), ~θ ).

Defining the payoff function of the jth option, which can be a European put or call that matures
at time tm+1, as F (Stm+1 ,Kj), the hedging error of the hedged portfolio with n different options
is

Hρ
tm+1

(
Stm+1

∣∣∣Stm , Vtm (Wt+m

)
, ~θ
)

= Htm+1

(
Stm+1

∣∣∣Stm , Vtm (Wt+m

))
−

n∑
j=1

θj · F
(
Stm+1 ,Kj

)
,
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where θj is the amount of the jth option purchased. The optimal hedging portfolio, ~θρ, is
determined by solving the following optimisation problem

~θρ = inf
~θ

[
ρ
(
Hρ
tm+1

(
Stm+1

∣∣∣Vtm (Wt+m

)
, Stm ,

~θ
))]

,

where Stm+1 = Stm · ey, and the infimum is found subject to the various assumptions and
constraints discussed in Subsection 3.1. The unhedged and hedged portfolios will be referred to
as H(y) and Hρ(y|~θ), respectively, for notational convenience. We investigate the effectiveness
of hedging with several risk measures. The approach is separated into risk measures that are
based on the moments of the hedging loss distribution, and those that are based on the quantiles
of the distribution, such as the VaR.

All information that might be required in the hedging process can be extracted from the valuation
framework by valuing at some withdrawal date, tm, instead of at time zero. If necessary, the
valuation framework can output the time tm valuation and withdrawal decision, as well as the
vectors of time tm+1 valuations and withdrawal decisions.

3.2.1 Moment-Based Risk Measures

Moments of the hedging error can be easily approximated using the COS method. Essentially,
the only difference to Equation (2.16), which is the COS approximation of ζ, is that we are
looking at the value of the whole portfolio, and that instead of only looking at the first moment
(i.e. the expected value), we are approximating

E
[(
Hρ
(
Y
∣∣∣~θ ))n] =

∫ ∞
−∞

(
Hρ
(
y
∣∣∣~θ ))n · f(y)dy, (3.1)

for any n = {1, 2, ...}, where Y is the random distribution of possible one-period stock returns.
Note that f(·) represents the real-world probability density function of the one-period stock
return. Equation (3.1) can be approximated using the COS method, as in Subsection 2.3, such
that

E
[(
Hρ
(
Y
∣∣∣~θ ))n] ≈N−1∑

k=0

′Re

{
φ

(
kπ

b− a

)
e

−ikaπ
b−a

}
· Uk

(
Wt+m

, At+m

∣∣∣~θ ) , (3.2)

where

Uk

(
Wt+m

, At+m

∣∣∣~θ ) =
2

b− a

∫ b

a

(
Hρ
tm+1

(
y
∣∣∣~θ ))n · cos

(
kπ
y − a
b− a

)
dy.

It follows that this can be applied to compute any moments-based risk measure, such as the
example of hedging the second moment provided in Kolkiewicz and Liu (2012).

3.2.2 Quantile-Based Risk Measures

The interest in quantile-based risk measures comes mainly from the VaR and tail value-at-risk
(TVaR) values of the hedging error distribution. A q% VaR represents the qth quantile of a loss
distribution, while the q% TVaR measure is the expected loss given that the loss is larger than
the q% VaR. This information is particularly important for regulatory purposes, where insurers
are often required to hold enough capital to withstand, for example, a one in two hundred year
loss (Dhaene et al., 2003).
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In this context, the loss we are interested in is the level of hedging error. Since the values of the
hedging portfolio are known for many different realisations of the stock return, y, we are able
to approximate the distribution of the hedging error.

First, the density of each y is calculated using Equation (2.10), the COS method probability
density approximation. Thus, the density for the hedging error corresponding to each y at which
the GMWB has been valued at time tm+1 can be approximated, since fh(H(y)) ∝ f(y), where
fh(·) is the probability density function of the hedging loss distribution:

fh
(
H
(
y(j)
))
∝
∑
all i

f
(
y(i)
)
· 1{H(y(i))=H(y(j))},

Note that the summation and indicator function, 1{H(y(i))=H(y(j))}, account for the case when
multiple realisations of y lead to the same hedging loss.

Then, the hedging errors, corresponding to each y, are sorted into ascending order, with a loss
being positive and a gain being negative. The qth quantile is approximated by finding the
hedging error below which q% of the distribution lies.

This method is utilised for hedging the VaR and TVaR risk measures. The q% VaR simply is
the qth quantile, whereas TVaR requires one further step. The q% TVaR is calculated as

TV aRq

(
Hρ
(
Y
∣∣∣~θ )) ≈ 1

1− q

∫ 1

q
V aRx

(
Hρ
(
Y
∣∣∣~θ )) fhρ (V aRx (Hρ

(
Y
∣∣∣~θ ))) dx,

which is evaluated using numerical integration.

3.3 Delta and Delta-Gamma Hedging

For hedging of the Greeks we consider delta and gamma. Recall that delta is the amount by
which the financial derivative’s value will change when a small shift in the underlying asset price
occurs, and gamma is the amount by which the delta shifts in the same circumstance.

Delta (and delta-gamma) hedging strategies involve selecting a portfolio of hedging assets with
the exact same delta (and gamma) values as the GMWB liability. This means that any small
shift in the underlying asset value will cause the hedging assets and GMWB liability to move
by the same amount, thus removing risk. We limit the number of portfolio rebalances to occur
only at withdrawal dates, rather than continuous rebalancing, thus introducing a hedging error.

Taking the derivative of the GMWB value with respect to the underlying stock is not trivial in
the COS valuation framework, due to the appearance of Stm in our definition of y, the inter-
period asset return. Instead, we can approximate these values by looking at what happens to
the value of the GMWB at time tm if there is a small shift in the underlying asset’s value at time
t+m. Note that the timing here is important, as the Greeks calculations should not impact the
withdrawal decision made at time tm. This shift will cause a proportional shift in the investment
account value, Wt+m

. The following are common finite differencing approximations for delta, ∆,
and gamma, Γ, albeit applied to our notation, which consider a small shift, c, in the asset price

∆ ≈
Vtm

(
Wt+m

· Stm+c
Stm

)
− Vtm

(
Wt+m

)
c

,

Γ ≈
Vtm

(
Wt+m

· Stm+c
Stm

)
− 2Vtm

(
Wt+m

)
− Vtm

(
Wt+m

· Stm−cStm

)
c2

.

It is very easy to calculate these values using the valuation framework. The only change to
Algorithm 1, in Appendix C, is that the returns required to reach known values at the next
time-step are altered to account for the shift in Wt+m

caused by the shift in Stm . The next step
is to match the calculated delta (and gamma) of the GMWB with the hedging assets.
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3.3.1 European Options

The price of an option with payoff F (Stm+1 ,Kj), denoted vtm(Stm ,Kj), must be known, if we
are to be able to factor in budgeting constraints. In practice, this would be the market price.
However, for this exercise the prices are found using the COS method. Furthermore, we also
require the delta (and gamma) of the options in order to delta (and delta-gamma) hedge the
GMWB contract. The flexibility of the COS method allows for these values to be approximated
easily based on the characteristic function. Under the Black-Scholes framework these could
instead be calculated analytically, but we choose not to for consistency in the approach. The
formulae below are directly from Fang and Oosterlee (2008)

vtm(Stm ,Kj) ≈ e−r(tm+1−tm)
N−1∑
k=0

′Re

{
φQ
(

kπ

b− a

)
eikπ

x−a
b−a

}
Uk,

∆ ≈ e−r(tm+1−tm)
N−1∑
k=0

′Re

{
φQ
(

kπ

b− a

)
eikπ

x−a
b−a · ikπ

b− a

}
Uk
Stm

,

Γ ≈ e−r(tm+1−tm)
N−1∑
k=0

′Re

{
φQ
(

kπ

b− a

)
eikπ

x−a
b−a ·

((
ikπ

b− a

)2

− ikπ

b− a

)}
Uk
S2
tm

.

These formulae resemble Equation (2.16), but there are two important differences. Firstly, x
here is defined as ln

(
St
K

)
, and secondly, the Uk coefficients are known in closed form, that is

Uk =

{
Kj (χk(0, b)− ψk(0, b)) , for calls, and

Kj (ψk(a, 0)− χk(a, 0)) , for puts,

where the functions, χ(·, ·) and ψ(·, ·), are defined in Appendix B. The flexibility of calculating
these values with the COS method arises, once again, from requiring only the characteristic
function of the stock return distribution.

The application of the valuation framework allows for a comprehensive framework with which
the GMWB can be hedged. We can consider a wide spectrum of possible hedging strategies,
such as local risk minimisation of moments-based and quantile-based risk measures, or hedging
the Greeks. The framework also provides flexibility as to which uncertainty is hedged and for
various constraints. Finally, using results from Fang and Oosterlee (2008), it is very easy to
determine the price, delta, and gamma of European options, as well as the density of stock
returns, provided the characteristic function of the asset returns is known.

4 Numerical Analysis

In this section we provide extensive analysis and discussion of the results obtained from nu-
merical experiments for the valuation and hedging of VA contracts embedded with a GMWB
rider. In Subsections 4.1 and 4.2 the efficiency of the model is assessed for both the static and
dynamic policyholder withdrawal behaviour assumptions, respectively. Following the analysis of
the valuation framework, Subsection 4.3 provides analysis of six scenarios to compare different
hedging strategies.

To ensure that the model is working appropriately, we perform numerical comparisons with
two existing valuation frameworks presented in Bacinello et al. (2014) and Luo and Shevchenko
(2014). When valuing a VA contract with a GMWB rider, the fair fee is one that causes the
time zero value of the contract to equal its initial premium, which we consider to be 100 units
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in our numerical experiments. When comparing two numerical approximations to the problem,
we do not expect convergence to exactly 100, but instead we aim for accuracy to several decimal
places.

Throughout the analysis we consider three different asset return models which fall under the
General Lévy framework for the sake of brevity. These are namely GBM, VG, and CGMY,
whose characteristic functions are specified in Appendix A.1. Please note that our framework
accommodates other General Lévy specifications. Primarily, we adopt the parameters presented
in Bacinello et al. (2014), where the models have been calibrated to S&P 500 Option data. The
fitted parameters are presented in Table 1.

Table 1: Bacinello et al. (2014) fitted model parameters.

Model GBM VG CGMY

σ = 0.1361 σ = 0.1301 C = 0.6817
θ = −0.3150 G = 18.0293
ν = 0.1753 M = 57.6250

Y = 0.8000

Note that σ is the volatility of the diffusion term, while θ and ν represent the intensity and fre-
quency of jumps, respectively, for the VG process. For the CGMY model, C determines kurtosis,
G and M control skewness, and Y characterises the Lévy density. For further interpretation of
the parameters, interested readers should refer to Carr et al. (2002).

Where numerical comparisons are performed with results presented in Luo and Shevchenko
(2014), the parameter assumptions are different, such that they match those used in the paper.
It will be made clear whenever parameter assumptions deviate from those in Table 1. All
percentage rates used throughout this analysis are assumed to be per annum.

There are four parameters relating specifically to our algorithm:

• J , the number of discretisations of the investment account, W ;
• H, the number of discretisations of the guarantee account, A;
• N , the number of Fourier-cosine series terms; and
• L, which determines the size of the truncation range [a, b].

We conduct analysis of the convergence of the time zero value to 100 units by varying these
parameters and observing the results.

4.1 Static Policyholder Withdrawal Behaviour

In this subsection we discuss the results of the COS framework as applied to static withdrawal
behaviour. Firstly, an error analysis of Algorithm 1, presented in Appendix C, is explained
along with a solution to the identified error. Having addressed the problem, we then compare
numerical results of our framework to those presented in both Bacinello et al. (2014) and Luo and
Shevchenko (2014) to demonstrate the consistency of the COS method with existing literature.
We also analyse how quickly the COS method converges to the correct initial value. Finally, we
investigate the sensitivity of the fair fee to various parameters.

4.1.1 Error Analysis

For numerical experiments, the infinite domain of the transition density function must be trun-
cated to the interval [a, b], as discussed in Subsection 2.3. This is achieved by selecting an
appropriate L, for instance setting L = 12 covers practically the entire density function of any
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return distribution. However, for accurate approximations, such a large coverage of the dis-
tribution is not necessary. For example, consider the standard normal distribution, where ±5
standard deviations from 0 covers 99.9999% of the density, which coincides with the case where
L = 5.

For the GMWB pricing problem, the motivation for reducing L stems from the fact that to
compute the Uk coefficients, as in Equation (2.17), the full (discretised) range of values at the
next time-step corresponding to Wt−m

· ey, with y ∈ [a, b], is required. The larger b is, the higher
the necessary value of Wmax. This means that, for the same level of mesh fineness, we would
require a higher number of discretisations of the investment account, J , which in turn increases
the number of computations.

The results in Table 2 show that setting L = 5 does not provide accurate results for either
the GBM or the VG distributions. Increasing the L parameter to 12 provides values closer to
100. However, this is at the expense of increasing the discretization points J of the investment
accounts which increases the computational time.

Since the results in Table 2 do not quite converge to 100, even for L = 12, this prompted further
investigation. In order to detect inaccuracies, we plot the contract values at different time-steps
against the investment account values considered in Figure 3. Due to the guarantee component,
we expect to see something resembling the value profile of a long call option. In this case, for
low W the value should be reasonably flat, whereas when the guarantee is out-of-the-money the
value should increase reasonably linearly with W .

As revealed in Figure 3, the expected shape of the curve is found in the final time-step (green).
This is due to analytical expressions being available for Uk at maturity. Just one time-step back
(red), there is an immediately noticeable error where the value drops off for high investment
account values, for both L = 5 and L = 12. A similar error is identified in Ruijter et al.
(2013), where the authors note that the error propagates recursively, resulting in an even more
noticeable error at the first time-step (blue).

Although the error seems dramatic in both cases, by looking at the scale of the two x-axes one
can determine why the L = 12 case is far more accurate. When L is high, the error does not
occur at easily obtainable investment account values. For example, when L = 12, the blue line
in Figure 3, corresponding to the first withdrawal date, only drops off substantially after the
investment account is over 200. It is highly unlikely that the investment account doubles in
value before the first withdrawal occurs, unless there are unrealistic parameters. On the other
hand, for low L, the results in Table 2 demonstrate that the lower time zero value stems from the
high probability of reaching the part of the time t1 value curve in which there is undervaluation
occurring.

The cause of the error is related to the earlier discussion regarding Wmax. For high values of W ,

it is not possible to consider the full range of returns, y ∈ [a, b]. In Figure 4, W
(1)

t−m
is an example

Table 2: Error analysis of Algorithm 1 for GBM and VG asset dynamics with L = 5 and L = 12.

(a) L=5

GBM VG

J V0 J V0
20 103.66 20 74.39
80 91.53 80 92.60

400 91.82 400 92.97
1600 91.86 1600 93.03
3200 91.86 3200 93.03

(b) L=12

GBM VG

J V0 J V0
20 220.79 20 770.23
80 99.23 80 104.51

400 99.37 400 101.55
1600 99.36 1600 100.56
3200 99.35 3200 100.38
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Figure 3: Algorithm 1 error analysis at three points in time for different values of L.
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Figure 4: Illustration of the one-period asset return truncation range causing the investment
account value to exceed Wmax.

of a W value where the full truncation range of one-period returns can be considered. On the

other hand, W
(2)

t−m
demonstrates a point where a large return takes the investment account past

Wmax at the next time-step, highlighted by the red region. Since the contract values are unknown

for these higher points, aside from at maturity, the Uk coefficients for W
(2)

t−m
are not calculated

over the whole truncation range, and thus cause the contract to become sharply undervalued.

Ruijter et al. (2013) suggest using extrapolation to avoid this error. To allow for lower values
of L, this error is mitigated by employing simple linear extrapolation techniques to calculate
the contract value at higher values of W . This method is suitable, due to the contract value
being linear with respect to the investment account value when it is far out-of-the-money. This
is confirmed by the linearity of the green lines in Figure 3, where the Uk terms have been
calculated analytically. To confirm that this extrapolation provides accurate results, we value
the contract using the same parameters as in Table 2 for the GBM case, but with the above-
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mentioned change to the algorithm. As expected, we no longer see a bias below 100 for any of
the L values in Table 3. Furthermore, the lower values of L converge for lower J , which aligns
with the motivation for reducing L. Due to faster rate of convergence in J , we elect to use L = 5
for the numerical analysis.

Table 3: Convergence of V0 to 100 for varying J and L with GBM asset dynamics – with ex-
trapolation incorporated into Algorithm 1.

J
L

5 8 12

20 101.48 330.22 3343.90
200 100.00 99.88 105.94
2000 100.00 100.00 99.57

4.1.2 Comparison of Results

We first perform numerical comparisons of our approach with that presented in Bacinello et al.
(2014). We implement Algorithm 1, inclusive of the extrapolation technique discuss in the
previous subsubsection. Furthermore, we implement discretely charged insurance fees to match
the Bacinello et al. (2014) framework.

Table 4 demonstrates that the COS valuation framework yields fair fees consistent with those
reported in Bacinello et al. (2014) across a variety of interest rates. The largest discrepancies,
highlighted in pink, are differences of approximately 0.6 and 1 basis points (b.p.s). Clearly this is
more of a concern in the CGMY case when r = 0.07, as the 0.6 b.p. represents a 20% difference.
That said, it should be noted that Bacinello et al. (2014) reported results that are rounded to
the nearest basis point, and a more precise comparison is not possible.

We further confirm the accuracy, and flexibility, of the COS method by comparing the results
to those reported by Luo and Shevchenko (2014). Luo and Shevchenko (2014) report values
obtained from finite difference (FD) techniques that had been used to price GMWBs in the
early literature, such as Chen and Forsyth (2008), as well as their own approach using Gauss-
Hermite quadrature aided by cubic splines (GHQC). Table 5 demonstrates the consistency of
the COS method with existing literature across various maturities of the contract. The fair fees
reported are for quarterly withdrawals with GBM asset dynamics with r = 5% and σ = 20%.
At each of the times to maturity considered, the three methods return the same fair fee accurate
to at least one basis point.

Table 4: Comparison to Bacinello et al. (2014) fair fees for twenty-year GMWB contracts with
varying risk-free interest rate, r.

Model
r

3% 4% 5% 6% 7%

GBM
31.02 15.27 7.34 3.40 1.51
(31) (15) (7) (3) (1)

VG
64.02 38.27 23.10 13.94 8.36
(63) (38) (23) (14) (8)

CGMY
44.02 23.96 13.00 6.94 3.63
(43) (24) (13) (7) (3)
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Table 5: Comparison to Luo and Shevchenko (2014) fair fees for GMWB contracts with GBM
asset dynamics, r = 5%, σ = 20%, quarterly withdrawals and varying tM .

Method
tM 10 12.5 20 25

COS 95.87 67.05 28.23 17.49
GHQC 95.81 66.99 28.33 17.59
FD 95.78 66.93 28.30 17.79

4.1.3 Computational Efficiency

Having confirmed that the results are consistent with existing valuation frameworks, we now
look at the computational efficiency of the COS method framework.

Fang and Oosterlee (2008, 2009) demonstrate the rapid convergence of the COS method when
evaluating European and Bermudan type options by increasing the N parameter, representing
the number of terms in the Fourier-cosine series. The results in Table 6 confirm that this is
still the case for GMWB valuation. As N increases from left to right across the rows in the
GBM case, we observe no change in the approximated value. This indicates that convergence
has already occurred at N = 16. For the VG case we expect to require a larger N parameter
because the VG distribution is ‘less continuous’ (Fang and Oosterlee, 2008). This is observed in
Table 6, where the number of COS summations required for convergence increases to N = 64 in
the VG case.

Sufficient accuracy is obtained with the COS method for the GBM (resp. VG) when J = 250
and N = 16 (resp. N = 64), as noted in Table 6. The computational times highlighted in
pink demonstrate the favourable performance of the COS method relative to the Bacinello et al.
(2014) framework. The algorithm presented in Bacinello et al. (2014) uses FFT-based numerical
techniques to approximate the probability density function and the recursion involves numerical
integration of the recursive valuation integral. For the Bacinello et al. (2014) results, N refers
to the number of discrete W points considered. The authors’ algorithm requires interpolation
between mesh nodes, and increasing N is the only way to improve accuracy.

The keen observer will notice that, particularly for higher J , the computational time in the
VG case is higher than the GBM case for the COS method (see green cells in Table 6), but
relatively stable in the Bacinello et al. (2014) algorithm. This is caused by the skewness of the
VG distribution, which leads to a larger truncation range, [a, b], than in the GBM case. The
increased computational time results from the need to approximate each Uk coefficient using a
larger number of points.

4.1.4 Sensitivity Analysis

Existing literature provides a reasonably comprehensive analysis of the sensitivity of the GMWB
fee to various parameters and underlying asset return distributions (Chen et al., 2008; Bacinello
et al., 2014). In this subsubsection we confirm that the COS method produces consistent results
with regards to the calculated fair fees in the static policyholder withdrawal behaviour case.

Similar to the valuation of financial derivatives, we expect to find that shifts in a parameter
that increases the likelihood of the GMWB ending up in-the-money will increase the value of
the contract. Therefore, the fair fee would have to rise, such that the time zero value of the
GMWB remains at 100 units.

A further consideration is that, unlike financial derivatives, the insurer collects fees periodically
to fund the GMWB. Additionally, the guaranteed rate, G, is higher for shorter-term maturities.
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Table 6: Comparison of computational efficiency and accuracy between the COS method and
Bacinello et al. (2014) framework, denoted Bac., with computational time in brackets
reported in seconds.

(a) GBM

J
N

16 32 64 128

25
125.38 125.38 125.38 125.38
(0.014) (0.015) (0.016) (0.019)

50
99.92 99.92 99.92 99.92

(0.027) (0.029) (0.035) (0.044)

250
100.00 100.00 100.00 100.00
(0.181) (0.294) (0.317) (0.449)

1000
100.00 100.00 100.00 100.00
(1.560) (1.951) (3.762) (5.768)

Bac.
110.73 102.3 100.49 100.06
(0.491) (1.023) (2.057) (4.030)

(b) VG

J
N

16 32 64 128

25
83.35 62.01 61.88 61.88

(0.013) (0.014) (0.017) (0.020)

50
99.51 99.88 99.28 99.28

(0.027) (0.032) (0.039) (0.053)

250
100.05 100.02 100.01 100.01
(0.204) (0.285) (0.444) (0.815)

1000
100.04 100.01 100.01 100.01
(1.965) (4.716) (6.242) (9.408)

Bac.
110.51 102.39 100.5 100.07
(0.496) (1.002) (1.977) (3.960)

The combination of these two factors means that we expect to see higher fair fees for shorter-term
contracts.

The surface plots in Figure 5 demonstrate that for both the GBM and VG cases, a shorter time
to maturity results in higher fees. It is also apparent that the fair fees increase when the risk-free
interest rate decreases. This is expected, because the lower risk-free interest rates make it more
likely for the GMWB to become in-the-money. Finally, the fair fees in the VG case are higher
than the GBM case. This is consistent with existing literature (Bacinello et al., 2014).

In Table 7 there is a very clear relationship between increasing the volatility of the stock return

Figure 5: Comparison of fair fees for varying time to maturity, tM , and risk-free rate, r, with
annual withdrawals and for both GBM and VG asset dynamics.
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and an increase in the fair fee. For each of the times to maturity the fair fee increases by roughly
three times from σ = 0.15 to σ = 0.25, which agrees with existing literature (Chen et al., 2008).
For the VG case, it is apparent in Figure 6 that increasing the frequency, ν, and/or decreasing

Table 7: GMWB fair fees with GBM asset dynamics and varying σ and tM .

σ
tM 10 15 20 25 30

15% 112.83 63.39 40.01 26.93 18.9
20% 199.06 117.02 76.82 53.59 38.84
25% 292.18 175.39 117.16 83.07 61.07

the intensity, θ, of jumps causes the fair fee to rise. Note that here, the decrease in jump
intensity refers to the absolute value of the negative jumps becoming larger. This is consistent
with the expectation that parameter changes that increase the likelihood of the GMWB being
in-the-money increase the contract’s value. In this example the GMWB has twenty annual
withdrawals with r = 5% and σ = 15%. We would expect these results to hold with other sets
of these parameters.

Figure 6: Fair fees for a twenty-year GMWB with annual withdrawals, r = 5%, σ = 15% and
varying VG jump intensity and frequency parameters.

−0.34
−0.32

−0.3
−0.28

−0.26

0.16

0.18

0.2

60

65

70

75

80

85

Jump intensity, θ
Jump frequency, ν

F
ai

r 
fe

e 
α 

(b
.p

.)

4.2 Dynamic Policyholder Withdrawal Behaviour

In this subsection we extend the analysis to the case of dynamic policyholder withdrawal be-
haviour. Again, the results confirm the consistency of the COS method with Luo and Shevchenko
(2014).

22



4.2.1 Comparison of Results

The results in Table 8 confirm the consistency of the COS method under the dynamic pol-
icyholder withdrawal behaviour. Fair fees are found using the Luo and Shevchenko (2014)
parameters of quarterly withdrawals, r = 5%, and σ = 20%. The largest discrepancy between
the COS method and the other two approaches, highlighted in pink, is small relative to the fair
fee being charged.

Table 8: Comparison to Luo and Shevchenko (2014) reported fair fees with GBM asset dynamics,
varying tM , two different penalty rates and quarterly withdrawals.

κ = 5% κ = 10%
tM COS GHQC FD COS GHQC FD

10 216.71 216.90 216.7 135.77 136.00 135.9
12.5 181.88 182.10 181.8 109.99 110.30 110.2
20 123.33 123.60 123.2 69.52 70.06 69.96
25 101.71 102.00 101.3 55.30 56.09 55.94

4.2.2 Convergence Properties

In Table 9 we look at the convergence of the COS method with respect to the J and H pa-
rameters. In this case, we substitute the fair fee, as presented in Luo and Shevchenko (2014)
for a ten-year contract with quarterly withdrawals and a penalty rate of 10%, and observe the
convergence of the initial contract value to 100. In Algorithm 2 of Appendix C, the set of
possible withdrawal amounts is discretised at intervals of the same size as intervals between the
discretised A account values. With the current parameters, the guaranteed rate is G = 2.50 at
each withdrawal date.

We notice from Table 9 that when the number of discretisations of the guarantee account, H,
is equal to 41, that is, the spacing between guarantee account values equals 2.50, the COS
method converges to the correct value. However, we do not observe convergence for H = 21,
where the difference between two account values is 5. This is because it is essential to consider
the possibility of withdrawing exactly G at each time-step, which is the maximum allowed
withdrawal to which no penalty applies. Also, for H = 81 and H = 161, since the spacings
are exactly half and exactly a quarter of G, respectively, G is again considered as a withdrawal
amount and we obtain highly accurate results. The convergence in J is similar to that observed
in Table 6 for the static case. In this case, aside from when H = 21, we have two decimal point
accuracy at J = 250.

Table 9: Convergence in J and H using the Luo and Shevchenko (2014) fair fee for a ten year
contract with quarterly withdrawals, GBM asset dynamics, r = 5%, σ = 20% and
κ = 10%.

J
H

21 41 81 161

50 99.74 101.36 101.47 101.50
250 98.66 100.00 100.00 100.00
500 98.67 100.00 100.00 100.00

Due to being unable to replicate the results of Bacinello et al. (2014) in the dynamic case, and
the fact that the method presented in Luo and Shevchenko (2014) is only capable of evaluating
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the GMWB in the GBM framework, the convergence analysis of N here is performed differently
to the static case. Having confirmed that our results are reliable in the previous subsubsection,
we instead find the fair fee using the COS method itself, using large accuracy parameters, and
substitute this fair fee to observe how quickly convergence occurs.

The results in Table 10 correspond to a fair fee that is found using J = 1000 and N = 1024
for a ten-year GMWB contract with annual withdrawals, and r = κ = 5%. Keeping in mind
the results of Table 6, where a similar analysis is performed in the static case, it is unsurprising
that the GBM case experiences such fast convergence with increasing N . It is notable here
that, under the CGMY asset dynamics, convergence occurs at N = 32, since the CGMY process
generally experiences relatively slow convergence (Fang and Oosterlee, 2008).

Table 10: Convergence in the dynamic case for a GMWB contract with ten annual withdrawals
using a fair fee calculated with J = 1000 and N = 1024, with r = κ = 5% and varying
J and N .

(a) GBM

J
N

16 32 64 128

25 128.20 127.86 127.85 127.85
50 100.06 100.07 100.07 100.07
250 100.02 100.00 100.00 100.00
500 100.01 100.00 100.00 100.00

(b) CGMY

J
N

16 32 64 128

25 109.06 118.99 118.99 118.99
50 100.06 99.96 99.96 99.96
250 100.26 100.00 100.00 100.00
500 100.08 100.00 100.00 100.00

4.2.3 Sensitivity Analysis

Similar to the static case, the option-like features of GMWB contracts mean that we expect
their value to increase as the likelihood of being in-the-money increases.

As expected, the results in Figure 7 show that at varying times to maturity, the fair fee increases
as r decreases, under both the GBM and VG dynamics. Furthermore, like in the static case,
shorter times to maturity require higher fair fees.

The purpose of the penalty fee imposed on withdrawals over the guaranteed amount is primarily
to discourage early surrender of the GMWB. Figure 8 illustrates that higher penalty fees cause
lower fair fees, thus indicating a reduction in the GMWB’s value. Judging by the relative flatness
of the surfaces for κ ≥ 6%, it appears that setting the penalty to 6% is enough to discourage most
of the cases where a policyholder may otherwise have chosen to withdraw above the guaranteed
rate, G.

The reset provision applies a further penalty to the policyholder. Therefore, we expect it to
reduce the value of the fair fee, as is shown in Table 11. However, the effect is low in relative
terms, which suggests that there are few circumstances where the optimal withdrawal strategy
would involve withdrawing γt−m > G that corresponds to when Wt−m

< At−m . In other words, it
is unlikely for the reset provision to actually cause the guarantee account to drop by more than
the withdrawal amount. This observation is consistent with the results presented in Chen et al.
(2008).

4.3 Hedging Results

In this subsection we compare various hedging strategies. First we test and confirm the accuracy
of the COS method for calculating the Greeks of a European put option, as well as the moments
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Figure 7: Comparison of fair fees for annual withdrawals with κ = 5% and varying risk-free rate,
r, and time to maturity, tM , with dynamic withdrawals.
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Figure 8: Comparison of fair fees for a GMWB contract with twenty annual withdrawals and
varying risk-free rate, r, and penalty fee, κ.
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Table 11: Effect of the reset provision on the fair fees of a ten-year GMWB with quarterly
withdrawals, r = κ = 5% and varying σ.

σ 15% 20% 25% 30%

No reset 103.67 216.86 344.93 470.86
Reset 97.46 201.37 330.67 457.08
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and quantiles of a portfolio distribution. We then investigate six examples of hedging under
different circumstances with various hedging strategies.

4.3.1 COS Method Approximations

The European option pricing approximation, given by Equation (3.3.1), has been proven to
display rapid convergence to the actual option prices (Fang and Oosterlee, 2008). However, a
numerical analysis of the Greeks formulae, Equations (3.3.1) and (3.3.1), is not provided in Fang
and Oosterlee (2008), where the equations are derived.

Table 12 contains COS method approximations and analytic solutions for the delta and gamma
of a European put option on a stock with an initial price of 100, time to maturity of one year, a
risk-free interest rate of 5% and volatility of 20% in the Black-Scholes framework. These values
are calculated for different strike prices, K. It is evident that the COS method converges rapidly
to the analytic solutions for in-the-money, at-the-money and out-of-the-money options.

To check the accuracy of the COS method in determining moments of the hedging loss distri-
bution, we give an example of a portfolio that starts with one unit of value and accumulates
over a year according to GBM asset dynamics with µ = 10% and σ = 20% using real-world
probabilities. In Table 13 we see that, for both the second and third moments, convergence
occurs rapidly, with at least three decimal point accuracy at N = 32.

Table 12: COS approximation of the delta and gamma for in-, at- and out-of-the-money Euro-
pean puts compared to the analytic solutions.

K
N

8 16 32 512 Analytic

∆
75 -0.0681 -0.0357 -0.0369 -0.0369 -0.0369
100 -0.3668 -0.3636 -0.3632 -0.3632 -0.3632
125 -0.7027 -0.7772 -0.7781 -0.7781 -0.7781

Γ
75 0.0069 0.0041 0.0040 0.0040 0.0040
100 0.0140 0.0185 0.0188 0.0188 0.0188
125 0.0150 0.0152 0.0149 0.0149 0.0149

Table 13: COS approximation of statistical moments of a portfolio following GBM asset dynam-
ics over one year with µ = 10% and σ = 20% under real-world probabilities.

Moment
N

16 32 64 128 Analytic

Second 1.259 1.271 1.271 1.271 1.271
Third 1.377 1.522 1.522 1.522 1.522

Lastly, we check the accuracy of using the COS method to calculate the quantile-based risk
measures of the hedging loss distributions. Table 14 shows the results of approximating the VaR
and TVaR of a portfolio starting with one unit, whose assets again follow GBM dynamics with
mean return of 10% and a volatility of 20%. The number of terms in the Fourier-cosine series,
N , used to calculate the densities can be set very high. Here, we use N = 214 to calculate the
density values. Of more interest is the convergence with regards to J , the number of next period
portfolio value discretisations. Table 14 reveals that a relatively high value of J is required to
converge to the analytic VaR. For the VaR and TVaR measures, reasonable accuracy seems to
occur by the time VaR has converged at J = 211.
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When performing these quantile-based calculations, the primary computational expense comes
from sorting the hedging loss distribution. The time required to sort a vector increases by a
factor of n log n where n is the size of the vector. Thus, it is beneficial to use the COS method
and sort a vector of size 213, which is roughly 1000 times smaller than the vector of size 107

used for the Monte Carlo simulations in Table 14.

Table 14: COS approximation of 95% VaR and 95% TVaR for a portfolio driven by real-world
GBM asset dynamics with µ = 10% and σ = 20% compared with the analytic solution
for the 95% VaR and approximations found using Monte Carlo simulations (MC).

Measure
J

27 29 211 213 Analytic MC (107 sims.)

95% VaR 1.544 1.546 1.536 1.536 1.536 1.535
95% TVaR 1.602 1.684 1.672 1.671 - 1.674

4.3.2 Hedging Strategy Examples

This subsection demonstrates the flexibility of the hedging framework with several examples.
As discussed in Subsection 3, the framework allows us to form hedging portfolios for delta and
delta-gamma hedges, and more notably to construct local risk minimisation hedging strategies
for a wide variety of risk measures. Since the risk measures are minimised under the real-world
probabilities, the expected market return is assumed arbitrarily to be 12%.

Similar to the numerical analyses presented in Coleman et al. (2007) and Kolkiewicz and Liu
(2012), we demonstrate that the local risk minimisation hedging strategies do not rely on hav-
ing a large selection of options from which to choose. This is done by allowing for different
combinations of in-, at- and out-of-the-money European puts and calls to be traded in each
example.

First Example

Here we present an example similar to that of Kolkiewicz and Liu (2012), in order to demonstrate
the robustness of risk minimisation hedging strategies compared with hedging the Greeks in the
presence of asset dynamics with jumps or infrequent portfolio rebalancing dates. When delta and
delta-gamma hedging the GMWB, the insurer tries to ensure that movements in their assets and
liabilities, caused by shifts in the underlying asset’s value offset each other. Thus, the hedging
loss is the change in net liability (that is, the change in liabilities minus the change in assets).
For inter-withdrawal date hedging we calculate this change in net liability as(

Vtm+1

(
Wt−m+1

)
− Vtm

(
Wt−m

))
︸ ︷︷ ︸

Liabilities

−
(
Wt−m+1

−Wt−m

)
︸ ︷︷ ︸

Assets

,

such that the GMWB’s value represents the insurer’s liability, and the investment account value
represents the insurer’s assets. Note that we ignore other assets the insurer may be holding. We
assume that short-selling of derivatives is limited to one unit of each of the available options.
The available options comprise a variety of ten in-the-money, at-the-money and out-of-the-money
European puts and calls.

Kolkiewicz and Liu (2012) find that the Greeks hedging strategies perform well in the GBM
framework, particularly as the frequency of portfolio rebalancing increases. When jumps are
introduced to the asset dynamics, through the Kou (2002) model, the Greeks hedging strategies
break down, while the local risk minimising strategy remains robust.
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Figures 9 to 15 which are presented throughout this section show the estimated, smoothed
probability density functions for the hedging loss distributions. It should be noted again that
a loss is positive and a gain is negative in these distributions. These are constructed using
Equation (2.10), the COS method density approximation, to calculate the density of stock
return realisations that correspond to each hedging loss. The density function is approximated
using the techniques discussed in Subsubsection 3.2.2. This is done with hedging losses, inclusive
of the cost of the hedging portfolio, that are known at discrete points.

Figure 9 demonstrates the effectiveness of hedging the Greeks compared with hedging the second
moment of the hedging loss for both annual and quarterly withdrawal dates with GBM account
dynamics. In the annual withdrawal case, the second moment hedge clearly outperforms the
other hedges. We conclude this because the second moment hedge is much more centered
around a zero hedging loss, which is ultimately the aim for hedging the second moment or the
Greeks. This result is expected, as the theory behind hedging the Greeks relies on continuous
(or very frequent) portfolio rebalancing. Since the rebalancing is only allowed at withdrawal
dates, the Greeks hedging strategies are ineffective in the annual withdrawals case. However, in
the quarterly withdrawals case we see a drastic improvement in the Greeks hedging strategies.
The delta-gamma hedge appears to have a slightly shorter, and therefore more favourable, right
tail than the second moment hedge and is almost as peaked. For these reasons we conclude that
the delta-gamma hedge outperforms the second moment hedge in the quarterly withdrawal case.

A similar plot is shown in Figure 10, where the fund dynamics are instead driven by a VG
process. In all cases the hedging loss distribution are noticeably less peaked. In the annual
withdrawal case, the second moment hedge is the only effective hedge. While the Greeks hedges
are still largely ineffective in the quarterly withdrawal case, they do begin to form peaks around
zero. Since the Greeks hedges are less peaked and have fatter tails than the second moment
hedge, they remain outperformed by the risk minimisation strategy.

The results in this example are consistent with those presented in Kolkiewicz and Liu (2012).
In the remaining examples we will solely compare various risk measures for use in local risk
minimisation hedging strategies.

Second Example

In this second example we compare the 95% VaR and first moment of the hedging loss as the
risk measures to minimise. The insurer is again attempting to hedge the change in net liabilities.
There are two European puts, one in- and one out-of-the-money, and one at-the-money European
call available, no short selling is allowed, and the budget constraint is 0.5% of the investment
account value.

Figure 11 displays both the observed hedging losses incurred for different realisations of Wtn+1 ,
in the top panel, and smoothed probability density functions for the hedging loss, in the bottom
panel.

From Figure 11, it is clear that the hedges cut off the maximum hedging loss. This can be seen
in the top panel, where, unlike the unhedged portfolio, the hedging loss of the hedged portfolios
for any of the possible investment account values at the next withdrawal date, Wtm+1 , either
flattens out, in the 95% VaR hedge, or reaches a peak, in the first moment hedge. There is no
doubt that the 95% VaR hedge has a lower 95% VaR than either the unhedged, or first moment
hedged portfolios. This is observed in the bottom panel of Figure 11, where the density of the
95% VaR hedged portfolio cuts off earlier than the other two portfolios.

In Table 15 it can also be concluded that the first moment is lowest for the first moment hedged
portfolio. Although the probability density functions in figures throughout this analysis have
been smoothed, the statistics presented in Table 15 and other similar tables in the remainder of
this section are calculated using the raw density functions.
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Figure 9: Hedging the Greeks under GBM dynamics with annual (top) and quarterly (bottom)
withdrawals.
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Figure 10: Hedging the Greeks under VG asset dynamics with annual (top) and quarterly (bot-
tom) withdrawals.
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Figure 11: Example of hedging the 95% VaR and first moment of the hedging error with VG
asset dynamics.
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Interestingly, both these hedges reduce the first moment of the hedging loss simultaneously with
the other statistics such as variance or 95% VaR. The use of hedging to reduce the potential
losses of a portfolio often comes at the cost of reduced profitability. Here, the unhedged insurer
faces a reasonably unfavourable hedging loss distribution. However, since the hedging loss is
higher when the stock price, and therefore the investment account value, drops, the upper tail of
its hedging loss can be cut short using cheap, out-of-the-money European puts. This relationship
can be seen in the top panel of Figure 11.

Table 15: Statistics for Second Example – risk minimisation of the change in net liability with
no short-selling.

Hedge Cost First mom. Variance 95% VaR 99.5% VaR 90% TVaR

Unhedged - 5.29 36.09 19.25 28.80 20.41
95% VaR 0.45 3.56 7.68 6.59 7.51 6.65
First moment 0.45 2.79 23.71 9.63 10.36 9.62
Second moment 0.45 3.32 7.22 8.14 8.51 8.10

The statistics for the second moment hedge have also been presented in Table 15. While
Kolkiewicz and Liu (2012) choose to hedge the second moment of the hedging loss, these results
highlight that the insurer could significantly reduce the 95% and 99.5% VaR of the change in net
liability, albeit at the cost of a slightly higher expected loss and variance, by instead minimising
the quantile-based risk measure. For an insurer, it may be preferred to take on the increase in
expected loss and variance, if the lower VaR measures result in reduced capital requirements.

Third Example
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Again for this example, the hedging performance of two risk minimising portfolios is compared
when hedging the change in net liability. The risk measures considered are the 90% TVaR and
the second moment. In this case, the budget is limited to a portion of the fee received at time
tm, but up to one unit of each of the options may be short sold. Similar to an example in
Coleman et al. (2007), the assumed available options include just one in-the-money put option
and one out-of-the-money call option.

Table 16 and Figure 12 reveal that, in this example, the two hedging portfolios end up being the
same. It is more difficult to form a hedging portfolio when the available hedging instruments
are so limited. However, we do see in Table 16 that the variance, VaR and TVaR metrics are
all lower for the hedged portfolios, while the first moment of the hedging loss is also reduced.
Therefore, we conclude that the hedged portfolios in this case still outperform the unhedged
portfolio.

Figure 12: Example of hedging the 90% TVaR and second moment of the hedging error with
VG asset dynamics.
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Table 16: Statistics for Third Example – risk minimisation of the change in net liability with
short-selling allowed.

Hedge Cost First mom. Variance 95% VaR 99.5% VaR 90% TVaR

Unhedged - 7.04 25.08 14.69 19.47 15.26
90% TVaR 0.0039 4.85 16.90 11.45 15.33 11.87
Second moment 0.0039 4.85 16.90 11.45 15.33 11.87

Fourth Example

In the previous examples, we assume that the uncertainty to be hedged is the change in net
liabilities. Instead, this example demonstrates the flexibility of the framework by hedging the
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cash flow to be received by the insurer at the next time period, such that

Htm+1

(
Stm+1

∣∣Wt+n
, St−m

)
= −α(tm+1 − tm) ·Wtm+1 , (4.0)

where α is the discretely charged fee. The risk measures considered in this example are the 95%
VaR and the variance of the hedging loss. The budget is constrained to 10% of the fee received
at time tm, with no short-selling allowed.

In this case, since Wtm+1 is bounded below by zero, the unhedged loss is bounded above by zero.
It should be noted once more that negative hedging losses are favourable.

As can be seen in Figure 13, both of the hedged portfolios have a very similar maximum loss and
maintain a left tail, corresponding to receiving an increased fee. For these reasons, the hedged
portfolios both outperform the unhedged portfolio.

Again, the insurer will have to decide whether it is more important to reduce the volatility of
the loss or the VaR metrics. For this hedging uncertainty, it is less likely that the VaR metrics
of the hedging loss will have an impact on any capital requirements, and thus may have less
influence on the insurer’s hedging decision. Table 17 reveals that the variance hedged portfolio
has a slightly lower expected hedging loss, which could make this hedging strategy preferable.

Figure 13: Hedging the fee received at the next period under VG asset dynamics.
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Table 17: Statistics for Fourth Example – risk minimisation of the fee received by the insurer
at the next withdrawal date.

Hedge Cost First mom. Variance 95% VaR 99.5% VaR 90% TVaR

Unhedged - -1.067 0.0340 -0.789 -0.614 -0.769
95% VaR 0.128 -1.239 0.0024 -1.205 -1.197 -1.204
Variance 0.128 -1.247 0.0019 -1.197 -1.194 -1.197
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Fifth Example

Here we consider, again, hedging the change in net liability. However, we instead assume dynamic
policyholder behaviour, with VG asset dynamics. Due to the increased range of withdrawal
amounts available to the policyholder, we expect to see greater variability in the hedging losses.
This is because the policyholder’s decision is essentially maximising the insurer’s liability, and
also because of the interactions between the penalties applied to withdrawals.

The performance of hedging the 99% VaR and second moment risk measures is compared. It is
assumed that there is one out-of-the-money call, one in-the-money put and one out-of-the-money
put available. The budget constraint is 0.5% of the investment account value, and short-selling
is limited to one unit of each derivative.

The resulting hedging portfolios each seem to outperform the unhedged portfolio. In the top
panel of Figure 14, it is clear that the hedged portfolios limit the maximum hedging loss, at
the cost of a higher density at these lower hedging losses. We further note in Table 18 that the
hedged portfolios have a lower first moment and variance than the unhedged portfolio.

In the bottom panel of Figure 14 we see that the lower tail of the loss distribution is highest
for the 99% VaR hedge, indicating a higher probability of making a profit. However, coming
back to Table 18, note that this portfolio has a higher first moment than the second moment
hedge. Similar to the second example, an insurer may wish to sacrifice a lower first moment for
reduced VaR metrics. In Figure 15 we compare the static and dynamic policyholder withdrawal

Figure 14: Example of hedging the 99% VaR and second moment of the hedging error under
VG asset dynamics with dynamic policyholder withdrawal behaviour.
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behaviour assumptions, using the exact same parameters. The static results, in the top panel,
are notably shifted to the left. This is due to using the same insurance fee for both cases, when
the fair fee would be lower for the static case. The unhedged curve has a noticeably lower spread
in the static case. This is because of the restricted withdrawal decisions. For the hedged curves,
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the spread achieved in each case is very similar, with the bulk of the density looking roughly
the same, albeit with a shift. The risk minimisation hedging strategy is robust with different
behavioural assumptions.

Table 18: Statistics for Fifth Example – risk minimisation of the change in net liability with
dynamic policyholder withdrawal behaviour.

Hedge Cost First mom. Variance 95% VaR 99.5% VaR 90% TVaR

Unhedged - 15.429 57.924 26.714 33.882 27.546
95% VaR 0.136 9.204 3.405 9.576 9.793 9.559
Second moment 0.260 5.375 17.957 13.295 13.896 13.306

Figure 15: Comparison of hedging with static and dynamic policyholder withdrawal behaviours.
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Sixth Example

Similar to the fourth example, here we consider hedging the cash flow received by the insurer,
given by Equation (4.3.2). In this example we consider the dynamic case under VG asset
dynamics. The budget is constrained to half of the fee received at the current withdrawal date,
and shorting is limited to one unit for each option. The options available are one out-of-the-
money call, and one out-of-the-money, one in-the-money, and one at-the-money put.

For the dynamic case, there is a potential for the policyholder to surrender the contract, and
thus no fee will be extracted from the investment account at the next time period. We choose an
example where the policyholder does not surrender at the current withdrawal date, since there
would then be nothing to hedge at the next time period.

The bottom panel in Figure 16 seems to demonstrate favourable hedging loss distributions for
each of the hedged portfolios, compared with the unhedged curve. However, the top panel
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reveals that the insurer becomes exposed to very large losses. This may be a concern regardless
of how unlikely these losses are. Table 19 reveals that, although the 95% VaR is substantially

Figure 16: Hedging the fee received at the next period under VG asset dynamics with dynamic
policyholder withdrawal behaviour.
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lower for the 95% VaR hedged portfolio, the 99.5% VaR is also much larger. Furthermore, the
95% VaR hedged portfolio has a massive variance in comparison to the unhedged and variance
hedged portfolios. While the first moment is also substantially lower than for the 95% VaR
hedge, an insurer may not be willing to face such a large 99.5% VaR or variance.

Table 19: Statistics for Sixth Example – risk minimisation of the fee received by the insurer at
the next withdrawal date with dynamic policyholder behaviour.

Hedge Cost First mom. Variance 95% VaR 99.5% VaR 90% TVaR

Unhedged - -1.067 0.034 -0.789 -0.614 -0.769
95% VaR -0.210 -3.297 3.103 -2.069 1.314 -1.542
Variance -0.038 -1.523 0.001 -0.491 0.403 -0.377

5 Conclusion

This research provides a framework within which variable annuities embedded with GMWB
riders can be priced and hedged using the COS method. By using the COS method, we are able
to explore the effect of different Lévy processes on various aspects of the model. We find that
convergence occurs rapidly for both the static and dynamic policyholder withdrawal behaviour
assumptions, and for the GBM, VG and CGMY asset dynamics. We have been able to confirm
that the computational speed of the COS method outperforms the FFT-based techniques used
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in Bacinello et al. (2014) for the static case. The framework presented can easily incorporate
complex contract features such as the reset provision without losing convergence speed and
accuracy.

We further extend use of the COS method to assist in forming hedging strategies that seek
to minimize a risk measure. Here we study both moment and quantile-based risk measures
such as the variance of the hedging outcomes or the 95% VaR of the hedged portfolio loss
distribution. The risk-minimization hedging strategies considered outperform the unhedged or
delta-gamma hedge strategy, especially for infrequent portfolio rebalancing dates in line with
the literature. The framework developed proves to be compatible to both pricing, delta-gamma
hedging, risk minimization and VaR calculations, making it a strong candidate for quick and
accurate valuations for the industry.

Further extensions and future research include but is not limited to jointly considering tax
benefit incentives and the general class of Lévy processes; incorporating multiple underlying
assets and pricing the lifelong version of the guaranteed minimum withdrawal benefit rider.
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A Lévy Processes

A.1 Characteristic Functions

In the following characteristic functions, µ denotes the expected return, i =
√
−1 is the com-

plex unit and other parameters are specific to each process. For the risk-neutral characteristic
functions we set µ = r + m, where m is a drift correction term that ensures the process is a
martingale under the risk measure (Fang and Oosterlee, 2008).

A.1.1 Geometric Brownian Motion (GBM)

φ(ω) = exp

(
iωµt− 1

2
ω2σ2t

)
,

m = 0.

A.1.2 Variance Gamma (VG) Process

φ(ω) = exp (iωµt)×
(

1− iωθν +
1

2
σ2νω2

)− t
ν

,

m =
1

ν
ln

(
1− θν − σ2

2

)
.

A.1.3 CGMY Process

φ(ω) = exp

(
iωµt− 1

2
ω2σ2t

)
×

exp
(
CtΓ(−Y )[(M − iω)Y −MY + (G+ iω)Y −GY ]

)
,

m =− CΓ(−Y )
(
(M − 1)Y −MY + (G+ 1)Y −GY

)
,

where Γ(·) is the gamma function.

A.2 Cumulants

GBM
c1 = µt
c2 = σ2t
c4 = 0

VG
c1 = (µ+ θ)t
c2 = (σ2 + νθ2)t
c4 = 3(σ4ν + 2θ4ν3 + 4σ2θ2ν2)t

CGMY
c1 = µT + CtΓ(1− Y )(MY−1 −GY−1)
c2 = σ2t+ CTΓ(2− Y )(MY−2 +GY−2)
c4 = CtΓ(4− Y )(MY−4 +GY−4),

(Fang and Oosterlee, 2008)
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B χ and ψ functions

χk(c, d) =

∫ d

c
ey cos

(
kπ
y − a
b− a

)
dy

=
1

1 +
(
kπ
b−a

)2
(

cos

(
kπ
d− a
b− a

)
ed − cos

(
kπ
c− a
b− a

)
ec

+
kπ

b− a
sin

(
kπ
d− a
b− a

)
ed − kπ

b− a
sin

(
kπ
c− a
b− a

)
ec

)

ψk(c, d) =

∫ d

c
cos

(
kπ
y − a
b− a

)
dy

=

{[
sin
(
kπ d−ab−a

)
− sin

(
kπ c−ab−a

)]
b−a
kπ , k 6= 0,

(d− c), k = 0.

(Fang and Oosterlee, 2008)

C Main Algorithms

Algorithm 1 – Static Case
Note that in the static case, the remaining guarantee account value is known at each time-step
without any calculation. Also notice that there is no withdrawal at time zero. With steps
referring to numerically calculating Uk coefficients numerically, note that we have used the
trapezoidal rule.

1. At initialisation:
• Calculate G = A0

M and ∆t = tM
M .

• Determine a and b using Equation (2.12).
• Discretise possible investment account values ~W ∈ [0,Wmax] into J elements, with

spacing between the elements increasing exponentially andWmax = max [300,W0 · exp (2b)].
• Set ~k = [0, 1, ..., N − 1].

• Calculate ~R = Re
{
φ
(
~kπ
b−a

)
· exp

(
−i~kaπb−a

)}
·
[
1
2 1 ... 1

]′
.

2. Maturity time-step – for each element of ~W :
• Calculate y∗ using Equation (2.19).
• Calculate ~U using Equation (2.18), with each element corresponding to elements of
~k.
• Calculate VtM−1(Wt−M−1

) as G+ exp(−r∆t) · ~R · ~U ′.

• Store the time tM−1 values corresponding to each element of ~W for use in the recursive
step.

3. Recursive step – for tm, where m = M − 2, ..., 2:
• For each element of ~W :

– Calculate the ~U coefficient vector numerically using the points where

y = ln

(
~W

W
t+m

)
= ln

(
~W

W
t−m
−G

)
.

– Calculate Vtm(Wt−m
) as G+ exp(−r∆t) · ~R · ~U ′.

• Store the calculated values for the next recursion.
4. Time zero value:
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• Calculate the ~U coefficient vector numerically using the points where y = ln
(
~W
W0

)
.

• Calculate V0(W0) as exp(−r∆t) · ~R · ~U ′.

Algorithm 2 – Dynamic Case
In the dynamic case, the value must be found for different combinations of investment and
guarantee account balances at each time-step. Furthermore, the optimal withdrawal strategy
must be determined in the algorithm. That said, the overall structure of this algorithm is very
similar to Algorithm 1.

1. At initialisation:
• Calculate G = A0

M and ∆t = tM
M .

• Determine a and b using Equation (2.12).
• Set Wmax = max [300,W0 · exp (2b)].
• Form a mesh of possible Wtm and Atm values, with J elements of
Wtm ∈ [0,Wmax], where the spacing between elements increases exponentially, and H
elements of Atm ∈ [0, A0], which are spaced evenly.
• Set ~k = [0, 1, ..., N − 1].

• Calculate ~R = Re
{
φ
(
~kπ
b−a

)
· exp

(
−i~kaπb−a

)}
·
[
1
2 1 ... 1

]′
.

2. Maturity time-step – for each mesh node:
• Discretise possible withdrawal amounts ~γ, with spacing that matches the A direction

of the mesh.
• Calculate y∗ for each element of ~γ using Equation (2.19).
• Calculate matrix U using Equation (2.18), which corresponds to elements of ~k for

each element of ~γ.
• Calculate ~VtM−1(Wt−M−1

, At−M−1
; γtM−1) = C(γtM−1) + exp(−r∆t) · ~R · U, a vector

corresponding to each element of ~γ.

• Set VtM−1(Wt−M−1
, At−M−1

) = sup~γ

[
~VtM−1(Wt−M−1

, At−M−1
; γtM−1)

]
.

• Store the time tM−1 values for use in the first recursive step.
3. Recursive step – for tm, where m = M − 2, ..., 2:

• For each mesh node
– Discretise possible withdrawal amounts ~γ, with spacing that matches the A di-

rection of the mesh.
– Calculate matrix U numerically using Equation (2.17) , which contains a vector

corresponding to elements of ~k for each element of ~γ.
– Calculate ~Vtm(Wt−m

, At−m) as C (γtm) + exp(−r∆t) · ~R ·U.
– Set

Vtm(Wt−m
, At−m) = sup

~γ

[
~Vtm(Wt−m

, At−m ; γtm)
]
. (C.0)

• Store the calculated values for the next recursion.
4. Time zero value:

• Calculate the ~U coefficient vector numerically using points where y = ln
(
~W
W0

)
.

• Calculate V0 (W0, A0) = exp(−r∆t) · ~R · ~U ′.
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