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Abstract

This paper values Guaranteed Minimum Withdrawal Benefit (GMWB) riders embedded in variable annuities
assuming that the underlying fund dynamics evolve under the influence of stochastic interest rates, stochastic
volatility, stochastic mortality and equity risk. The valuation problem is formulated as a partial differential equation
(PDE) which is solved numerically by employing the operator splitting method. Sensitivity analysis of the fair
guarantee fee is performed with respect to various model parameters. We find that (i) the fair insurance fee
charged by the product provider is an increasing function of the guarantee rate; (ii) the GMWB price is higher
when stochastic interest rates and volatility are incorporated in the model, compared to the case involving static
interest rates and volatility; (iii) the GMWB price behaves non-monotonically with changing volatility of variance
parameter; (iv) the fair fee increases with increasing volatility of interest rates parameter, and increasing correlation
between the underlying fund and the interest rates; (v) the fair fee increases when the speed of mean-reversion of
stochastic volatility or the average long-term volatility increase; (vi) the GMWB fee decreases when the speed of
mean-reversion of stochastic interest rates or the average long-term interest rates increase. We investigate both,
static and dynamic (optimal) policyholder’s withdrawal behaviours and present the optimal withdrawal schedule
as a function of the withdrawal account and the investment account for varying volatility and interest rates. When
incorporating stochastic mortality we find that its impact on the fair guarantee fee is rather small. Our results
demonstrate the importance of correct quantification of risks embedded in GMWB riders, and provide guidance to
product providers on optimal hedging of various risks associated with the contract.
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1 Introduction

Variable annuities (VAs) introduced in 1970s in the US have grown dramatically over the past decades

as a response to a growing demand for products that can manage longevity risk attributed to an ageing

population.1 Traditionally, the main form of pension has been the pay as you go (PAYG) systems where

governments and public sector funds would foot the retirement bills. Most jurisdictions are currently

moving from public sector funded schemes such as the defined benefit (DB) schemes to defined contribu-

tion (DC) schemes where individuals are exposed to longevity risk in retirement. As such, there has been

various product innovations offered by practitioners and academics, aiming to address challenges related

to longevity improvements. Variable annuities (VAs) have emerged as one of the pillars of retirement in-

come streams. The VA are insurance contracts that allow policyholders to invest their retirement savings

in mutual funds. The popularity of VA contracts can be attributed to its many attractive characteristics,

such as policyholders gain exposure to the equity markets with benefits based on the performance of the

underlying funds, along with return guarantees as well as tax advantages. Furthermore, policyholders

can elect guarantees to provide minimum benefits with the payment of guarantee fees.

The level of income provided by VA contracts depends on the performance of investments chosen by

the policyholder at the inception of the contract. The guarantees embedded in VAs offer protection

against the scenario when policyholders outlive their assets. These guarantees exhibit financial option-

like features. There are two major classes of guarantees: guaranteed minimum death benefits (GMDBs)

and guaranteed minimum living benefits (GMLBs). GMDBs are usually offered during the accumula-

tion phase; they provide guaranteed payments of the accumulated value of premiums to beneficiaries in

the event of untimely death of the policyholder. An accumulation phase is a period during which the

policyholder makes contributions to a retirement savings account. GMLBs provide principal and/or in-

come guarantees to protect the policyholder’s income from declining during the annuitization/retirement

phase. The retirement phase is a period over which the policyholder withdrawals a pension from a given

account. GMLBs can be further categorized into three subclasses, namely, the GMxB, where “x” stands

for maturity (M), income (I) and withdrawal (W). A GMMB guarantees the return of the premium

payments made by the policyholder or a higher stepped-up value at the end of the accumulation period.

1Improvements in mortality observed across the entire developed world lead to a decrease in the old-age support ratio (i.e.

the number of people aged 15 to 64 years old per person aged 65 years old or over, which relates the number of individuals

that are capable of providing economic support to the number of older people dependent on the support of others (United

Nations, 2013).
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A GMIB guarantees a lifetime income stream when a policyholder annuitizes the GMMB regardless of

the underlying investment performance. A GMWB guarantees a stream of income payments, regardless

of the contract account value and payments can be guaranteed for a specified period or for a lifetime of

the policyholder. This paper will focus on the valuation of GMWBs that have been identified by LIMRA

(2012) as the products having the highest election rate by investors.

Rentz (1972) and Greene (1973) provide early literature comparing VAs with other insurance contracts.

Brennan and Schwartz (1976) value equity-linked life insurance policies (akin to VAs) using finite differ-

ence techniques. A formal framework for valuing GMWBs is presented in Milevsky and Salisbury (2006)

who provide mathematically rigorous derivations for both, static and dynamic policyholders’ withdrawal

strategies. Under the static withdrawal case, the authors show that a GMWB rider can be split into a

Quanto Asian put option and a term annuity certain. For the dynamic withdrawal case, Milevsky and

Salisbury (2006) show that the valuation of the guarantee proceeds by formulating the optimal stopping

time problem.

Dai et al. (2008) apply the Hamilton-Jacobi-Bellman (HJB) approach to solve the stochastic control

problem in cases of continuous and discrete dynamic withdrawals. Chen et al. (2008) analyse a more gen-

eralised framework of sub-optimal behaviour of the policyholder using the approach suggested in Ho et al.

(2005). Both Chen et al. (2008) and Huang and Kwok (2014) analyse how optimal withdrawal strategies

depend on the relationship between values of the guarantee account and the investment account. Bauer

et al. (2008) present a general framework for consistent modelling and simultaneous pricing of variable

annuities with various guarantee benefits; the valuation of the contracts is performed assuming deter-

ministic, probabilistic and stochastic policyholders’ behaviour. Liu (2010) derive semi-static strategies

for hedging GMWB with periodic static withdrawals and show that such strategies outperform delta-

hedging if the value of the underlying asset jumps randomly. The generalised framework with stochastic

interest rates, stochastic volatility and jumps has been considered by various authors (Chen et al., 2008;

Donnelly et al., 2014; Liu, 2010; Luo and Shevchenko, 2016; Peng et al., 2012). Yang and Dai (2013)

and Dai et al. (2015) consider stochastic mortality in the context of GMWB contracts and conclude that

ignoring mortality risk leads to overpricing of the rider. In the literature on GMWBs it is predominantly

assumed that the policyholder is charged a constant fee by the insurer, which is proportional to the value

of an individual’s investment account. Delong (2014) relaxes this assumption and considers pricing and

hedging of variable annuities with state-dependent fees. The non-constant fees are argued to be benefi-

cial to both, the insurers and the policyholders as there would be less incentive for the policyholder to
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surrender the policy early under the strong market conditions, and the insurer will be capable of hedging

the risks more accurately.

The objective of this paper is to incorporate several risk factors into the valuation of GMWBs embedded

in VAs, namely, stochastic volatility, stochastic interest rates and stochastic mortality to highlight the

impact of such factors on the value of the VA contract. We devise a numerical technique for pricing

GMWBs assuming that the underlying investment fund evolves under the influence of stochastic volatility

and stochastic interest rates. Our objective is to find the fair insurance fee and to analyse price sensitivity

with respect to various input parameters associated with different types of risks that are incorporated

in our modelling framework simultaneously. Two withdrawal strategies related to the policyholder’s

behaviour, namely; the static and the dynamic (optimal) withdrawals are incorporated in the valuation

framework. We adopt an operator splitting approach, which has proved to be computationally efficient

in the physical sciences and mathematical finance when applied to pricing financial options (Duffy, 2006;

Ikonen and Toivanen, 2007, 2009; Jeong and Kim, 2013; Yanenko, 1971). More precisely, and operator

splitting approach is used for solving multi-dimensional pricing partial differential equations (PDEs) in

order to find an expected value of the investment portfolio and estimate the fair value of the insurance

fee.

Our results show that the fair insurance fee charged by insurance providers is an increasing function of

the guarantee rate, which is the consequence of higher risks associated with selling the guarantees with

higher guarantee rates. The increase in the fair insurance fee is more pronounced for the static withdrawal

strategy compared to the dynamic withdrawal strategy. The GMWB price is higher when stochastic

interest rates and stochastic volatility are introduced to the model, compared to when deterministic

parameters are used. We document that the fair fee increases with increasing volatility of interest rates,

and increasing correlation between the underlying fund and the interest rate. The GMWB price is an

increasing function of the speed of mean-reversion of stochastic volatility and a decreasing function of the

speed of mean-reversion of stochastic interest rates. The fair guarantee fee also increases with increasing

average long-term volatility; and decreases with increasing average long-term interest rates. Generally,

the GMWB pricing function behaves non-linearly with changing volatility of variance parameter. The

impact of mortality on the fair insurance fee is rather small overall; but is higher when the withdrawal

rates are higher. When incorporating stochastic mortality we find that the fair insurance fees for GMWBs

are lower compared to the case of no mortality; but generally, the impact of mortality is rather small.

When assessing the impact of model parameters we present the optimal withdrawal schedule as a function
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of the guarantee account and the investment account for varying volatility and interest rates. Our results

provide a comprehensive analysis of benefits and risks embedded in GMWBs, and could be of potential

interest to insurance companies offering GMWBs.

The remainder of the paper is structured as follows: Section 2 formulates the valuation framework for a

VA contract embedded with a GMWB rider. More specifically, Section 2.2 summarises the procedure for

determining the fair guarantee fee in the case where policyholder makes dynamic withdrawals. Section 3

outlines the operator splitting method used to solve the pricing PDE, which includes sections on space and

time discretisation and the actual componentwise splitting procedure. Section 4 shows how to incorporate

mortality in the valuation framework. Section 5 presents empirical results for the static and dynamic

policyholder withdrawal behaviour, along with a sensitivity analysis of the fair guarantee fee to model

parameters. Section 6 concludes the papers and provides final remarks.

2 Modelling framework

In this section we formulate the valuation framework for a variable annuity (VA) contract embedded

with a guaranteed minimum withdrawal benefit (GMWB) rider. The VA consists of a mutual fund and

a GMWB rider which promises the policyholder to recoup at least the original investment amount, W0,

through the periodic withdrawals regardless of the performance of the underlying mutual fund where the

funds are invested. The withdrawal amounts γt occur at discrete times t = 1, 2, · · · , T . The VA provider

charges a policyholder a fee, α, to fund both, the guarantee and the mutual fund management fees. The

valuation problem involves determining an optimal guarantee fee α which sets the initial account value

equal to the discounted expected value of all future cashflows. We assume that the risk neutral dynamics

of the underlying investment fund St evolves according to the following system of stochastic differential

equations (SDEs):2

dSt = rtStdt+
√
vtStdẐ

1
t , (2.1)

dvt = ζv(vt, t)dt+ σv(vt, t)dẐ2
t , (2.2)

drt = ζr(rt, t)dt+ σr(rt, t)dẐ3
t , (2.3)

2Note that we will specify model parameters from the volatility and interest rate dynamics when assessing different

modelling assumptions in the numerical results sections.
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where vt is the instantaneous variance and rt is the instantaneous interest rate at time t. Here, ζv(vt, t)

and σv(vt, t) are the drift and the diffusion terms in the stochastic variance process, respectively; ζr(rt, t)

and σr(rt, t) are the drift and the diffusion terms of the interest rate process, respectively, while Ẑ1
t , Ẑ

2
t

and Ẑ3
t are correlated standard Wiener processes with correlations ρsv, ρsr and ρvr.

2.1 Pricing under the static withdrawal strategy

In line with the existing literature (Chen et al., 2008; Dai et al., 2008; Huang and Kwok, 2014; Luo and

Shevchenko, 2014) there are two accounts associated with the GMWB contract; the investment account,

Wt, which is sometimes referred to as a “personal” account; and the guarantee account, At. If At is the

account balance of the guarantee at time t, the value A0 will correspond to the initial investment, W0.

At any time t prior to maturity the account balance is determined as

At = A0 −
∫ t

0
γsds, 0 ≤ γs ≤ As, (2.4)

where γt is the withdrawal rate and As is the maximum allowable withdrawal at any given time. For

valuation purposes, it is convenient to transform the Wiener processes in the SDE system (2.1)-(2.3)

to a corresponding system which is expressed in terms of independent Wiener processes whose incre-

ments we denote as dZj
t for j = 1, 2, 3. This transformation is accomplished by performing the Cholesky

decomposition such that










dẐ1
t

dẐ2
t

dẐ3
t











=











ρ11 ρ12 ρ13

0 ρ22 ρ23

0 0 ρ33





















dZ1
t

dZ2
t

dZ3
t











,

where ρ33 = 1, ρ23 = ρvr, ρ22 =
√

1− ρ2vr, ρ13 = ρsr, ρ12 =
ρsv−ρvrρsr√

1−ρ2vr
and ρ11 =

√

1− ρ2sr −
(

ρsv−ρvrρsr√
1−ρ2vr

)2

.

This results in the following representation:

dSt = rtStdt+ ρ11
√
vtStdZ

1
t + ρ12

√
vtStdZ

2
t + ρ13

√
vtStdZ

3
t , (2.5)

dvt = ζv(vt, t)dt+ ρ22σv(vt, t)dZ
2
t + ρ23σv(vt, t)dZ

3
t , (2.6)

drt = ζr(rt, t)dt+ σr(rt, t)dZ
3
t . (2.7)

6



An investment account, Wt, derives its value from the value of the underlying fund, St, and evolves

according to










































dWt = ((rt − α)Wt −G)dt+ ρ11
√
vtWtdZ

1
t + ρ12

√
vtWtdZ

2
t + ρ13

√
vtWtdZ

3
t , if t < τ0

dvt = ζv(vt, t)dt+ ρ22σv(vt, t)dZ
2
t + ρ23σv(vt, t)dZ

3
t ,

drt = ζr(rt, t)dt+ σr(rt, t)dZ
3
t ,

Wt = 0, if t ≥ τ0,

(2.8)

where 0 ≤ vt, rt < ∞, τ0 = inft∈(0,T )[Wt = 0] is the ruin time of the investment account, and γt = G is

the contractually agreed withdrawal amount, which is connected to the initial value of the investment

account through the withdrawal rate g = G
W0

. The investment account is secured against the downside

risk by the GMWB rider, which implies that Wt can never drop below zero. When the process reaches

zero at time τ0, it remains zero.

Proposition 1. The solution of the SDE system (2.8) can be represented as

Wt = Φ−1
t e

∫ t
0 (ru−α)dumax

[(

W0 −G

∫ t

0
e−

∫ u
0 (rs−α)dsΦudu

)

, 0

]

. (2.9)

It can also be shown that

E
Q
t

[

e−
∫ T
0 ruduWT

]

= E
Q
t [e

−
∫ T
0 rudumax(W̃T , 0)], (2.10)

where

W̃t = Φ−1
t e

∫ t
0 (ru−α)du

(

W0 −G

∫ t

0
e−

∫ u
0 (rs−α)dsΦudu

)

, (2.11)

with

Φt = exp

(

−ρ11
∫ t

0

√
vudZ

1
u − ρ12

∫ t

0

√
vudZ

2
u − ρ13

∫ t

0

√
vudZ

3
u +

1

2

∫ t

0
vudu

)

,

being a stochastic integrating factor associated with the SDE system in (2.8).

Proof. Refer to Appendix A.1

Using no-arbitrage arguments, the initial investment of the guarantee contract must be equal to the

discounted sum of all expected future cashflows. Thus, as presented in Milevsky and Salisbury (2006),

the GMWB contract can be decomposed as follows

W0 = EQ

[∫ T

0
e−

∫ s
0 ruduGds

]

+ EQ
[

e−
∫ T
0 rudumax(W̃T , 0)

]

, (2.12)
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where W0 is the initial investment of the policyholder. The first term on the right hand side (RHS) of

Eq. (2.12) represents an annuity certain whose valuation is a trivial exercise, and the second term is

the discounted terminal value of the investment account which is a typical Asian-type option. In what

follows, we will concentrate on the valuation of the second expectation on the RHS of (2.12) and we

denote this term by U(t, W̃t, vt, rt) such that

U(t, W̃t, vt, rt) = EQ
[

e−
∫ T
0 rudumax(W̃T , 0)

]

. (2.13)

In the following, we adopt Heston (1993) stochastic volatility model3 by letting

φ(t, st, rt) =
(

(rt − α)W̃t −G
)

, ψ(t, st) =
√
vtW̃t,

ζv(vt, t) = κv(ηv − vt), βv(t, vt) = σv
√
vt.

For the interest rate process, we adopt the Cox et al. (1985) interest rate model by letting

ζr(rt, t) = κr(ηr − rt) and βr(t, rt) = σr(rt, t)
√
rt.

These affine square root models are assumed for stochastic volatility and stochastic interest rates pro-

cesses, because they can address the skewness and excess kurtosis, and better reflect the typical dynamics

of interest rates and volatility observed in the financial market (Cox et al., 1985; Heston, 1993; Scott,

1987). Moreover, the square root models prohibit negative interest rates and volatility. These models are

widely used in financial asset pricing (Donnelly et al., 2014; Grzelak and Oosterlee, 2011; Kim, 2001). The

framework can be generalised to more complex stochastic volatility models with various affine/non-affine

diffusion terms and linear/non-linear drift terms, resulting, however, in more elaborating derivations.

Using techniques developed in Shreve (2008), evaluating (2.13) is equivalent to solving the following PDE

∂U

∂τ
= φ(τ, s, r)

∂U

∂s
+

1

2
ψ(τ, s, v)2

∂2U

∂s2
+ ρsvψ(τ, s, v)βv(τ, v)

∂2U

∂s∂v

+ ρsrψ(τ, s, v)βr(τ, r)
∂2U

∂s∂r
+ ξv(τ, v)

∂U

∂v
+

1

2
βv(τ, v)

2∂
2U

∂v2
(2.14)

+ ξr(τ, r)
∂U

∂r
+

1

2
βr(τ, r)

2∂
2U

∂r2
+ ρvrβv(τ, v)βr(τ, r)

∂2U

∂v∂r
− rU,

where τ = T − t is the time to maturity of the contract. The PDE (2.14) is solved subject to the initial

condition

U(0, s, v, r) = max(s, 0). (2.15)

3For notational convenience we let st ≡ W̃t.
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To avoid arbitrage opportunities, all second order partial derivatives and cross derivative terms of

U(τ, s, v, r) with respect to state variables along the boundaries are equal to zero. In solving the PDE in

(2.14), we use the componentwise splitting method, a technique that has proven to be fast and efficient in

option pricing as presented in Duffy (2006). We outline this numerical technique in the next two sections.

2.2 Pricing under the dynamic withdrawal strategy

In this section we outline the procedure for determining the fair guarantee fee for a GWMB rider in

the case where the policyholder can make dynamic withdrawals that maximize the value of the variable

annuity contract at any given time during the life of the contract. The guarantee provides cumulative

withdrawal of at least the initial investment, W0, during the life of the contract. We assume that at each

withdrawal instant, tj , for j = 1, ..., N , the policyholder can optimally withdraw an amount, γtj , where

0 < tj < T with T being the maturity of the contract.

Recall that the investment account is denoted by Wt, and is sometimes referred to as a “personal”

account; and the guarantee account is denoted by At. At initial time, both accounts are equal to the

initial premium paid by the policyholder. Within each time interval (tj , tj+1), Wt satisfies the PDE in

Eq. (2.14), while the guarantee account value, At, does not change implying that4 At+j
= At−j+1

. At each

withdrawal instant, tj , the value of investment account drops from Wt−j
to Wt+j

= max(Wt−j
− γtj , 0).

The value of the guarantee account immediately before and after the withdrawal are related as follows

At+j
= h(At−j

,Wt−j
, γtj , G) =











At−j
− γtj if 0 ≤ γtj ≤ G

min{At−j
− γtj ,max{Wt−j

− γtj , 0}} if γtj > G,

(2.16)

where the second condition in Eq. (2.16) is referred to as a reset provision (Chen et al., 2008; Milevsky

and Salisbury, 2006). The reset provision is imposed in order to disincentive the policyholder from making

extensive withdrawals: if the policyholder chooses to make withdrawal greater that the guaranteed value

G, the value of the guarantee account can be reduced by the value greater than the withdrawal value,

depending on the relative size of the investment account, Wt, and the guarantee account, At, at the

moment of withdrawal (see the second equation in the system above).

It is a common practise for insurance providers to charge a penalty fee, κ̃tj , to the excess withdrawals

above the contractually agreed amount, G. Denoting the withdrawal at time tj by γtj , the policyholder

4In what follows t−j (t+j ) is a moment of time immediately before (after) the withdrawal time tj .
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receives an amount

f(γtj ) =







γtj , if 0 ≤ γtj ≤ G,

G+ (1− κ̃tj )(γtj −G), if G ≤ γtj ≤ At−j
.

(2.17)

Upon maturity of the contract, the policyholder receives the maximum of the terminal value of the

investment account and the balance of the guarantee account subject to the surrender fee, that is,

max(WT , (1− κ̃T )AT ).

The policyholder will dynamically select an optimal withdraw strategy, γtj , for j = 1, · · · , N , which

maximizes the present value of cash-flows such that

U(0,W0, v0, r0, A0) =W0 = max
γ̄

EQ





N
∑

j=1

e−
∫ tj
0 ruduf(γtj ) + e−

∫ T
0 rudumax(WT , (1− κ̃T )AT )



 , (2.18)

where5 γ̄ = (γt1 , γt2 , ..., γtN ). In order to maximise this value, at each tj , the withdrawal amount, γtj ,

has to be chosen as a solution to the problem

U(tj ,Wt−j
, rt−j

, vt−j
, At−j

) = max
γtj

[f(γtj ) + U(t+j ,Wt+j
, rt+j

, vt+j
, At+j

)], (2.19)

where

U(tj ,Wt+j
, rt+j

, vt+j
, At+j

) = EQ



e
−

∫ t
−
j+1

t
+
j

rsds

U(t−j+1,Wt−j+1
, rt−j+1

, vt−j+1
, At−j+1

)|Wt+j
, rt+j

, vt+j
, At+j



 , (2.20)

with Wt+j
= max(Wt−j

− γtj , 0), At+j
as given in Eq. (2.16) and At−j+1

= At+j
. For convenience, we assume

that the contract terminates when the guarantee account reaches zero.

At the beginning of the contract’s life the insurer usually imposes high penalties on excess withdrawals

above the guaranteed amount, G, meant to disincentive the policyholder from making excessive with-

drawals. Insurance companies impose high penalty charges to cover transaction costs associated with

termination of the contract and liquidation of the fund. The most frequently adopted penalty fee struc-

ture is a decreasing fee with decreasing time to maturity (Milevsky and Salisbury (2001) and Chen et al.

(2008)). In our numerical experiments we will adopt a penalty fee structure presented in Table 1 (adopted

in Chen et al. (2008)).

5In the case of dynamic withdrawals the value of the contract U(·) depends on t,Wt, vt, rt and the value of the guarantee

account, At as well.
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κ̃τ τ = T − t

0.00 0 ≤ τ < 1
9T

0.01 1
9T ≤ τ < 2

9T

0.02 2
9T ≤ τ < 3

9T

0.03 3
9T ≤ τ < 4

9T

0.04 4
9T ≤ τ < 5

9T

0.05 5
9T ≤ τ < 6

9T

0.06 6
9T ≤ τ < 7

9T

0.07 7
9T ≤ τ < 8

9T

0.08 8
9T ≤ τ < T

Table 1: Surrender fee, κ̃τ , as a function of time to maturity, τ = T − t.

3 Operator splitting method

In this section we present the operator splitting method which is used to solve the pricing PDE. This

includes Section 3.1 which discusses space discretisation and Section 3.2 which outlines time discretisation

and the actual componentwise splitting procedure.

3.1 Space discretisation

The function U(τ, s, v, r) introduced in Section 2 is defined on the unbounded domain [0, T ]×R+×R+×R+,

however, in order to implement our numerical procedure, we need to truncate the region into a finite

computational domain [0, T ]× [0, smax]× [0, vmax]× [0, rmax] where smax, vmax and rmax are set to be large

enough such that the truncation errors are negligible. In this domain we define a grid {τn, si, vj , rk} with

uniform steps in each direction: τn = n∆τ for n = {0, 1, ..., Nτ = T
∆τ }, si = i∆s for i = {0, 1, ..., Ns =

smax
∆s }, vj = j∆v for j = {0, 1, ..., Nv = vmax

∆v }, and rk = k∆r for k = {0, 1, ..., Nr = rmax
∆r }. Thus, each

grid point is denoted by

Un
i,j,k ≈ U(τn, si, vj , rk). (3.1)
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We now present finite difference approximations for the derivatives of U(τn, si, vj , rk) with respect to s,

v and r. For the first derivative with respect to s we use upwinding second order approximations6

∂U(τn, si, vj , rk)

∂s
≈







Un
i−2,j,k−4Un

i−1,j,k+3Un
i,j,k

2∆s , for i = {1, 2, ..., i∗ − 1},
Un
i+1,j,k−Un

i−1,j,k

2∆s , for i = {i∗, ..., Ns},
(3.2)

where i∗ = min{i : φ(τn, si, rj) ≥ 0}. For the initial point, s0, we use a third order forward approximation,

which involves the points s−1, s0, s1, s2 such that7

∂U(τn, s0, vj , rk)

∂s
≈

−8Un
−1,j,k − 3Un

0,j,k + 12Un
1,j,k − Un

2,j,k

18∆s
. (3.3)

We use central differencing for the second derivative of U(τ, s, v, r) with respect to s such that

∂2U(τn, si, vj , rk)

∂s2
≈
Un
i+1,j,k − 2Un

i,j,k + Un
i−1,j,k

(∆s)2
, for i = {1, ..., Ns − 1}. (3.4)

At the boundaries s0 and sNs we have

∂2U(τn, s0, vj , rk)

∂s2
≈
Un
1,j,k − 2Un

0,j,k + Un
−1,j,k

(∆s)2
= 0, (3.5)

and
∂2U(τn, sNs , vj , rk)

∂s2
=
Un
Ns+1,j,k − 2Un

Ns,j,k
+ Un

Ns−1,j,k

(∆s)2
= 0, (3.6)

such that Un
−1,j,k = 2Un

0,j,k−Un
1,j,k and Un

Ns+1,j,k = 2Un
Ns,j,k

−Un
Ns−1,j,k for n = {0, ..., Nτ}, j = {0, ..., Nv}

and k = {0, ..., Nr}.

Using similar arguments as applied to the discretisations with respect to s, the first derivative of

U(τ, s, v, r) with respect to v can be represented as

∂U(τn, si, vj , rk)

∂v
≈







Un
i,j+1,k−Un

i,j−1,k

2∆v , for j = {0, ..., j∗ − 1},
Un
i,j−2,k−4Un

i,j−1,k+3Un
i,j,k

2∆v , for j = {j∗, ..., Nv},
(3.7)

6An upwind finite-difference scheme attempts to discretise the PDE by using differencing biased in the direction deter-

mined by the sign of the associated coefficients of the partial derivatives. We refer to Appendix A.2 for the derivation of the

result in (3.2).
7In order to apply a second order backward approximation at the boundary point s0 using

∂U(τn,s0,vj ,rk)

∂s
≈

Un
−2,j,k−4Un

−1,j,k+3Un
0,j,k

2∆s
we should use the “fictitious” point U−2,j,k which falls outside the domain; unlike that of U−1,j,k, the

value of U−2,j,k cannot be found directly from the boundary conditions. To avoid using the point U−2,j,k we increase accu-

racy by using the third order approximation, which involves points s−1, s0, s1, s2 only as presented in Eq. (3.3). Derivations

of the third order finite difference approximation is presented in Appendix A.2.
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where j∗ = min{j : ξv(τn, vj) ≤ 0}. Central differencing is applied to the second derivative with respect

to v resulting in

∂2U(τn, si, vj , rk)

∂v2
≈
Un
i,j+1,k − 2Un

i,j,k + Un
i,j−1,k

(∆v)2
, for j = {1, ..., Nv − 1}. (3.8)

Using similar arguments as utilised for Eq. (3.5) and (3.6), at the the boundaries v0 and vNv we obtain

Un
i,−1,k = 2Un

i,0,k − Un
i,1,k and Un

i,Nv+1,k = 2Un
i,Nv ,k − Un

i,Nv−1,k, (3.9)

for n = {0, ..., Nτ}, i = {0, ..., Ns} and k = {0, ..., Nr}.

In the r-direction we obtain the first derivative approximation as

∂U(τn, si, vj , rk)

∂r
≈







Un
i,j,k+1−Un

i,j,k−1

2∆r , for k = {0, ..., k∗ − 1},
Un
i,j,k−2−4Un

i,j,k−1+3Un
i,j,k

2∆r , for k = {k∗, ..., Nr},
(3.10)

where k∗ = min{j : ξr(τn, rk) ≤ 0}. The second derivative with respect to r can also be represented as

∂2U(τn, si, vj , rk)

∂r2
≈
Un
i,j,k+1 − 2Un

i,j,k + Un
i,j,k−1

(∆r)2
, for k = {1, ..., Nr − 1}. (3.11)

At the boundaries r0 and rNr we use

Un
i,j,−1 = 2Un

i,j,0 − Un
i,j,1 and Un

i,j,Nr+1 = 2Un
i,j,Nr

− Un
i,j,Nr−1, (3.12)

for n = {0, ..., Nτ}, i = {0, ..., Ns} and j = {0, ..., Nv}.

Central differencing is applied to the cross-derivative terms yielding

∂2U(τn, si, vj , rk)

∂s∂v
≈
Un
i+1,j+1,k − Un

i−1,j+1,k − Un
i+1,j−1,k + Un

i−1,j−1,k

4∆s∆v
, (3.13)

for i = {1, ..., Ns − 1}, j = {1, ..., Nv − 1} and k = {0, ..., Nr};

∂2U(τn, si, vj , rk)

∂s∂r
≈
Un
i+1,j,k+1 − Un

i−1,j,k+1 − Un
i+1,j,k−1 + Un

i−1,j,k−1

4∆s∆r
, (3.14)

for i = {1, ..., Ns − 1}, j = {0, ..., Nv} and k = {1, ..., Nr − 1};

∂2U(τn, si, vj , rk)

∂v∂r
≈
Un
i,j+1,k+1 − Un

i,j−1,k+1 − Un
i,j+1,k−1 + Un

i,j−1,k−1

4∆v∆r
, (3.15)

for i = {0, ..., Ns}, j = {2, ..., Nv − 1} and k = {1, ..., Nr − 1}. Discretisations at the boundary points are

handled in a similar fashion as presented in Eq. (3.5) and (3.6).

The discretised version of Eq. (2.14) can be represented as

Un+1
i,j,k − Un

i,j,k

∆τ
=

[

Ln
s + Ln

v + Ln
r

]

Un+1
i,j,k +

[

Ln
sv + Ln

sr + Ln
vr

]

Un
i,j,k, (3.16)
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where the functional forms of the differential operators (L(·)
(·)) on the right hand side of Eq. (3.16) and

the associated boundary conditions are presented in Appendix A.3. In particular, to avoid arbitrage

opportunities, all second order partial derivatives and cross derivatives with respect to state variables

along the boundaries are equal to zero. Eq. (3.16) is solved subject to the initial condition

U0
i,j,k = max(si, 0). (3.17)

Having outlined the discretisation steps for the PDE in Eq. (2.14), we are now faced with solving the

discrete PDE in (3.16) subject to the initial condition in Eq. (3.17) and associated boundary condi-

tions derived from second order and cross derivatives terms as highlighted above. We will adopt the

componentwise splitting method for solving Eq. (3.16), as outlined in the next section.

3.2 Time discretisation and componentwise splitting method

The discrete problem outlined in Eq. (3.16) can be rewritten using more compact notation in matrix

form as

(I −△τD1)u
n+1 = (I +△τD2)u

n, (3.18)

where D1 and D2 are sparse matrices of size (Ns+1)(Nv +1)(Nr +1)× (Ns+1)(Nv +1)(Nr +1) whose

elements are components of the differential operators appearing in Eq. (3.16) and I is an identity matrix.

Solving problems like the one in Eq. (3.18) is computationally intensive especially when the grid points

are made finer in order to reduce discretisation errors. It is therefore imperative to devise alternative

computationally efficient schemes for solving this problem. One such scheme is the componentwise

splitting method, which is based on the decomposition of matrices D1 and D2 into simpler matrices such

that

D1 = D11 +D12 +D13 and D2 = D21 +D22 +D23 (3.19)

where matrix D11 contains coupling of finite difference stencil in the s-direction, D21 contains half of

the stencil in the sv-direction and half in the sr-direction. The matrix D12 contains the stencil in the

v-direction, D22 contains the other half in the sv-direction and half in the vr-direction. In addition,

matrix D13 contains the stencil in the r-direction, with D23 containing the other halves in the sr-

and vr-directions8. Martices D11, D12, D13, D21, D22 and D23 can be transformed into tridiagonal

8The coupled system is presented in Appendix A.4 for completeness. Here, we have chosen to express the system in terms

of the differential operators in scalar form. The elements of the matrix D are also presented in Appendix A.5.
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matrices by reordering their elements, see Ikonen and Toivanen (2007) for a detailed discussion.

By applying the componentwise splitting method, we reduce the three-dimensional problem in (3.18),

into a sequence of one-dimensional problems which can be solved efficiently. Applying this method to

Eq. (3.18) yields

A1u
n+ 1

3 = B1u
n (3.20)

A2u
n+ 2

3 = B2u
n+ 1

3 (3.21)

A3u
n+1 = B3u

n+ 2
3 , (3.22)

where

A1 = (I +△τD11), A2 = (I +△τD12), A3 = (I +△τD13), (3.23)

and

B1 = (I −△τD21), B2 = (I −△τD22), B3 = (I −△τD23). (3.24)

In Eq. (3.23), all the six matrices, A1, A2, A3, B1, B2 and B3 are tridiagonal. Instead of solving

the sparse block tridiagonal matrices D1 and D2 we are now faced with solving much simpler matrices,

which results in significant reduction of the computational time. In our numerical experiments, we use a

combination of the implicit and explicit Euler schemes in such a way that optimises the computational

speed, that is, for each time substep, we apply the implicit scheme in one direction and half of the

explicit computation in the mixed directions, and then use the result from the previous substep in the

next substep.

4 Incorporating stochastic mortality

Considering the long-term nature of the GMWB contract it is natural to incorporate mortality risk in

the valuation framework. We adopt the stochastic mortality model proposed in Dahl and Moller (2006)

due to its many attractive features which include; tractability as it allows for closed-form expressions for

survivor probabilities and ability of capturing mortality evolutions across all ages. Under the framework

of Dahl and Moller (2006) the risk neutral dynamics of the stochastic mortality for a person aged x at

time t = 0 is given by

dµ(x, t) = (γµ(x, t)− δµ(x, t)µ(x, t))dt+ σµ(x, t)
√

µ(x, t)dZ4
t , (4.1)
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which is a time-inhomogeneous Cox-Ingersoll-Ross (CIR) process (Cox et al., 1985). In Eq. (4.1), dZ4
t

represents the increments of a Wiener process independent from Z1
t , Z

2
t and Z3

t associated with the

financial risk factors and

γµ(x, t) = δ̃e−γ̃tµ◦(x+ t), δµ(x, t) = δ̃ −
d
dtµ

◦(x+ t)

µ◦(x+ t)
, σµ(x, t) = σ̃

√

µ◦(x+ t).

Dahl and Moller (2006) assume that µ◦(x+t) corresponds to the Gompertz (1825) mortality law implying

that

µ◦(x+ t) = αµ + βµcx+t. (4.2)

In all our numerical experiments, we adopt the parameters presented in Dahl and Moller (2006) and

reported in Table 2 for x = 30 as one of our main objectives is to highlight the impact of stochastic

mortality on the valuation of GMWB riders.

αµ βµ c δ̃ γ̃ σ̃

0.000233 0.0000658 1.0959 0.2 0.008 0.02

Table 2: Parameters for the mortality model obtained in Dahl and Moller (2006), based on the Danish

mortality data for 30 years old males for 1980.

As highlighted above, the most superiour feature of the Dahl and Moller (2006) model is that the survival

probabilities can be expressed in closed-form which, using current parametrization can be represented as

S(x, t, T ) = EQ
[

e−
∫ T
t

µ(x,s)ds
]

= eA
µ(x,t,T )−Bµ(x,t,T )µ(x,t), (4.3)

where

∂

∂t1
Bµ(x, t, T ) = δµ(x, t)Bµ(x, t, T ) +

1

2
(σµ(x, t))2(Bµ(x, t, T ))2 − 1, (4.4)

∂

∂t1
Aµ(x, t, T ) = γµ(x, t)Bµ(x, t, T ), (4.5)

are the Riccati ordinary differential equations that can be solved subject to the terminal conditions

Bµ(x, T, T ) = 0 and Aµ(x, T, T ) = 0, respectively. Also of particular importance in modelling survivor

curves under the Dahl and Moller (2006)’s framework: the forward force of mortality which is the density

function for the remaining future lifetime can be expressed in closed-form as

fµ(x, t, T ) = − ∂

∂T
logS(x, t, T ) = µ(x, t)

∂

∂T
logBµ(x, t, T )− ∂

∂T
logA(x, t, T ). (4.6)
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Incorporating the above stochastic mortality model into the static valuation framework yields

Wmort
0 =

∫ T

0
f(x, 0, u)

(∫ u

0
D(0, s)Gds+ EQ

[

e−
∫ u
0 rsdsmax(W̃u, 0)

]

)

du

+ S(x, 0, T )

(∫ T

0
D(0, u)Gdu+ EQ

[

e−
∫ T
0 rsdsmax(W̃T , 0)

]

)

, (4.7)

where the first term on the RHS is the weighted sum of the payments to beneficiaries in the event of

untimely death of the policyholder, and the second term is the discounted sum of all cash flows including

the final payment if the policyholder survives to maturity of the contract. Due to independence between

mortality and financial risk parameters, the expectation in Eq. (4.7) can be solved using the operator

splitting method presented in Section 3.

For the dynamic withdrawal case, the value of a variable annuity contract can be expressed as9

Umort(0,W0, v, r, A0) =

∫ T

0
f(x, 0, u)U(u,Wu, v, r, Au)du+ S(x, 0, T )U(0,W0, v, r, A0), (4.8)

where U(0,W0, v, r, A0) is the solution of Eq. (2.19) for the case where no mortality is incorporate in the

model.

5 Numerical results

For all numerical experiments that follow, we use the financial parameter set presented in Table 3. We

have also assumed that the standard guarantee rate g corresponds to 7% p.a.

5.1 Static withdrawal case

In this section we present results for the static policyholder withdrawal behaviour. We first assess the

accuracy of our approach by comparing it with the existing literature in Section 5.1.1. We are going to

analyse the impact of various model parameters in Section 5.1.2.

5.1.1 Numerical Comparisons

We start by assessing the performance of our approach relative to two existing frameworks developed

in Luo and Shevchenko (2014) and Liu (2010). Both papers consider the valuation of variable annuity

9Note that we have expressed the value in terms of running time, t ∈ [0, T ] for convenience.

17



vt−Parameter Value rt−Parameter Value

κv 0.005 κr 0.3

ηv 0.04 ηr 0.05

σv 0.1 σr 0.1

ρsv −0.6 ρsr 0.3

ρvr 0.15

Table 3: Parameters used for assessing policyholder’s behavior on the GMWB rider. The first two

columns contain parameters and the corresponding values of the stochastic variance process whilst the

last two columns contain parameters and corresponding values of the stochastic interest rate process.

These parameters are adopted in order to be consistent with parameters obtained in Ignatieva et al.

(2015), Donnelly et al. (2014), Luo and Shevchenko (2014) and Luo and Shevchenko (2016).

contracts embedded with GMWB riders under the static withdrawal case when the underlying fund

evolves according to the geometric Brownian motion (GBM) process. To match the GBM parameters,

we first analyse the behaviour of the density functions for either the interest rate process (Cox et al.,

1985) or the stochastic variance process (Heston, 1993); both are square root processes. If xt represents

a square root process, the corresponding dynamics can be written as

dxt = κ(η − xt)dt+ σ
√
xtdZt, (5.1)

where Zt is a Wiener process with κ, η and σ being the speed of mean reversion, the long-run mean

and the diffusion parameter, respectively.10 The corresponding density function has been derived in

Maghsoodi (1996) as

f(xt|x0) = c exp{−c(x0e−κxt + xt)}
(

xt

(x0e−κt)

)q/2

Iq(2
√

c2(x0e−κtxt)), (5.2)

where c = 2κ
(1−e−κt)σ2 , q = 2κη

σ2 − 1 and Iq(·) is the modified Bessel function of the first kind of order

q. From Figure 1 which shows the density function for the CIR stochastic process for various values of

σ (and fixed κ = 1 and η = 0.04), we note that for σ = 0.05, the density function has light right tail

and concentrates around the long-term average value, η = 0.04. When σ increases from 0.05 to 0.25 the

probability mass shifts to the left, and the right tail of the distribution becomes thicker. This implies

that for some “intermediate” values of the volatility of variance parameter the square-root process takes

10In the case of a stochastic variance process, σ will be used to denote the volatility of variance parameter.
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extreme values with high probability. As the volatility of variance parameter σ increases further from

0.25 to 0.5, the probability mass function concentrates around zero and the right tail gets lighter, which

means that the process takes low values with high probability. It should be emphasised that for σ = 0.5

the Feller’s condition is violated.
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Figure 1: Density function for the CIR stochastic

process for various values of σ (κ = 1 and η =

0.04).
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Figure 2: Density function for the CIR stochastic

process for various values of κ (σ = 0.1 and η =

0.04).

Feller (1951) shows that when 2κη
σ2 ≥ 1, the square root is strictly positive and when 2κη

σ2 < 1, the process

can reach zero but will always remain non-negative. Moreover, for the square-root process it can be

shown that

EQ[xt|x0] = x0e
−κt + η(1− e−κt), (5.3)

refer to Maghsoodi (1996). This suggests that, in order to compare the results between the stochastic

variance/interest rate case and the deterministic case, we must set x0 = η and σ → 0.

In Figure 2 we also analyse the behaviour of the transition density function for varying speed of mean-

reversion, κ (and fixed σ = 0.1 and η = 0.04). From this figure we note that for low values of κ, the

density function is shifted towards the left. When κ is increasing, the density function becomes more

centred around the long-run mean of xt.

Having analysed the properties of the density functions, we now present numerical comparisons for the

GMWB fees for various approaches, when the guarantee rate, g, is varying. Table 4 summarises the results

from our approach (assuming stochastic volatility, stochastic interest and static withdrawals, abbreviated
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as SVSI SW), comparing them with the results presented in Luo and Shevchenko (2014) and Liu (2010),

who consider discrete deterministic withdrawal at frequencies (fr) of 4 and 12 times per year. The fair

guarantee fees are reported in basis points.11

g SVSI SW (fr= ∞) Liu (2010) (fr= 12) L & S (2014) (fr= 4)

5% 29.89 28.51 28.33

6% 41.88 40.61 40.33

7% 55.66 53.78 53.31

10% 100.25 96.65 95.81

Table 4: Comparison of the fair guarantee fees generated by the componentwise splitting method with

the frameworks presented in Luo and Shevchenko (2014) and Liu (2010). The following parameters have

been chosen for the numerical comparisons: σv = 10−7, σr = 10−7, κv = 1, κr = 0.3, v0 = 0.04, r0 = 0.05,

ηv = 0.04, ηr = 0.05, ρsv = −0.6, ρsr = 0.3, ρvr = 0.15.

From Table 4 we note that the fair insurance fee is an increasing function of the guarantee rate, g.

This behaviour is consistent across all three frameworks presented in the table. By selling riders with

higher guarantee rates, the annuity provider is taking more risk. This risk can be offset/compensated

by charging higher premiums, which explains the results in the table. When the volatility of variance

parameters of stochastic interest rate process and stochastic volatility process are close to zero (σr = 10−7

and σv = 10−7), the fair insurance fees computed by the componentwise splitting method are close to

those resulted from the Geometric Brownian Motion (GBM) cases analysed in Luo and Shevchenko (2014)

and Liu (2010) for different frequencies (fr) of discrete withdrawals 12.

5.1.2 Analysis of the static withdrawal case

Having performed numerical comparisons highlighting the competency of our approach as presented in

Section 5.1.1, we now analyse the impact of various model parameters on the fair guarantee fee, assuming

static withdrawal strategy of the policyholder. For all numerical experiments that follow in this section

11Note that 1 basis point (b.p.) is equivalent to 0.01%. Also note that for comparison purposes, we do not incorporate

mortality so as to explicitly highlight the impact of stochastic volatility and stochastic interest rates.
12Liu (2010) find (see Table 2.3) that as the frequency of withdrawals increases the fair insurance fee increases and

approaches the fair fee for the continuous withdrawals case.
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we assume that the mortality risk is incorporated in the model as discussed in Section 4, and, unless

specified otherwise, we have used the parameter set of the mortality component as presented in Table 2

and the parameter set of the financial component as presented in Table 3.

Figure 3 shows the impact of varying σv and σr on the fair guarantee fee. From this figure we note that

the fair fee increases with increasing σr. A highly volatile interest rate environment implies that interest

rates become less predictable, which in the context of the long-term insurance contracts leads to higher

interest rate risk. This in turn results in higher insurance fees required to cover the annuity provider

from the associated risk. From Figure 4 we notice that the fair guarantee fee is an increasing function of

the correlation between the underlying fund and the interest rate process, ρsr. The correlation effects are

more pronounced for higher σr as reflected by the figure. This result is consistent with findings reported

in Dai et al. (2015) and Luo and Shevchenko (2016). Kang and Ziveyi (2016) also note that an increase

in σr results in higher zero-coupon bond prices which in turn leads to higher management fees.

0
0.05

0.1
0.15

0

0.2

0.4
40

60

80

100

120

Volatilty, σ
r

Volatilty, σ
v

In
su

ra
nc

e 
fe

e,
 α

*  (
b.

p.
)

Figure 3: Fair insurance fee, α∗, as a function of the volatility of variance parameter, σv, and the volatility

of interest rate, σr. All other parameters are as presented in Table 2 and Table 3.

Figure 5 shows how the fair guarantee fees is affected by varying volatility of variance parameter, σv and

the correlation between the underlying fund and the volatility processes, ρsv. The results from this figure

suggest that there is a non-monotonic dependence between the fair insurance fees and σv. As it has been

discussed above (see Figure 1), when the volatility of variance parameter increases, the probability of

“extremely” high values of the stochastic volatility process increases, which is reflected by fatter right

tail. As the volatility of variance parameter, σv, continues to increase, the probability mass tends to
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Figure 4: Fair insurance fee, α∗, as a function of the correlation, ρsr, and the volatility of interest rate,

σr. All other parameters are as presented in Table 2 and Table 3.

shift to the left and concentrate around zero. Thus, for “moderate” values of σv there is high volatility

risk, whereas “extreme” values of σv imply higher probability of observing lower value of the stochastic

volatility process. The findings in Figure 5 are consistent with the results presented in Donnelly et al.

(2014) who also note the non-monotonic dependence between volatility of variance and the fair insurance

fees13 when valuing GMWBs under the Heston (1993) modelling framework.
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Figure 5: Fair insurance fee, α∗, as a function of the correlation, ρsv, and the volatility of variance

parameter, σv. All other parameters are as presented in Table 2 and in Table 3.

13See Figure 4 in Donnelly et al. (2014).
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Figure 6: Fair insurance fee, α∗, as a function of the long-term volatility, ηv, and long-term interest rate,

ηr. All other parameters are as presented in Table 2 and in Table 3.

From Figure 6 we note that the fair insurance fee, α∗, is an increasing function of the average long-term

volatility, ηv, and a decreasing function of the average long-term interest rate, ηr. When ηv is high,

the volatility risk is higher implying higher ruin probability. In contrast, when ηr is high, the average

growth of the investment account is high, which leads to lower probability of ruin and lower risks for the

insurance provider.

We now assess the impact of the speed of mean-reversion parameters, κv and κr, on insurance fees as

presented in Tables 5 and 6. From Table 5 we note that when σv is very close to zero, the fees are

insensitive to changes in κv. When the volatility of variance is very small, the uncertainty associated

with the diffusion component of Eq. (2.1) is negligible, leaving the fund dynamics to be mainly dictated

by the interest rate movements. For non-zero σv, we note that the fair management fee is an increasing

function of κv. As noted from Figure 3 and 5, for any given level of κv, the fair management fee is a non

monotonic function of σv.

The results in Table 6 also reveal that when σr is very close to zero, the fair insurance fees are insensitive

to changes in κr. However, for non-zero values of σr, the fair fee becomes a decreasing function of κr;

this is consistent with the analysis of the density function presented in Figure 2.

The impact of mortality risk can be assessed by comparing the fair insurance fee to the case when no

mortality is incorporate in the modelling framework. From Table 7 we observe that the GWMB fee in

the case of no mortality is higher compared to the case when mortality is incorporated in the model. In
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σv = 10−7 σv = 0.1 σv = 0.2 σv = 0.3 σv = 0.4

κv = 0.005 91.28 91.60 87.42 84.62 82.91

κv = 0.05 91.28 94.14 90.31 86.94 84.84

κv = 0.1 91.28 95.97 93.47 89.56 86.95

Table 5: Fair insurance fee as a function of the volatility of variance parameter, σv, and speed of mean-

reversion, κv, of stochastic variance. All other parameters are as presented in Table 2 and in Table

3.

σr = 10−5 σr = 0.0375 σr = 0.075 σr = 0.1125 σr = 0.15

κr = 0.1 63.43 74.23 89.58 108.19 125.89

κr = 0.5 63.43 71.28 80.28 89.59 98.88

κr = 1 63.43 69.35 75.94 82.67 89.25

κr = 1.5 63.43 68.33 73.80 79.35 84.84

Table 6: Fair insurance fee as a function of the interest rate volatility parameter, σr, and speed of mean-

reversion parameter, κr, of stochastic interest rate. All other parameters are as presented in Table 2 and

in Table 3.

g SVSI SW with mortality SVSI SW without mortality

5% 61.74 62.29

6% 76.22 76.89

7% 91.59 92.35

10% 141.65 142.60

Table 7: Comparison of the fair guarantee fees in the cases with mortality and without mortality for

various values of the guarantee rate, g. All other parameters are as presented in Table 2 and in Table 3.
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line with the discussion presented in Milevsky and Salisbury (2006) lower fees in the case of incorporated

mortality risk can be explained by the fact that there is non-zero probability for termination of the

contract before maturity, when the policyholder dies. This implies that there is a lower ruin probability

of the investment account, so the insurer faces lower risk and can charge lower insurances fees. Generally,

we notice that the difference between the fair insurance fees in the case of with and without mortality is

relatively small, and this difference is higher when withdrawal rates are higher.

5.2 Dynamic withdrawal case

This section analyses the results for the dynamic withdrawal strategy of the policyholder. Here we assume

that there is no mortality risk in the model. The reason is that as it has been highlighted in Milevsky

and Salisbury (2006) and also demonstrated in the static withdrawal case analysis, the importance of

stochastic mortality risk is relatively small.

We begin by assessing the impact of stochastic volatility and stochastic interest rates on the fair insurance

fees and perform numerical comparisons with the static withdrawal strategy (Section 5.2.1). We then

perform some experiments to highlight how the optimal policyholder withdrawal behaviour is influenced

by changes in various model parameters (Section 5.2.2). In all numerical experiments that follow, we

adopt the surrender fee schedule presented in Table 1, with all other parameters as specified in Table 3.

5.2.1 Numerical comparisons

We now assess how changes in the guarantee rate g affect the fair insurance fee α∗ under various model

settings. Table 8 shows six different models.14 Column 2 contains insurance fees for the dynamic with-

drawal (DW) strategy when the underlying fund evolves under the influence of stochastic volatility and

stochastic interest rates (SVSI) as presented in Section 2.2. Columns 3-5 contain three special cases: Col-

umn 3 reports the results for the stochastic volatility and stochastic interest rates (SVSI) model under the

static withdrawals (SW) case presented in Eq. (2.1)-(2.3); column 4 corresponds to the special case of the

dynamic withdraw strategy (DW) of the policyholder where the underlying fund is driven by stochastic

volatility (SV) while the interest rates are deterministic; and column 5 refers to the model with stochas-

tic volatility (SV), deterministic interest rates and static withdrawals (SW). In the last two columns we

14SVSI stands for stochastic volatility and stochastic interest rates; SV - stochastic volatility; SI - stochastic interest; DW

- dynamic withdrawals; SW - static withdrawals.
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make comparisons with the results presented in Luo and Shevchenko (2014) and Liu (2010) that were

introduced in Section 5.1.1. From columns 2-5 we observe that the fair insurance fee α∗ increases as the

guarantee rate g increases. This increase is more pronounced for the static withdrawal cases (columns 3

and 5), compared to the dynamic withdrawal case (columns 2 and 4) where we note that by varying the

guarantee rate from 5%-10% the corresponding fees increase by the factor of approximately 2.5 and 3 for

SVSI SW case and SV SW case, respectively. By comparing the fair insurance fees for a fixed guarantee

rate we can conclude that the increase is the most sound, when we move from the static withdrawal

schedule (columns 3 and 5) to the dynamic one (columns 2 and 4) for a given modelling setup (SV or

SVSI). This allows us to conclude that the behavioural risk associated with the policyholder’s withdrawal

schedule is the most important comparing to the interest rate risk (when we move form columns 4 and

5 to columns 2 and 3) and volatility risk (when we move from columns 6 and 7, which correspond to

geometric Brownian motion case, to columns 4 and 5). Our results are consistent with those reported in

Luo and Shevchenko (2014) and Liu (2010) that value VA contracts embedded with GMWB riders under

the static withdrawals case and assuming GBM dynamics for the the underlying fund.

g SVSI DW SVSI SW SV DW SV SW L&S (2014) Liu (2010)

5% 181.93 51.95 178.78 32.89 28.33 28.51

6% 205.46 65.94 202.35 44.40 40.33 40.61

7% 214.77 81.02 211.75 56.80 53.31 53.78

10% 244.41 131.08 241.97 97.75 95.81 96.65

Table 8: Fair insurance fee α∗ as a function of changing guarantee rate g for the GMWB contract under

the dynamic withdrawals, compared to static withdrawals with financial parameters as given in Table 3.

SVSI stands for stochastic volatility, stochastic interest rates; SV - stochastic volatility; SI - stochastic

interest; DW - dynamic withdrawals; SW - static withdrawals.

5.2.2 Assessing the impact of model parameters

Having analysed the effectiveness of our approach in computing fair insurance fees, we now provide a

detailed analysis of the optimal withdrawal behaviour for varying volatility and interest rate levels (Figure

7). We also provide insights on how the optimal withdrawal regions change over time (Figure 8).

Figure 7 shows the optimal withdrawal schedule as a function of the withdrawal account, At, and the
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investments account, Wt, for varying values of the instantaneous variance, v (increasing from top to

bottom), and varying values of instantaneous interest rates, r (increasing from left to right). The contour

lines represent the withdrawal amounts for any given combinations of At andWt with the triangular region

(dark blue area) on each panel denoting the region where it is optimal to withdrawal the contractually

agreed amount, G. The changing contour colours (from dark blue to red) represent the magnitude of

excessive withdrawals as either At or Wt dominate each other. The region on the left of each triangle

represents the case where the guarantee account, At, dominates the investment account, Wt while the

right segment corresponds to the case whereWt dominates At. Given the surrender schedule in Table 1 we

observe that when Wt is sufficiently small relative to At, it is optimal for the policyholder to excessively

withdraw the variable annuity account (this is consistent with findings in Chen et al. (2008) and Huang

and Kwok (2014) who consider the valuation framework under the GBM setting). From the figure we

also notice that for any given level of interest rates, the triangular region widens as the volatility level

increases. With increasing volatility the investment account becomes more dominant compared to the

guarantee account, as it is evident from the shrinking region on the left. The widening triangular region

also implies that there are more combinations of (Wt, At) where it is optimal to withdraw the contractually

agreed amount as the volatility increases. As highlighted in Chen et al. (2008), when Wt dominates At,

the guarantee is out-of-the-money rendering the policyholder to withdraw an amount which minimises

both, the guarantee fee and the early surrender charges. However, for a fixed volatility level, we notice

that the withdrawal strategy is not significantly affected by changes in the interest rate level.

Figure 8 infers the optimal withdrawal regions through time when the interest rate and the volatility are

fixed. We note that as the contract approaches maturity, the region where it is optimal to withdrawal

the contractually agreed amount shrinks to a point where there is only a line (t = 9.9 in the right bottom

panel) separating the regions where At and Wt dominate each other. This can be explained by the

surrender charge which is decreasing with decreasing time-to-maturity. From Table 1, the fee during the

final phase (0 ≤ τ < 1
9T ) of withdrawals is set to zero implying that during this phase the policyholder

can immediately withdraw everything at the next withdrawal opportunity at no cost, when either At

dominates Wt or vice versa.
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Figure 7: Optimal withdrawal schedule as a function of the withdrawal account, A, and the investments

account, W , for various values of the stochastic volatility process, v(t), and the stochastic interest rate

process, r(t), at t = 8.72.

6 Conclusion

This paper deals with the valuation of GMWBs embedded in variable annuities under the influence of

several risk factors, namely, stochastic interest rates, stochastic volatility, stochastic mortality and equity

risk. Pricing of the guarantee is performed numerically via the componentwise operator splitting method,

which is computationally efficient. We compute the fair insurance fee and analyse its sensitivity with

respect to different model parameters associated with various risk factors. Both, static and dynamic

withdrawal strategies are analysed.

We find that the fair insurance fee charged by the guarantee provider increases with increasing guarantee
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Figure 8: Optimal withdrawal schedule as a function of withdrawal account, A, and investments account,

W , for various values of the stochastic volatility process, v(t), and the stochastic interest rate process,

r(t), over time.

rate, while a larger increase is observed for the case of static withdrawals, compared to the case of dynamic

withdrawals. Stochastic risk factors (stochastic interest rates and stochastic volatility) lead to a higher

GMWB price, compared to the case when deterministic parameters are used. The fair guarantee fee is

also an increasing function of the volatility of interest rates and a non-monotonic function of the volatility

of variance parameter. Furthermore, it increases when the correlation between the underlying fund and

the interest rate increases, and when the speed of mean-reversion of stochastic volatility increases. The

GMWB price is a decreasing function of the speed of mean-reversion of stochastic interest rates. The fair

guarantee fee also increases with increasing average long-term volatility; and decreases with increasing

average long-term interest rates. We document a rather small (but negative) impact of incorporated

mortality on the fair insurance fee, that is, the fair insurance fee decreases when mortality is incorporated

in the model. Our analysis also provides recommendation for the optimal withdrawal schedule depending

on the values of the withdrawal and the investments account, and varying volatility and interest rates.

Our paper provides a comprehensive analysis of GMBWs, highlighting the risk management benefits and
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costs for insurance providers offering these guarantees. Several extensions and further analysis could

be of interest. In particular, the dynamic withdrawal behaviour could be analysed within the modelling

framework which incorporates stochastic mortality. In addition, all model parameters could be calibrated

to real data. We leave these problems for future work.
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A Appendices

A.1 Proof of Proposition 1

Consider the following stochastic processes where we introduce W̃t on an unrestricted domain such that

dW̃t = ((rt − α)W̃t −G)dt+ ρ11
√
vtW̃tdZ

1
t + ρ12

√
vtW̃tdZ

2
t + ρ13

√
vtW̃tdZ

3
t ,

dvt = ζv(vt, t)dt+ ρ22σv(vt, t)dZ
2
t + ρ23σv(vt, t)dZ

3
t , (A1)

drt = ζr(rt, t)dt+ σr(rt, t)dZ
3
t ,

with W̃t ∈ (−∞,∞), vt ∈ (0,∞) and rt ∈ (0,∞).

In finding the solution to Eq. (A1) we consider the stochastic integrating factor associate with this system which can be

represented as

Φt = exp

(

−ρ11
∫ t

0

√
vudZ

1
u − ρ12

∫ t

0

√
vudZ

2
u − ρ13

∫ t

0

√
vudZ

3
u +

1

2

∫ t

0

vudu

)

. (A2)

The above equation can be expressed in differential form as

dΦt = Φt

(

−ρ11
√
vtdZ

1
t − ρ12

√
vtdZ

2
t − ρ13

√
vtdZ

3
t + vtdt

)

.

Consider a stochastic process given by the product, ΦtW̃t. Applying the Itô’s lemma to this product yields

d(ΦtW̃t) = dΦtW̃t +ΦtdW̃t + dΦtdW̃t

= Φt

(

−ρ11
√
vtdZ

1
t − ρ12

√
vtdZ

2
t − ρ13

√
vtdZ

3
t + vtdt

)

W̃t

+ Φt

(

((rt − α)W̃t −G)dt+ ρ11
√
vtdZ

1
t + ρ12

√
vtdZ

2
t + ρ13

√
vtdZ

3
t

)

+Φt(−vtdt)W̃t

= Φt((rt − α)W̃t −G)dt.

We now consider the discounted process e−
∫
t
0
(ru−α)duΦtW̃t. Applying Itô’s lemma to the discounted process yields

d
(

e
−

∫
t
0
(ru−α)duΦtW̃t

)

= −(rt − α)e−
∫
t
0
(ru−α)du

dtΦtW̃t + e
−

∫
t
0
(ru−α)du

d(ΦtW̃t) (A3)

= −(rt − α)e−
∫
t
0
(ru−α)du

dtΦtW̃t + e
−

∫
t
0
(ru−α)duΦt((r − α)W̃t −G)dt

= −e−
∫
t
0
(ru−α)duΦtGdt,

implying that

W̃t = Φ−1
t e

∫
t
0
(ru−α)du

(

W0 −G

∫ t

0

e
−

∫
u
0

(rs−α)dsΦudu

)

, (A4)

which is the solution to the system of equations in (A1).

Now, comparing Wt and W̃t as presented in the systems (2.8) and (A1), respectively, we notice that both processes are the

same in the positive domain. However, Wt, can never go below zero due the guarantee feature implying that zero is an

absorbing state for Wt. Letting W̃0 = W0, for 0 ≤ t < τ0 = inft∈(0,T )[Wt = 0] we note that dW̃t ≡ dWt. It has been shown

in (A4) above that the solution to Eq.(A1) is (A4) implying that W̃t ≤ 0 if and only if (W0 −G
∫ t

0
e−

∫
u
0

(rs−α)dsΦudu) ≤ 0,

since Φ−1
t e−

∫
t
0
(ru−α)du > 0 for all t. By definition of τ0 we have that W0 −G

∫ τ0
0
e−

∫
u
0

(rs−α)dsΦudu = 0. Moreover,

∂
(

W0 −G
∫ t

0
e−

∫
u
0

(rs−α)dsΦudu
)

∂t
= −(r − α)e−

∫
u
0

(rs−α)dsΦt < 0,

for all t, which implies that

W0 −G

∫ t

0

e
−

∫
u
0

(rs−α)dsΦudu

33



is a monotonically decreasing function in t. Thus W0 −G
∫ t

0
e−

∫
u
0

(rs−α)dsΦudu ≤ 0 for ∀t ≥ τ0, which implies that W̃t ≤ 0

for ∀t ≥ τ0. Therefore we obtain the result that

Prob
(

W̃T > 0|W̃t ≤ 0, t < T
)

= 0.

Since dW̃t ≡ dWt for 0 ≤ t < τ0 and W̃0 =W0, we note that probability density functions of W̃t and Wt are equivalent such

that pW̃T
(x) ≡ pWT

(x) for x > 0 and Prob(WT = 0) =
∫ 0−

−∞
pW̃T

(x)dx+ Prob(W̃T = 0). Thus, by definition of expectation

we have:

E
Q [WT ] = 0× Prob(WT = 0) +

∫ +∞

0+
xpWT

(x)dx

=

∫ +∞

0+
xpWT

(x)dx =

∫ +∞

0+
xpW̃T

(x)dx = E
Q[max(W̃T , 0)].

Moreover, we have that the solution to Eq.(2.8) for the restricted process Wt is given by

Wt = Φ−1
t e

∫
t
0
(ru−α)du max

[

W0 −G

∫ t

0

e
−

∫
u
0

(rs−α)dsΦudu, 0

]

. (A5)

A.2 Backward approximation of the second and third order

Let U(x, y, z) be a function R × R× R → R having a finite nth derivative ∂nU(x,y,z)
∂xn everywhere in the open interval (a, b)

and assume the (n − 1)th derivative ∂n−1U(x,y,z)

∂xn−1 is continuous on the closed interval [a, b]. Apostol (1965) states that for

every x ∈ [a, b], x 6= x0, then

U(x, y, z) = U(x0, y, z) +

n
∑

i=1

(x− x0)
i

i!

∂iU(x0, y, z)

∂xi
+ o((x− x0)

n), (A6)

where the function o(x− x0)
n is defined as limn→∞

o((x−x0)
n)

(x−x0)n
= 0. This implies that

U(tn, si ± k∆s, vj) = U(tn, si, vj)± k∆s
∂U(tn, si, vj)

∂s
+

(k∆s)2

2

∂2U(tn, si, vj)

∂s2
(A7)

± (k∆s)3

3!

∂3U(tn, si, vj)

∂s3
+

(k∆s)4

4!

∂4U(tn, si, vj)

∂s4
+ o((k∆s)4),

For points si, si−1 and si−2 we have

U(tn, si−2, vj)− 4U(tn, si−1, vj) + U(tn, si, vj) = U(tn, si − 2∆s, vj)

− 4U(tn, si −∆s, vj) + U(tn, si, vj) = 2∆s
∂U(tn, si, vj)

∂s
+ o((k∆s)2). (A8)

This yields
∂U(τn, si, vj)

∂s
≈ Un

i−2,j − 4Un
i−1,j + 3Un

i,j

2∆s
+ o((k∆s)2), (A9)

which is Eq.(3.2).

Similarly, for points s−1, s0, s1 and s2 we have

−8U(tn, s−1, vj)− 3U(tn, s0, vj) + 12U(tn, s1, vj) + U(tn, s2, vj) = −8U(tn, s0 −∆s, vj)− 3U(tn, s0, vj)

+ 12U(tn, s0 +∆s, vj) + U(tn, s0 + 2∆s, vj) = 18∆s
∂U(tn, s0, vj)

∂s
+ o((k∆s)3), (A10)

which yields
∂U(τn, s0, vj)

∂s
≈ −8Un

−1,j − 3Un
0,j + 12Un

1,j − Un
2,j

18∆s
+ o((k∆s)3), (A11)

as presented in Eq. (3.3).
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A.3 Discrete differential operators

We substitute approximations presented in Duffy (2006) to obtain discrete differential operators Ln
sU

n
i,j,k, Ln

vU
n
i,j,k, Ln

rU
n
i,j,k,

Ln
svU

n
i,j,k, Ln

srU
n
i,j,k and Ln

vrU
n
i,j,k.

In the s-direction we have15

Ln
sU

n
0,j,k = φ(τn, s0, rk)

−19Un
0,j,k + 20Un

1,j,k − Un
2,j,k

18∆s
(A12)

Ln
sU

n
1,j,k = φ(τn, s1, rk)

−Un
0,j,k + Un

1,j,k

∆s
+

1

2
ψ(τn, s1, vj)

2U
n
2,j,k − 2Un

1,j,k + Un
0,j,k

(∆s)2
, (A13)

Ln
sU

n
i,j,k = φ(τn, si, rk)

Un
i−2,j,k − 4Un

i−1,j,k + 3Un
i,j,k

2∆s

+
1

2
ψ(τn, si, vj)

2U
n
i+1,j,k − 2Un

i,j,k + Un
i−1,j,k

(∆s)2
, for i = {2, ..., i∗ − 1}, (A14)

Ln
sU

n
i,j,k = φ(τn, si, rk)

Un
i+1,j,k − Un

i−1,j,k

2∆s

+
1

2
ψ(τn, si, vj)

2U
n
i+1,j,k − 2Un

i,j,k + Un
i−1,j,k

(∆s)2
, for i = {i∗, ..., Ns − 1}, (A15)

Ln
sU

n
Ns,j,k = φ(τn, sNs , rk)

Un
Ns,j,k

− Un
Ns−1,j,k

∆s
, (A16)

In the v-direction we have

Ln
vU

n
i,0,k = ξv(τn, v0)

Un
i,1,k − Un

i,0,k

∆v
, (A17)

Ln
vU

n
i,j,k = ξv(τn, vj)

Un
i,j+1,k − Un

i,j−1,k

2∆v

+
1

2
βv(τn, vj)

2U
n
i,j+1,k − 2Un

i,j,k + Un
i,j−1,k

∆v2
, for j = {1, ..., j∗ − 1}, (A18)

Ln
vU

n
i,j,k = ξv(τn, vj)

Un
i,j−2,k − 4Un

i,j−1,k + 3Un
i,j,k

2∆v

+
1

2
βv(τn, vj)

2U
n
i,j+1,k − 2Un

i,j,k + Un
i,j−1,k

∆v2
, for j = {j∗, ..., Nv − 1}, (A19)

Ln
vU

n
i,Nv ,k = ξv(τn, vNv )

Un
i,Nv−2,k − 4Un

i,Nv−1,k + 3Un
i,Nv ,k

2∆v
, (A20)

In the r-direction we obtain

Ln
rU

n
i,j,0 = ξr(τn, r0)

Un
i,j,1 − Un

i,j,0

∆r
, (A21)

Ln
rU

n
i,j,k = ξr(τn, rk)

Un
i,j,k+1 − Un

i,j,k−1

2∆r

+
1

2
βr(τn, rk)

2U
n
i,j,k+1 − 2Un

i,j,k + Un
i,j,k−1

∆r2
, for k = {1, ..., k∗ − 1}, (A22)

Ln
rU

n
i,j,k = ξr(τn, rk)

Un
i,j,k−2 − 4Un

i,j,k−1 + 3Un
i,j,k

2∆r

+
1

2
βr(τn, rk)

2U
n
i,j,k+1 − 2Un

i,j,k + Un
i,j,k−1

∆r2
, for k = {k∗, ..., Nr − 1}, (A23)

Ln
rU

n
i,j,Nr

= ξr(τn, rNr )
Un

i,j,Nr−2 − 4Un
i,j,Nr−1 + 3Un

i,j,Nr

2∆r
, (A24)

In the mixed sv− direction we have

Ln
svU

n
i,j,k = ρ12ψ(τn, si, vj)βv(τn, vj)

(

Un
i+1,j+1,k − Un

i−1,j+1,k − Un
i+1,j−1,k + Un

i−1,j−1,k

4∆s∆v

)

, (A25)

15In what follows, we will make use of the fact that the second derivative terms with respect to all state variables vanish

at the boundary points.
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for i = {1, ..., Ns − 1}, j = {1, ..., Nv − 1} and k = {0, ..., Nr}.

Ln
svU

n
i,j,k = 0, when i = {0, Ns} or j = {0, Nv}. (A26)

In the mixed sr− direction we have

Ln
srU

n
i,j,k = ρ13ψ(τn, si, vj)βr(τn, rk)

(

Un
i+1,j,k+1 − Un

i−1,j,k+1 − Un
i+1,j,k−1 + Un

i−1,j,k−1

4∆s∆r

)

, (A27)

for i = {1, ..., Ns − 1}, k = {1, ..., Nr − 1} and j = {0, ..., Nv}.

Ln
srU

n
i,j,k = 0, when i = {0, Ns} or k = {0, Nr}. (A28)

In the mixed vr− direction we have

Ln
vrU

n
i,j,k = ρ23βv(τn, vj)βr(τn, rk)

(

Un
i,j+1,k+1 − Un

i,j+1,k−1 − Un
i,j−1,k+1 + Un

i,j−1,k−1

4∆v∆r

)

, (A29)

for i = {0, ..., Ns}, j = {1, ..., Nv − 1} and k = {1, ..., Nr − 1}.

Ln
vrU

n
i,j,k = 0, when k = {0, Nr} or j = {0, Nv}. (A30)

A.4 The coupled differenced PDE system

From the discrete problem formulated in Eq. (3.16), we can develop an operator splitting algorithm for approximating the

solution of the PDE in Eq. (2.14). We divide each time step from time τn to τn+1 into three substeps such that

U
n+ 1

3

i,j,k − Un
i,j,k

∆τ
= Ln

sU
n+ 1

3

i,j,k +
1

2
Ln

svU
n
i,j,k +

1

2
Ln

srU
n
i,j,k, (A31)

U
n+ 2

3

i,j,k − U
n+ 1

3

i,j,k

∆τ
= Ln

vU
n+ 2

3

i,j,k +
1

2
Ln

svU
n+ 1

3

i,j,k +
1

2
Ln

vrU
n+ 1

3

i,j,k , (A32)

Un+1
i,j,k − U

n+ 2
3

i,j,k

∆τ
= Ln

rU
n+1
i,j,k +

1

2
Ln

srU
n+ 2

3

i,j,k +
1

2
Ln

vrU
n+ 2

3

i,j,k . (A33)

Thus, moving backwards from n = 0, for which we have terminal condition presented in Eq. (2.15) enables us to estimate

the values Un
i,j,k for n = {1, ..., Nτ}.

A.5 Elements of the matrices

Here D1 is a sparse (Ns + 1)× (Ns + 1) matrix given by

D1 =









































Γ
n+ 1

3

0jk Σ
n+ 1

3

0jk Λ
n+ 1

3

0jk 0 .... .... .... .... 0

Θ
n+ 1

3

1jk Γ
n+ 1

3

1jk Σ
n+ 1

3

1jk 0 .... .... .... .... 0

Υ
n+ 1

3

2jk Θ
n+ 1

3

2jk Γ
n+ 1

3

2jk Σ
n+ 1

3

2jk .... .... .... .... 0

.... .... .... .... .... .... .... .... ....

0 .... Υ
n+ 1

3

i∗−1jk Θ
n+ 1

3

i∗−1jk Γ
n+ 1

3

i∗−1jk Σ
n+ 1

3

i∗−1jk .... .... 0

0 .... .... 0 Θ
n+ 1

3

i∗jk Γ
n+ 1

3

i∗jk Σ
n+ 1

3

i∗jk .... 0

.... .... .... .... .... .... .... .... ....

0 .... .... .... .... .... Θ
n+ 1

3

Ns−1jk Γ
n+ 1

3

Ns−1jk Σ
n+ 1

3

Ns−1jk

0 .... .... .... .... .... .... Θ
n+ 1

3

Nsjk
Γ
n+ 1

3

Nsjk









































,
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where

Γ
n+ 1

3

0jk =
19φ(τn+ 1

3
, s0, rk)

18∆s
+

1

∆τ
, Σ

n+ 1
3

0jk = −
20φ(τn+ 1

3
, s0, rk)

18∆s
, Λ

n+ 1
3

0jk =
φ(τn+ 1

3
, s0, rk)

18∆s
,

Θ
n+ 1

3

1jk =
φ(τn+ 1

3
, s1, rk)

∆s
−
ψ(τn+ 1

3
, s1, rk)

2

2(∆s)2
, Γ

n+ 1
3

1jk = −
φ(τn+ 1

3
, s1, rk)

∆s
+
ψ(τn+ 1

3
, s1, vj)

2

(∆s)2
+

1

∆τ
,

Σ
n+ 1

3

1jk = −
ψ(τn+ 1

3
, s1, vj)

2

2(∆s)2
, Υ

n+ 1
3

ijk = −
φ(τn+ 1

3
, si, rk)

2∆s
, Θ

n+ 1
3

ijk =
2φ(τn+ 1

3
, si, rk)

∆s
−
ψ(τn+ 1

3
, si, vj)

2

2(∆s)2
,

Γ
n+ 1

3

ijk = −
3φ(τn+ 1

3
, si, rk)

2∆s
+
ψ(τn+ 1

3
, si, vj)

2

(∆s)2
+

1

∆τ
, Σ

n+ 1
3

ijk = −
ψ(τn+ 1

3
, si, vj)

2

2(∆s)2
,

for i = {2, ..., i∗ − 1},

Θ
n+ 1

3

ijk =
φ(τn+ 1

3
, si, rk)

2∆s
−
ψ(τn+ 1

3
, si, vj)

2

2(∆s)2
, Γ

n+ 1
3

ijk =
ψ(τn+ 1

3
, si, vj)

2

(∆s)2
+

1

∆τ
,

Σ
n+ 1

3

ijk = −
φ(τn+ 1

3
, si, rk)

2∆s
−
ψ(τn+ 1

3
, si, vj)

2

2(∆s)2
,

for i = {i∗, ..., Ns − 1}, and

Θ
n+ 1

3

Nsjk
=
φ(τn+ 1

3
, sNs , rk)

∆s
, Γ

n+ 1
3

Nsjk
= −

φ(τn+ 1
3
, sNs , rk)

∆s
+

1

∆τ
.

The matrix D2 is a sparse (Nv + 1)× (Nv + 1) matrix given as

D2 =



































Γ
n+ 2

3

i0k Σ
n+ 2

3

i0k 0 .... .... .... .... .... 0

Θ
n+ 2

3

i1k Γ
n+ 2

3

i1k Σ
n+ 2

3

i1k 0 .... .... .... .... 0

.... .... .... .... .... .... .... .... ....

0 .... 0 Θ
n+ 2

3

ij∗−1k Γ
n+ 2

3

ij∗−1 Σ
n+ 2

3

ij∗−1k .... .... 0

0 .... .... Υ
n+ 2

3

ij∗k Θ
n+ 2

3

ij∗k Γ
n+ 2

3

ij∗k Σ
n+ 2

3

ij∗k .... 0

.... .... .... .... .... .... .... .... ....

0 .... .... .... .... Υ
n+ 2

3

iNv−1k Θ
n+ 2

3

iNv−1k Γ
n+ 2

3

iNv−1k Σ
n+ 2

3

iNv−1k

0 .... .... .... .... .... Υ
n+ 2

3

iNvk
Θ

n+ 2
3

iNvk
Γ
n+ 2

3

iNvk



































,

where

Γ
n+ 2

3

i0k =
ξv(τn+ 2

3
, v0)

∆v
+

1

∆τ
, Σ

n+ 2
3

i0k = −
ξv(τn+ 2

3
, v0)

∆v
,

Θ
n+ 2

3

ijk =
ξv(tn+ 2

3
, vj)

∆v
−
βv(tn+ 2

3
, vj)

2

2∆v2
, Γ

n+ 2
3

ijk =
βv(tn+ 2

3
, vj)

2

∆v2
+

1

∆τ
,

Σ
n+ 2

3

ijk = −
ξv(tn+ 2

3
, vj)

∆v
−
βv(tn+ 2

3
, vj)

2

2∆v2
,

for j = {1, ..., j∗ − 1},

Υ
n+ 2

3

ijk = −
ξv(tn+ 2

3
, vj)

2∆v
, Θ

n+ 2
3

ijk =
2ξv(tn+ 2

3
, vj)

∆v
−
βv(tn+ 2

3
, vj)

2

2∆v2
,

Γ
n+ 2

3

ijk = −
3ξv(tn+ 2

3
, vj)

2∆v
+
βv(tn+ 2

3
, vj)

2

∆v2
+

1

∆τ
, Σ

n+ 2
3

ijk = −
βv(tn+ 2

3
, vj)

2

2∆v2
,

for j = {j∗, ..., Nv − 1}, and

Υ
n+ 2

3

iNvk
= −

ξv(tn+ 2
3
, vNv )

2∆v
, Θ

n+ 2
3

iNvk
=

2ξv(tn+ 2
3
, vNv )

∆v
, Γ

n+ 2
3

iNv
= −

3ξv(tn+ 2
3
, vNv )

2∆v
+

1

∆τ
.
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The third matrix, D3, is a sparse (Nr + 1)× (Nr + 1) matrix given as

D3 =





























Γn+1
ij0 Σn+1

ij0 0 .... .... .... .... .... 0

Θn+1
ij1 Γn+1

ij1 Σn+1
ik1 0 .... .... .... .... 0

.... .... .... .... .... .... .... .... ....

0 .... 0 Θn+1
ijk∗−1 Γn+1

ijk∗−1 Σn+1
ijk∗−1 .... .... 0

0 .... .... Υn+1
ijk∗ Θn+1

ijk∗ Γn+1
ijk∗ Σn+1

ijk∗ .... 0

.... .... .... .... .... .... .... .... ....

0 .... .... .... .... Υn+1
ijNr−1 Θn+1

ijNr−1 Γn+1
ijNr−1 Σn+1

ijNr−1

0 .... .... .... .... .... Υn+1
ijNr

Θn+1
ijNr

Γn+1
ijNr





























,

where

Γn+1
ij0 =

ξr(τn+1, r0)

∆r
+

1

∆τ
, Σn+1

ij0 = −ξr(τn+1, r0)

∆r
,

Θn+1
ijk =

ξr(τn+1, rk)

∆r
− βr(τn+1, rk)

2

2∆r2
, Γn+1

ijk =
βr(τn+1, rk)

2

∆r2
+

1

∆τ
,

Σn+1
ijk = −ξr(tn+1, rk)

∆r
− βr(τn+1, rk)

2

2∆r2
,

for k = {1, ..., k∗ − 1},

Υn+1
ijk = −ξr(τn+1, rk)

2∆r
, Θn+1

ijk =
2ξr(τn+1, rk)

∆r
− βr(τn+1, vj)

2

2∆r2
,

Γn+1
ijk = −3ξr(τn+1, rk)

2∆r
+
βr(τn+1, rk)

2

∆r2
+

1

∆τ
, Σn+1

ijk = −βr(τn+1, rk)
2

2∆r2
,

for k = {k∗, ..., Nr − 1}, and

Υn+1
ijNr

= −ξr(τn+1, rNr )

2∆r
, Θn+1

ijNr
=

2ξr(τn+1, rNr )

∆r
, Γn+1

ijNr
= −3ξr(τn+1, rNr )

2∆r
+

1

∆τ
.
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