
 

 

 

 

 

 

 
 

ARC Centre of Excellence in Population Ageing 
Research 

 
 Working Paper 2017/10 

 
 
 
 
 
 

Modeling multi-state health transitions in China: A 
generalized linear model with time trends  
 
Katja Hanewald1, Han Li2 and Adam W.Shao3 

 
 
 
 
 
 
 

1University of New SouthWales, ARC Centre of Excellence in Population 
Ageing Research (CEPAR), Sydney NSW 2052, Australia;  
P: +61 (2) 9385 6174; E-mail: k.hanewald@unsw.edu.au. 
 
2[Corresponding author] University of New South Wales, ARC Centre of 
Excellence in Population Ageing Research (CEPAR), Sydney NSW 2052, 
Australia; P: +61 (2) 9385 5294; E-mail: han.li@unsw.edu.au. 
 
3University of New SouthWales, ARC Centre of Excellence in Population 
Ageing Research (CEPAR), Sydney NSW 2052, Australia; P: +61 (2) 9385 
6174; E-mail: wenqiang.shao@unsw.edu.au. 
 
This paper can be downloaded without charge from the ARC Centre of 
Excellence in Population Ageing Research Working Paper Series available at 
www.cepar.edu.au 
 

http://www.cepar.edu.au/


Modeling multi-state health transitions in China:
A generalized linear model with time trends
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Abstract

Rapid population aging in China has urged the need to understand health tran-
sitions of older Chinese to assist the development of social security programs and
financial products aimed at funding long-term care. In this paper, we develop
a new flexible approach to modeling health transitions in a multi-state Markov
model that allows for age effects, time trends and age-time interactions. The model
is implemented in the generalized linear modeling framework. We apply the model
to evaluate health transitions of Chinese elderly using individual-level panel data
from the Chinese Longitudinal Healthy Longevity Survey for the period 1998–
2012. Our results confirm that time trends and age-time interactions are important
factors explaining health transitions in addition to the more commonly used age
effects. We document that differences in disability and mortality rates continue to
persist between urban and rural older Chinese. We also compute life expectan-
cies and healthy life expectancies based on the proposed model as inputs for the
development of aged care and financial services for older Chinese.
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1 Introduction

As one of the most populous countries in the world, China is rapidly aging due to
improvements in life expectancy and low fertility rates in past decades. In 2015, one in
five older persons aged 65+ globally lived in China, while in 2050 one in four elderly–
over 370 million people–will be Chinese. China’s old age dependency ratio was 15% in
2015, but will rise to 50% by mid-century (United Nations, 2015). The need for health
care, aged care, and financial services for the elderly in China is already large and will
keep growing in the future.

Traditionally, older Chinese were cared for by family members, but the availability
of family caregivers is declining due to demographic changes, the weakening of tra-
ditional values, greater geographic mobility, and improved gender equality (see, e.g.,
Zhu, 2015; Lu et al., 2015). In China, the current social security programs for older peo-
ple provide basic medical insurance and a low pension income. However, they do not
cover the full cost of residential aged care facilities and also do not fund community-
based services (Yang et al., 2013). The resulting unmet aged care needs have a mea-
surable impact on the mortality risk of older Chinese (Zhen et al., 2015). Hence, there
is a need for social security programs specializing in the provision of aged care (Zhen
et al., 2015) and the development of private market solutions such as long-term care
insurance or specialized home equity release products.

These challenges motivate our study on health transitions of older Chinese. There is a
large and growing actuarial literature on multi-state heath transition models (see, e.g.
Renshaw and Haberman, 1995; Pitacco, 1995; Ferri and Olivieri, 2000; Rickayzen and
Walsh, 2002; Fong et al., 2015), but these studies focus on the mortality and morbidity
experience of developed countries such as the UK and US. As far as we know, there is a
lack of specific studies on China on this topic. Since the demographic changes in China
are happening at a very fast speed, it is important to consider time effects in health
transitions in order to develop more accurate projections. Only a few previous papers
have considered time effects in multi-state health transition models. Rickayzen and
Walsh (2002) included trend assumptions in their multi-state model of disability for
the UK based on trends observed in healthy life expectancy and their own judgment.
Majer et al. (2013) modeled health transition probabilities in the Netherlands based
on the Lee-Carter framework with stochastic time trends. Li et al. (2017) adopted a
multi-state model with latent factors which incorporates time trends and uncertainty
to model health transition intensities in the US.

We develop a generalized linear model that incorporates age effects, time trends and
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age-time interactions in the transition rates in a Markov model with three health states
(healthy, functionally disabled and dead). Compared with existing models, the model
developed here allows for greater flexibility in the model structure by including both
time trends and age-time interactions. Another strength of our approach is the ability
to tailor different functional forms for each transition intensity in different subpopula-
tions. We apply this new model to provide first evidence on the health transitions of
older Chinese males and females in urban and rural areas.

We use individual-level panel data from the Chinese Longitudinal Healthy Longevity
Survey (CLHLS) for ages 65–105 over the period 1998–2012. CLHLS is the largest lon-
gitudinal survey of the “oldest old” (aged 80+) internationally (Zeng, 2012). Mortality
and morbidity data in the CLHLS have been found to be of good quality (Zeng, 2012)
and have been used in many studies analyzing health patterns of older Chinese (e.g.,
Peng et al., 2010; Peng and Wu, 2015; Fong and Feng, 2016). With a sample size of over
128,000 exposure years we are able to estimate separate models for male and female
residents in both urban and rural areas. This distinction is important as large economic
and demographic differences continue to exist between urban and rural areas in China
(Wang and Yu, 2016). We classify individuals’ health status based on the Activities of
Daily Living (ADL) information collected by CLHLS. ADL limitations are widely used
internationally to measure an individual’s functional status and long-term care needs
for insurance purposes, including a recent long-term care insurance pilot program in
the city of Qingdao in Eastern China (Yang et al., 2016). Six basic ADLs are consid-
ered in our study including bathing, dressing, eating, using the toilet, continence and
transferring in and out of bed.

The empirical results confirm that age and time effects are important factors for model-
ing health transitions at higher ages. Many of the optimal models for the health transi-
tion rates of the different subpopulation also include age-time interactions which cap-
ture time trends that differ by age. Our results suggest that the recent improvements
in the mortality rates of older Chinese are largely driven by the decline in the mortality
rates for functionally disabled older persons rather than by the mortality rates of the
non-disabled population. Using the estimated health transition models, we also pro-
vide new estimates for life expectancies and healthy life expectancies at different ages
for 1998, 2011 and 2020.

The remainder of the paper is organized as follows. Section 2 introduces the new model
consisting of the three-state Markov process and the GLM framework. Section 3 de-
scribes the CLHLS data used in this study. Section 4 presents and discusses the results.
Section 5 concludes.
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2 A multi-state health transition model with time trends

2.1 A three-state time-inhomogeneous Markov process

Figure 1: Three-state Markov process.

Following previous literature (see, e.g., Olivieri and Pitacco, 2001; Rickayzen and Walsh,
2002; Fong et al., 2015; Shao et al., 2017), we assume that individuals’ health transitions
can be modeled as a multi-state Markov process, where the conditional probability
distribution of future states of the process (conditional on both past and present val-
ues) only depends on the state presently occupied and is independent of the process
history. We define a three-state Markov process as in Figure 1. The process has two
transient states, “N” (nondisabled) and “F” (functionally disabled), and one absorbing
state, “D” (dead). It allows for three health transitions1:

• σ: N→ F, the intensity to become functionally disabled.

• µ: N→ D, the mortality intensity for a healthy person.

• ν: F→ D, the mortality intensity for a disabled person.

We assume that each of the three transitions follows a time-inhomogeneous Markov
process, where the transition probability depends on the time at which the transition
takes place:

Pi,j(x, t, h) = Pr(S(x + h, t + h) = j|S(x, t) = i), (1)

αi,j(x, t) = lim
h→0+

Pi,j(x, t, h)/h, (2)

where x represents age, t represents time with h ≥ 0. S(x, t) denotes the stochastic
health status of an individual at age x and time t, and i, j ∈ {N, F, D}. Pi,j(x, t, h)
denotes the transition probability from state i at age x and time t to state j at age x + h

1In the CLHLS data, we observed very few recovery transitions from functionally disabled to nondis-
abled (only 4% of all health transitions are recoveries). Therefore, we do not consider recovery from
functionally disabled to healthy in this study due to its negligible impact on the main results.
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and time t + h. αi,j(x, t) denotes the corresponding transition intensity at age x and
time t.

2.2 Model specification

Following earlier works of Renshaw and Haberman (1995) and Fong et al. (2015), we
model the transition intensities using a GLM approach. Separate GLMs are estimated
for each of the three transition intensities σ, µ and ν. The models are specified by three
components: the link function, the linear predictor and the probability distribution.

Link function: We adopt a log link function g(·):

g(αi,j(x, t)) = ln(αi,j(x, t)) = ηx,t, (3)

where αi,j(x, t) are the respective transition intensities σx,t, µx,t or νx,t for age x at time
t. ηx,t is a linear predictor of regressors.

Linear predictor: As our primary interest is to explore time trends in health transitions,
we introduce time effects as additional covariates besides the age factors considered in
Fong et al. (2015) and allow for age-time interactions.2 The linear predictor is given by:

ηx,t = β0 + β1x + β2x2 + β3t + β4tx + β5tx2, (4)

where x represents age, t represents time and the β j are unknown coefficients that need
to be estimated. The model allows for some of the values of β j to be zero, allowing for
flexibility in the functional form.

We include age factors up to the quadratic effect in agreement with the findings of
Fong et al. (2015). This is also in line with common practice in mortality modeling (see,
e.g., Cairns et al., 2009). Since the CLHLS data only allow us to compute at most five
transition intensities per individual, we focus on a linear time trend in this study. The
inclusion of age-time interaction effects has been an important feature in recent devel-
opments in mortality modeling (Cairns et al., 2006; Plat, 2009; Li et al., 2016). It ensures
that the improvement in mortality has a non-trivial correlation structure across differ-
ent age groups. Moreover, several studies have recognized the benefits of including
quadratic age-time effects for model fitting and forecasting (Cairns et al., 2009; Dowd
et al., 2010). Therefore, to build on recent developments in mortality and health tran-

2Renshaw and Haberman (1995) included sickness duration as a covariate in their model. We do
not include sickness duration because i) sickness onset is not reported in the CLHLS dataset and ii) the
survey intervals are too widely spaced to compute sickness duration (see Li et al., 2017, for a discussion).
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sition modeling, and to keep the model parsimonious and interpretable, we consider
the aforementioned age, time and age-time factors in this study.

Probability distribution: Assuming that the transition intensity is constant for each
one-year age group in a given time interval, the number of health transitions follows
an independent Poisson distribution for each interval. For illustrative purpose, we use
the mortality rate µx,t from the healthy state as an example in the following. Let nx,t be
the number of transitions from state N to D at age x and time t,

nx,t ∼ Poisson(eH
x,t µx,t) ∀ x, t, (5)

where eH
x,t is the central exposure to risk in healthy state at age x and time t.

The Poisson assumption implies that the dispersion parameter equals one, which means
that the mean and variance of transition counts should be the same. However, several
recent mortality studies have found that death data has an “overdispersed” feature in
many countries (see, e.g., Cairns et al., 2009; Li et al., 2015), implying that the variance
of the number of deaths is much larger than the mean. Therefore, we test the disper-
sion parameter in each of the transition counts before estimating the GLMs. Only for
cases where the dispersion parameter is significantly different from one, we relax the
restriction on the value of the dispersion parameter and estimate this parameter based
on the underlying data.3

2.3 Estimation and model selection

Maximum likelihood estimation is used to obtain estimates of the proposed GLM mod-
els. We define Φ as the parameter set. Using the mortality rates of healthy individuals
again as an example, the log-likelihood function is given by:

l(Φ; n, e) = ∑
x

∑
t

{
nx,tln[eH

x,tµx,t(Φ)]− eH
x,tµx,t(Φ)− ln(nx,t!)

}
. (6)

We identify the optimal model specification for each transition intensity by comparing
the Bayesian information criterion (BIC) for all possible combinations of the six terms
in Equation (4). We also provide the results of a stepwise comparison of several nested
model variants based on the BIC in Section 4.2. We choose the BIC for model selection
because it is widely used in statistics and is proven to be consistent (Schwarz, 1978).

3Detailed results for the dispersion analysis are available upon request.
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The BIC penalizes the number of parameter estimated in the model as follows:

BIC = −2 l(Φ̂) + k ln(N), (7)

where l(Φ̂) is the log-likelihood based on the MLE estimators, N represents total num-
ber of observations and k is the number of parameters in the model. The model with
the smallest BIC value is selected as the preferred model.

3 Data

3.1 CLHLS survey

We use longitudinal data from the Chinese Longitudinal Healthy Longevity Survey
(CLHLS), which provides information on the health status and quality of life of the
elderly in 22 provinces of China over the period 1998 to 2011. The survey contains de-
tailed information on health, socioeconomic characteristics, family, lifestyle, and other
demographic variables. It has been conducted by the Center for Healthy Aging and
Family Studies (CHAFS) at the National School of Development at Peking University.

The baseline survey was carried out in 1998 in a randomly selected half of the counties
and cities in 22 provinces of China. The survey areas contained about 85% of China’s
total population in 1998. The data was collected through face-to-face home-based in-
terviews and basic physical capacity tests. The survey team tried to interview all cen-
tenarians who agreed to participate in the study in the sample counties and cities4.
For each centenarian interviewee, one octogenarian (aged 80–89) living nearby, one
nearby nonagenarian (aged 90–99), and one nearby younger elder aged 65–79 of pre-
designated age and sex were also interviewed. Follow-up surveys with replacement
for deceased elders were conducted in 2000, 2002, 2005, 2008, and 2011.5 In 2002, a
sub-sample of adult children of survey participants was included in the survey. More
details about the survey design can be found, for example, in Yi et al. (2001) and Zeng
(2012).

The sample size of CLHLS is sufficiently large even at higher ages and allows us to es-
timate models using one-year age groups for the age range 65–105. We consider males
and females separately and distinguish between urban and rural residency, which is
important in the context of China. We use residency status as reported in CLHLS: ur-

4The interview refusal rate was very low: only about 2% of centenarians who were not too sick to
participate with proxy assistance refused to participate (Zeng, 2012).

5In some waves, a small proportion of the data was collected in the following calendar year. We
account for the exact interview date when computing the central exposure to risk as described below.
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ban (city and town) and rural. About 5% of the sample lives in a nursing home which
is consistent with the low number of nursing homes reported for China (see, e.g., Lu
et al., 2017).

In this study, information on ADL limitations is used as a measure of health status.
Six ADL items were consistently evaluated in all waves of CLHLS: bathing, dressing,
eating, using the toilet, continence, and transferring in and out of bed. Individuals
reported their ability to perform these activities in three categories (1 = do not need
help, 2 = need partial assistance, 3 = need full assistance). We classify an individual as
able to perform an ADL only if she/he does not need help. We define individuals as
functionally disabled if they have difficulty with two or more (i.e., 2+) ADLs, which is
consistent with the main analysis presented in Fong et al. (2015) based on data from the
US Health and Retirement Study. In addition, this disability definition is in line with
the trigger of benefit payments for many existing long-term care insurance policies in
the US market.

3.2 Descriptive statistics

We analyze health transitions between waves of data collection. To fully utilize the
available information, we use an unbalanced panel design which includes all individ-
uals with at least two consecutive observations. Every individual can have up to five
health transitions between the six CLHLS waves 1998, 2000, 2002, 2005, 2008 and 2011.
The numbers of transition counts are given in Table 1. We observe in total 27,659 health
transitions, of which 16% are disability transitions, 59% are deaths of healthy individ-
uals and 26% are deaths of disabled individuals.

Table 1: Number of transition counts.

σ: N→ F µ: N→ D ν: F→ D
Males Females Males Females Males Females

Time Urban Rural Urban Rural Urban Rural Urban Rural Urban Rural Urban Rural

1998 - 2000 99 153 175 292 277 604 362 793 141 240 284 649
2000 - 2002 191 131 376 256 572 416 642 520 202 143 498 350
2002 - 2005 168 134 257 278 720 1,020 860 1,333 248 275 608 728
2005 - 2008 105 109 193 207 686 1,013 824 1,324 196 180 463 537
2008 - 2011 214 229 306 443 620 1,229 757 1,682 145 192 368 642
Total 777 756 1,307 1,476 2,875 4,282 3,445 5,652 932 1,030 2,221 2,906

To calculate the central exposure to risk of the sample population in both healthy and
functionally disabled states, we use the exact interview, birth and death date from the
survey or the 15th of the reported month in case the exact day was missing. We assume
that disability happened at the mid-point between survey waves. Table 2 gives the
number of exposure years. The total number of exposure years is 128,206. The sample
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Table 2: Number of exposure years.

State N State F
Males Females Males Females

Time Urban Rural Urban Rural Urban Rural Urban Rural Total

1998 - 2000 1,763 2937 2,189 3,971 369 519 797 1,537 14,082
2000 - 2002 3,240 1,997 3,652 2,568 571 347 1,258 819 14,451
2002 - 2005 5,570 7,516 6,474 8,801 793 742 1,661 1,926 33,482
2005 - 2008 5,215 7,552 5,917 9,182 614 544 1,385 1,573 31,980
2008 - 2011 4,946 8,627 5,609 10,249 662 762 1,379 1,979 34,211
Total 20,733 28,628 23,840 34,770 3,008 2,914 6,480 7,834 128,206

split is 42%: 58% between urban and rural areas and 43%: 57% between males and
females, which allows us to estimate separate models for these four populations.

We calculate crude transition intensities as the number of health transitions divided by
the corresponding central exposure to risk for a given age and time. Figures 2, 3 and
4 show the crude transition intensities on a log scale. Blank areas in the graphs indi-
cate missing data for younger age groups in the first waves 1998 and 2000 of CLHLS.
Darker colors indicate lower rates. There are age patterns in most of the graphs and
some also show time trends. In particular, the mortality rates ν from the functionally
disabled state “F” decrease over time (see Figure 4). The model estimates presented in
the following section will show which age and time factors are statistically significant
drivers of the different health transitions.

For the model estimation, we define the year 1998 as t = 0 and set the data points
in the model to t = (1, 3, 5.5, 8.5, 11.5) to reflect the fact that the transition intensities
refer to the middle of the time intervals between survey waves and to account for the
different interval lengths between survey waves. We define the age variable as x = age
- 65, with a range of [0, 40]. These definitions ensure that both covariates have similar
magnitudes.

4 Empirical results

4.1 Optimal models: estimation results

We estimated the generalized linear model (GLM) described in Section 2.2 separately
for the three transition intensities σ, µ, and ν for each subpopulation in our sample.
Table 3 gives the estimation results of the optimal linear predictor for each case based
on a comparison of all possible model variants as described in Section 2.2. The selected
optimal models all have highly significant parameters and the results are interpretable.
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Figure 2: Crude log disability intensities (σ: N→ F)
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(b) Males, rural
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(c) Female, urban
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(d) Females, rural
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Figure 3: Crude log mortality rates for healthy individuals (µ: N→ D)
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Figure 4: Crude log mortality rates for disabled individuals (ν: F→ D)
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(b) Males, rural
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The selected models for the disability rate σx,t in each subpopulation all include a pos-
itive linear and a negative quadratic age terms, implying that disability rates increase
with age, but at a decreasing rate. Moreover, the negative age-time interaction effects
in all four subpopulations except for urban males show that there has been an overall
improvement in disability rates over time. It is also shows that the rate of improvement
in disability rates over time differs across age groups.

For all subpopulations, the mortality rates for healthy individuals µx,t increase with
age but again there is a deceleration for higher age groups. We note that there are no
significant time effects or age-time interaction effects in any of the four subpopulations.
This agrees with the fact that the plots of µx,t show fairly stables pattern throughout
the sample period (see Figure 3).

The models for the mortality rates of the disabled νx,t all include positive linear age ef-
fects and negative time/age-time effects. For urban and rural males and urban females,
a linear negative mortality trend is found for all age groups. The speed of mortality
decline over time is similar in these three subpopulations. The model for rural females
includes a negative quadratic age-time effect, indicating that mortality decline for this
subpopulation is more rapid for older age groups.
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Overall, these results show that both age and time effects are important factors explain-
ing patterns in health transitions at higher ages in China. In addition, several of the
models rely on age-time interactions which capture time trends that differ by age. Our
results also suggest that the improvements in mortality rates of older Chinese aged
65+ are largely driven by the decline of mortality rates of functionally disabled elderly,
rather than by the mortality rates of healthy individuals.

Figures 5, 6 and 7 in the Appendix show the residuals for the twelve selected mod-
els, computed as the difference between the crude and estimated transition rates. The
errors fluctuate around zero and show no systematic patterns. We conclude that the
selected models effectively capture age and time patterns in the data.

4.2 Stepwise model selection

The previous section discussed the optimal model specifications for each transition
intensity and each subpopulation that were identified by comparing all possible model
variants. It is interesting to compare these results with those from a stepwise model
selection process where additional terms are added in each step. Table 4 gives the BIC
values for six nested model variants and compares these with the BIC values for the
optimal models identified in Table 3.

We note that in six of the twelve cases the stepwise model selection identifies models
with higher BIC values (representing a worse model fit) than the optimal models se-
lected in Section 4.1. This is the case for all four models for the mortality rate from
functionally disabled state νx,t, and for two of the models for the disability rate σx,t.
The limitations of stepwise model selection algorithm are widely recognized in statis-
tics (Hurvich and Tsai, 1990; Grafen et al., 2002; Whittingham et al., 2006). One of the
weaknesses of this method is the fact that model selection is very sensitive to factors
such as the order of parameter entry and whether we choose to use forward selection
algorithm or backward elimination algorithm (Derksen and Keselman, 1992). There-
fore, to avoid these limitations, in this paper we have considered all possible model
designs for the three health transition models. The preferred models turn out to be
parsimonious and have good fitting performances.

Nevertheless, the detailed analysis of the stepwise model comparison confirms that
including time effects and age-time interaction terms improves the model fit for most
health transition models except for the mortality rates µx,t of the non-disabled.
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4.3 Life expectancy and healthy life expectancy

We use the optimal models identified in Section 4.1 to compute estimates for life ex-
pectancy and healthy life expectancy. Table 5 shows the estimated life expectancies
at age 65 and 75 conditional on the initial health status, where “healthy” is defined
as having at most one ADL limitation (see Section 3.1). We provide estimates for the
first and last time point of the investigation period (1998 and 2011) and out-of-sample
forecasts for 2020.

Table 5: Life expectancy conditional on health status at age 65 and 75.

Male Female
Urban Rural Urban Rural

Year Healthy Disabled Healthy Disabled Healthy Disabled Healthy Disabled

Life expectancy at 65
1998 16.18 7.29 15.75 6.81 18.24 9.18 17.45 9.17
2011 16.52 9.51 16.05 9.08 18.80 11.60 17.70 9.29
2020 16.81 11.33 16.25 10.97 19.10 13.52 17.83 9.39

Life expectancy at 75
1998 9.81 5.03 9.19 4.65 10.98 6.17 10.66 6.16
2011 10.10 6.69 9.45 6.33 11.54 7.98 10.93 6.41
2020 10.35 8.08 9.62 7.76 11.83 9.45 11.06 6.61

The estimated life expectancies vary in plausible ways: life expectancies of urban res-
idents are higher than those of rural residents, females have higher life expectancies
than males, and healthy individuals have higher life expectancies than disabled ones.
Our models include time trends in three of the four models for disability rate and in
all models for the disabled mortality rates. These trends are reflected in the life ex-
pectancies which increase over time for all population subgroups and show the largest
improvements for disabled individuals. When comparing the computed life expectan-
cies in Table 5 with several related studies, we find consistencies in the results. For
example, Luo et al. (2016) report for the age group 65–69 in 2011 a remaining life ex-
pectancy of 15.0 years for males and 18.7 years for females (Luo et al., 2016, Table 2).

Table 6: Healthy life expectancy at age 65 and 75.

Male Female
Year Urban Rural Urban Rural

Healthy life expectancy at 65
1998 15.16 15.03 16.85 16.26
2011 15.16 15.17 17.36 16.68
2020 15.16 15.25 17.66 16.93

Healthy life expectancy at 75
1998 8.96 8.58 9.64 9.56
2011 8.96 8.76 10.21 10.04
2020 8.96 8.86 10.54 10.31
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Table 6 gives the estimated healthy life expectancies at age 65 and 75.6 Female ur-
ban residents have the highest healthy life expectancy and male rural residents have
the lowest healthy life expectancy. Healthy life expectancies of females improve faster
over time than those of males. We find that the ratios of healthy life expectancy to
life expectancy are quite stable over the period 1998–2020, indicating a dynamic equi-
librium where both life expectancy and healthy life expectancy shift to the right – a
finding which agrees with the results of several related studies on China (see, e.g., Liu
et al., 2009; Guo, 2017).

Overall, our results show persistent health differences between urban and rural China.
For life expectancy, we find that the existing urban-rural gaps increase over time for
healthy males and for healthy and disabled females. For disabled males, the gap seems
to be slowly decreasing (see Table 5). For healthy life expectancy, our results suggest
convergence between urban and rural males, but divergence for females.

5 Conclusions

In this article, we develop a new flexible approach to modeling health transitions at
higher ages based on the GLM framework. Our model extends existing modeling ap-
proaches by allowing for time trends and age-time interactions in the linear predictor
in addition to the commonly used age effects. We apply the model to health transitions
of older Chinese aged 65–105 and consider males and females in urban and rural areas
separately.

We identify important factors explaining the health transition intensities σ, µ and ν

in each subpopulation using the BIC model selection algorithm. Different functional
forms are selected for the different health transitions in each subpopulation. The op-
timal models all include age effects which have been included in previous studies in-
cluding Renshaw and Haberman (1995) and Fong et al. (2015). The models for the
disability rates and the disabled mortality rates also include time trends and age-time
interactions, which confirms that these factors should be considered when modeling
health transitions at higher ages.

Using the optimal models for each group, we compute estimates of life expectancies
and healthy life expectancies. The results are largely consistent with the results of
previous studies on health expectancies in China (Luo et al., 2016; Guo, 2017; Liu et al.,
2009). We also confirm that health differences continue to persist between urban and

6We only consider healthy life expectancy for individuals who are initially healthy, as the healthy life
expectancy for disabled individuals will simply be zero based on our model specification.

15



rural China, which agrees with recent findings by Wang and Yu (2016). In addition, our
study adds new findings on the life expectancy and healthy life expectancy for urban
and rural populations over a longer time horizon, and conditioning on initially health
status.

We developed this model as an input for further research on population aging and
retirement financial planning in China. Our model can be used, for example, to esti-
mate the demand for long-term care insurances based on the disability rate and life
expectancy of disabled individuals produced by the model. The outputs of the model
can also be used to assist the design and pricing of new retirement financial products
for the Chinese market including reverse mortgages and other home equity release
products (see, e.g., Alai et al., 2014; Shao et al., 2015). Moreover, in this paper we have
used an ADL limitation-based definition of disability. The approach developed here
can be easily adjusted to capture other dimensions of health such as chronic diseases
or cognitive impairment.
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Appendix

Figure 5: Estimated errors for the disability rates (σ: N→ F)
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Note: The model estimates are in Table 3.
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Figure 6: Estimated errors for the mortality rates of healthy individuals (µ: N→ D)

(a) Males, urban

98-00 00-02 02-05 05-08 08-11

Time

65 

70 

75 

80 

85 

90 

95 

100

105

A
g

e

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(b) Males, rural

98-00 00-02 02-05 05-08 08-11

Time

65 

70 

75 

80 

85 

90 

95 

100

105

A
g

e

-0.1

-0.05

0

0.05

0.1

0.15

(c) Females, urban

98-00 00-02 02-05 05-08 08-11

Time

65 

70 

75 

80 

85 

90 

95 

100

105

A
g

e

-0.1

-0.05

0

0.05

0.1

(d) Females, rural

98-00 00-02 02-05 05-08 08-11

Time

65 

70 

75 

80 

85 

90 

95 

100

105

A
g

e

-0.1

-0.05

0

0.05

0.1

Note: The model estimates are in Table 3.

Figure 7: Estimated errors for the mortality rates of disabled individuals (ν: F→ D)
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