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Abstract

Accurate old-age mortality projections for subnational areas are important for assessing health
outcomes and valuing pension liabilities. However, subnational mortality data often face small
sample sizes at older ages. In some countries, the underreporting of deaths and population num-
bers poses additional problems. We propose a new Bayesian framework for old-age mortality
that allows for death underreporting by introducing a reporting probability, which is defined as
the ratio of reported deaths to real deaths and uses informative priors derived from demographic
death distribution methods. We show that the proposed modeling framework works well for
province-level old-age mortality data (ages 60-99) in China over 1982-2010. Compared to a
more conventional framework that assumes the reported data are accurate and uses reported
mortality data directly, the proposed framework provides a better fit, with a lower deviance
information criterion. The proposed framework generates a reasonable mortality curvature and
coherent forecasts for subpopulations with sparse or incomplete mortality data.

Keywords: Old-age mortality, Subnational modeling, Bayesian framework, Death
underreporting

JEL: G22, J11

1. Introduction

Mortality improvements at older ages translate into longer life expectancy and population
aging worldwide (Gavrilov et al., 2017). Therefore, accurate mortality projections for older ages
are important for actuaries and the policymakers concerned with the design and reforms of pen-
sion systems. However, within one country, the lifespans often have large regional inequalities

and high variabilities at older ages (e.g., Permanyer and Scholl, 2019). As such, decisions based

*Corresponding author
Email address: xiaojun_wang@ruc.edu.cn (Xiaojun Wang)



on national mortality forecasts will overlook subnational heterogeneity and potentially lead to
overly simplistic conclusions on longevity (Permanyer and Scholl, 2019). Moreover, accurate
subnational mortality projections for older ages are particularly important for countries with
decentralized pension funds, such as the United States, where most pension plans are sponsored
by local governments (Gale and Krupkin, 2016).

One challenge to modeling the mortality at older ages is the relatively poor data quality.
Even in developed countries where the vital registration is high quality (Cairns et al., 2016;
Peralta et al., 2020), there are potential errors and significant anomalies in the number of
exposure-to-risk (Cairns et al., 2016). Additionally, as the sample size of older ages is smaller
than that of middle ages, especially in subnational areas, the registered mortality data for older
ages can be subject to volatility, incomplete death reporting, and misreporting, having sparse or
no observations in the death counts at advanced ages (Leknes and Lgkken, 2020; Schmertmann
and Gonzaga, 2018). Thus, for older ages, the registered mortality data are often inaccurate
in developed countries, leading to spurious patterns of mortality deceleration and plateaus
(Gavrilov and Gavrilova, 2019a, 2019b). In countries without reliable vital registration records,
censuses are the main source of mortality data. However, census mortality data can also suffer
from incomplete death reporting, which leads to data unreliability (Hill, 2009; Peralta et al.,
2020). Therefore, for both developed and developing countries, it is important to account for
underreported data and small sample sizes when projecting future subnational mortality rates
for older ages.

Death underreporting is also a problem in the reports of the Coronavirus disease (COVID-
19) and, thus, requires new modeling solutions. Due to the COVID-19 outbreak, medical
resources are limited in many countries, and the deaths related to COVID-19 reported by
hospitals are likely to be underreported or accounted as other causes of death (Jagodnik et al.,
2020). These issues provide additional motivation for our research.

We propose to use a Bayesian framework to study the impact of underreported deaths on the
modeling of old-age mortality. The proposed framework introduces the reporting probability
to account for underreported deaths, defined as the ratio of reported deaths to real deaths.
The reporting probability uses informative priors derived from demographic death distribution
methods, while the proposed mortality model in the framework is based on the Cairns—Blake—
Dowd (CBD) model family (Cairns et al., 2006, 2009) with normalized age function. Our results
show that death underreporting cannot be overlooked because it affects both the model fit and
mortality forecasts.

We use a death distribution method called the generalized growth balance method to esti-



mate the priors for the reporting probability. Death distribution methods are widely used in the
demographic literature to evaluate the coverage of registered deaths in census data (e.g., Hill,
2004, 2009; Queiroz et al., 2017; Peralta et al., 2020). Three main death distribution methods
are commonly employed: the generalized growth balance (GGB) method, the synthetic extinct
generations (SEG) method, and the combined GGB-SEG method (Hill, 2009). We use the
generalized growth balance method in this paper. Under this method, data from a baseline
census are used to estimate the coverage of deaths in another census.

Building on an emerging literature, we use a Bayesian framework to cope with inaccurate
mortality data. Cairns et al. (2016) study the errors in exposures and propose a model in a
Bayesian framework to quantify the errors in exposures for England and Wales using data from
the Office of National Statistics (ONS). Alexander et al. (2017) emphasize the advantage of
the Bayesian framework in dealing with missing data and use it to estimate the subnational
mortality in the United States and France. Schmertmann and Gonzaga (2018) combine death
distribution methods with the Bayesian framework in mortality modeling to analyze Brazil
subnational mortality in 2010.

The mortality model in our framework is based on the CBD family of mortality models
with normalized age function. The CBD family of mortality models is designed specifically for
post-age-60 (Cairns et al., 2006, 2009), being recently extended to a multi-population setting
by Li et al. (2015) and Li and Liu (2019) with common factors for males and females using
high-quality mortality data for developed countries. The CBD family uses period effects and
a parametric age function to project the mortality for any age, even outside the age range of
the sample data (Dowd and Blake, 2019). Therefore, the CBD family is useful to model the
mortality at advanced ages when data quality is poor. Although we use a model variant of
the CBD family to study old-age mortality, our proposed underreporting modeling framework
is not constrained to one specific mortality model, and the CBD-type model we use could be
replaced by any other alternative model form.

We apply the framework to the provincial mortality in China for the age range 60-99 over
1982-2010. Previous demographic research shows that Chinese population data are of good
quality (e.g., Banister and Hill, 2004; Coale and Li, 1991), whereas census deaths in China
suffer from underreporting (e.g., Wang, 2003; Wang and Ge, 2013). We model the unobserved
real mortality rates and the observed reported mortality rates together and then compare the
impact of the underreported deaths on the modeling of old-age mortality. This relatively new
dataset for China has only been used by Lu et al. (2019), who developed Bayesian hierarchical

mortality models for all ages, without underreporting.



Compared with previous studies, such as Li and Liu (2019) and Schmertmann and Gon-
zaga (2018), our framework considers the problem of inaccurate mortality data and produces
reasonable projections. Compared with a version of the model without underreporting, which
assumes the data are accurate and models the registered mortality directly, the proposed model
has better performance, with a lower value of the deviance information criterion (DIC), and
produces more reasonable mortality curves despite the volatile data. The model also performs
well in projections and generates coherent forecasts.

We contribute two main aspects to the literature. First, we consider the reporting proba-
bility in mortality modeling, which is useful to countries with unreliable mortality datasets. As
mortality data at advanced ages have sparse observations, which are potentially underreported,
our study provides a new solution to modeling advanced-age mortality. Second, our framework
yields a novel coherent model to estimate and forecast subnational mortality. The model works
well for sub-populations, where mortality rates have substantial variations in historical levels
and trends.

Our study shows that there can be important differences in the estimated and projected mor-
tality results with and without accounting for underreporting. Problematic mortality forecasts
and conclusions can be derived if underreporting is ignored, which can have severe consequences
for the pension system and insurance companies. Hence, further studies on mortality modeling
should account for incomplete reporting, where the reporting probability can also be useful in
cause-of-death mortality modeling. Moreover, as the reported deaths due to COVID-19 are
likely to be underreported, researchers should analyze the mortality due to COVID-19 with
caution. While we do not explore the application of our methods to the modeling of COVID-19
mortality in this paper, our proposed framework offers a possible approach for accounting the
underreporting of COVID-19 deaths.

The remainder of the paper is structured as follows. Section 2 introduces the proposed
model. Section 3 describes the mortality database. Section 4 presents and compares the fitting
results of the proposed model with a similar model without underreporting. Section 5 presents
the forecasting performance of the proposed model and the model without underreporting.

Section 6 provides conclusions and ideas for future research.

2. Model

2.1. Model summary
We propose a new mortality model under a Bayesian framework to estimate and forecast old-

age mortality rates at the subnational level. The model explicitly accounts for underreporting.
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The statistical approach is summarized in Figure 1.

Reported deaths

i . i i i
R, ~ Poisson(E,,-m, -7, )

=

Reported responses } Real deaths
R ~ Binomial(D, ) ‘ D;, ~ Poisson(m,, - E, )
Demographic estimates Subnational mortality
by DDM | log(m ) ~ /" (xy)
Priors for 7., ~ Beta National mortality

log(m, ) ~ f(xy)

Death reporting
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parameters 0,

|

Individual parameters M2
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|

Sequential parameters
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|

Future parameters
Random walk process

Future mortality
log(m. ;)
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Figure 1. Proposed framework

The real number of age-specific deaths, D: ,, is defined as the unobserved real number of

vt
deaths at age x in year t for sub-population ¢, while the reported number of deaths, Rﬁc7t, is
defined as the observed number from census or registration data. The reported deaths follow a
Poisson distribution with the mean equal to the product of the observed age-specific exposures

Ei

x,t)

the mortality rates m;,t, and the reporting probabilities 7r;7t. Additionally, the reported
deaths follow a Binomial distribution with the “number of experiments” given by the real deaths
and the “success probability” by the reporting probability. The reporting probability is modeled
using information estimated by death distribution methods as priors for a beta distribution.

Under the proposed framework, denoted as M1 in Figure 1, the real deaths follow a Poisson

distribution of the exposures and unobserved real mortality rates. The real mortality is modeled



using a parametric model that has common and individual parameters for subnational areas.
The initial values of the common parameters use prior information, estimated by the national
mortality of the reference year (i.e., the year with the best-quality data). The initial values of
the individual parameters follow normal distributions. The subsequent and future parameters
are modeled using a random walk process. The future mortality rates are forecasted based on
the parameter forecasts.

To show the impact of the reporting probability on mortality estimation and projection, we
compare M1 with a version of the framework without the reporting probability, denoted as M2
in Figure 1. Under M2, the reported data are assumed to be accurate and the reported deaths

are used as real deaths (i.e., R, , = D) to model mortality.

2.2. Detailed model description

We adopt a Bayesian framework, where the real number of deaths, D! ,, is assumed to be

x,t)

conditionally independent and follow a Poisson distribution:

D? ;™ Poisson(E;,t . mi,t)7 (1)

z,

where E;’t is the number of age-specific exposures for sub-population 7 and m;t the central
death rate for people aged x at year t in sub-population .

To account for incomplete death reporting, we follow an approach similar to that of Schmert-
mann and Gonzaga (2018) and introduce an age-specific reporting probability, W;’“ for people
aged x at year t in sub-population :. We use death distribution methods to estimate the priors
for Wi’t. The reported number of deaths, R ,, is modeled independently for each age and year

x,t?

from a binomial distribution:
R., ~ Binomial(D. ,, . ,). (2)

The age-specific reporting probability, W;’t, is modeled independently for each age and year

from a beta distribution, which is a conjugated prior for the binomial distribution:
ﬂ.aic,t ~ Beta(Kt@, Kt[l — ¢t])7 (3)

where K; and ¢; are the priori shape and scale parameters of the beta distribution, computed
by the estimates of death distribution methods described in Section 3. The mean and variance
of the estimates derived by death distribution methods are denoted as p; and s?, respectively.

The shape and scale parameters are respectively computed as ¢, = p; and K; = @ -1

t

(Glen and Leemis, 2017; Schmertmann and Gonzaga, 2018).



Schmertmann and Gonzaga (2018) prove that the marginal distribution of the joint Pois-
son and binomial process has a Poisson likelihood. This means R;yt still follows a Poisson
distribution:

R., ~ Poisson(E.,-m., - 7.,). (4)

x,t x,t

As the CBD model family performs well in advanced-age mortality modeling when data
quality is not optimal, we propose a general model form based on the CBD family to model
the subnational mortality m;t However, we note that the proposed underreporting modeling
framework is independent of the specification of the model for mévt and the CBD-type model
could be replaced by other alternative model. For example, instead of using the CBD approach
discussed here, we could overlay the subnational Bayesian approach presented by Alexander et
al. (2017) or any other appropriate method for modeling subnational mortality at older ages.

To avoid possible numerical problems caused by the different scales of age/period terms
(Hunt and Blake, 2020), we use the normalized age functions in our specification of the mortality

for the subnational populations:
log(m;’t) = a 2% + by + o+ glay + hi + e;’t, (5)

where mfgvt is the central mortality rate at age = in year t ( t = ty,ts, ..., t7, where tp is the last

year in the sample range) for sub-population i. In Equation (5), xy = xf;fm € [0,1] is the
normalized age function, with x,,;, denoting the minimum age in the sample range; a;, b;, and
¢; are the common parameters among all sub-populations; g and h! are individual parameters
for sub-population i; and €, , is a random error drawn from a normal distribution, N(0,0?).

We use a random walk process to model the time-dependent parameters in m;t. To obtain
the estimation and projection in one stage, we draw the initial values of the parameters (¢t = ;)
from normal distributions.

We assume that there is a “best year” of mortality data, where underreporting is lowest, and
reporting is highest compared among all data available. We denote this year as the reference
year. In practice, the reference year can be chosen either based on the information on reporting
quality from literature or from the estimates of the death distribution methods with the highest
coverage. In this paper, we take the first approach and estimate the national mortality data
in the reference year. The estimated information of the national mortality is used as priors for
the initial values of the common parameters. Thus, a;, b;, and ¢; are respectively modeled from

the following informative priors:

Aty ~ N(/’Lm 02>7 bt1 ~ N(,U/lno-g)? Ct; ~ N(Mm Ug)a (6)



where fi,, iy, and g, are the parameters computed by fitting the national mortality data of the
reference year.
The initial values of the individual parameters are modeled from the following non-informative
priors:
i ~ N(0,05:), by, ~ N(0,03), (7)

2 2 2
@ Ohis O¢

o2 ~ IG(1,0.01).

where o are the variances from inverse gamma (IG) distributions, for example,

The subsequent values of parameters at time t = to, ..., t7 are modeled by a random walk

process:
ag, ~ N(ag, |+ Ap-da, Ay, - 02), (8)
btm ~ N<btm71 + A dy, Ay - U?b)’ (9)
Ctpy, ™ N(Ctm_1 + Am . dc, Am . 0620)7 (10)
gzm ~ N(gzm_l + Am ' d:(Lp Am ' O-e2gi>7 (11)
him ~ N(himfl + Am ’ ;‘N Am ’ U?hi>’ (12)

where A,,, = t,, — t,,_1 denotes the year gap between times t,, and ¢,,_1 (m = 1,2,...,T). That
is, our model allows for data to be collected at irregular time intervals (rather than annually).

Variances 02, ..., 0%, are independently modeled from IG(1,0.01). The drifts d,, ..., d, are from

ear

non-informative priors:
do ~ N(0,07),dy ~ N(0,03),d. ~ N(0,03),d; ~ N(0,07 ),dj, ~ N(0,07), (13)

where the variances o ,...,03 are from IG(1,0.01). The drifts d and dj, are modeled from
the same prior distributions, N (0, oﬁg) and N (0, O’th), to pool information among provinces.

The future parameters are also forecasted by a random walk process. For example, a4, is
forecasted as:

atT+n = atT+n—l + da + Ca7 (14)

where n is the number of years ahead to forecast and (, is the random error drawn from
the posterior normal distribution N(0,0Z,), with o7, = 02,. Other parameters are forecasted
similarly to a;, 4.

The simulated trajectories of the future mortality rates in year tr 4+ n are then obtained by:

log<m§:,tT+n) = a’tTJrnx?V + th+an + Ctr+n + ngJran + hiTJrn' (15)



3. Data

We use province-level census data from four censuses conducted in China in 1982, 1990,
2000, and 2010 (t = tq,ts, 13,14, respectively). The data contain the population and death
counts by gender and age for every available province. Except for the census data in 1990,
which have 90+ as the open-ended age in the death data for all provinces, the other censuses
have deaths and population data up to age 100+ for most provinces. As previously mentioned,
this underexplored dataset has only been used by Lu et al. (2019), who compiled it based on
data from the archive of the National Bureau of Statistics of China.

While the quality of Chinese mortality data is sometimes questioned, previous studies show
that population data from China are of reasonable quality for adult ages (e.g., Banister and
Hill, 2004; Coale, 1984; Coale and Banister, 1994). Death counts for the 1982 census, which
was conducted under the guidance of the United Nations, are also widely considered accurate
(e.g., Li, 1994; Sun et al., 1993; Zhai, 1989). However, there is evidence of underreporting
of deaths in the 1990, 2000, and 2010 censuses, the estimated underreporting ratios ranging
between 8.55% and 27.1%, as shown in Table 1 (e.g., Cui et al., 2013; Li, 1994; Wang, 2003).

Table 1. Underreporting estimates in previous studies

Year 1982 1990 2000 2010
Death underreporting small 8.55% — 17% 10% — 15% 13.6% — 27.1%
Refernces Zhai (1989) | Li (1994), Sun et al. (1993) | Wang (2003) | Cui et al. (2013)

Coale and Li (1991) conclude that old-age mortality and population data in most Chinese
provinces are accurate. This is because Han Chinese, who are the main ethnic group in China,
use the lunar calendar and animal years (zodiacs) to remember their birthdays. A noteworthy
exception where the accuracy of the data may be problematic is Xinjiang Province, which has
a Muslim majority. Based on the findings of Coale and Li (1991), we use the data for males
from all available provinces except Xinjiang, and gather the data by single year of age from age
60 to 99. For the provinces without available death and population data up to 994 years old,
we use the highest ages (below the open age interval) available and treat the data for the ages
above 99 as missing data. The number of exposure-to-risk is approximated by the Coale and
Demeny formula (Coale et al., 1983; Preston et al., 2000) based on the census population data.

We do not account for migration in our model. Although there is rural-urban migration
in China, the migration rates at older ages are low. During 2000-2010, migrants above age

60 constituted only around 5% of all migrants, and less than 2% of people aged 65+ years



old migrated (Ma et al., 2014; Zou and Wu, 2013). We thus ignore migration and use death
distribution methods.

Since the data in 1982 are widely considered accurate in the literature (e.g., Zhai, 1989;
Sun et al., 1993; Li, 1994), we use 1982 as the reference year and estimate the values for 1990,
2000, and 2010. We estimate the prior values of K; and ¢; in 1990, 2000, and 2010 ( t = t,,;
m > 2; t; = 1982,...,t, = 2010) by the generalized growth balance of the death distribution
methods (Hill, 2009) using the DDM R package (Riffe et al., 2017). We calculate the death
distribution methods estimates for every province and use the average mean and variance of
these provincial estimates as priors for y; and s?. Table 2 reports these priors for years 1990,

2000, and 2010.

Table 2. Priors for p; and s7 during 1990-2010

Year | 1990 2000 2010

we | 0.8961 | 0.8264 | 0.9023

s? | 0.0113 | 0.0293 | 0.0352

The death distribution method only estimates the death coverage for the censuses after
1982. Hence, we need to make assumptions on the death coverage in 1982. Based on the
information that data in 1982 are accurate (e.g., Li, 1994; Sun et al., 1993; Zhai, 1989), we
assume that: (1) the mean of the reporting probability in 1982 is higher than that in other years
and (2) the variance of the reporting probability in 1982 is smaller than the average variance
in other years. To capture these assumptions, we model the mean and variance of the death

distribution estimate in 1982 using the following uniform distributions:
Mgy ~ U(Mmaxa 1)7 531 ~ U(07 gg)’ (16)

where fiq, is the highest p; in 1990, 2000, and 2010, and 5? is the mean of s? in 1990, 2000,
and 2010 ( t = t,,,; m > 2).

4. Estimation results

In this section, we apply the proposed model (M1) to China’s provinces and compare it with
the version without underreporting (model M2). Recall from Section 2.1 that M2 is similar to
M1, except that we replace Equation (4) with assumption R., = D, ,.

The posterior distributions are obtained using the rjags R package (Plummer, 2019), which
generates samples via the Markov Chain Monte Carlo (MCMC) algorithm using Gibbs sam-
pling. For models M1 and M2, we generate two chains and thin the chains at every 10th
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observation. The Gibbs sampling converges within 10,000 iterations. After a burn-in of 20,000
iterations and convergence tests, the posterior distributions are estimated based on the last

20,000 recorded samples.

4.1. Estimated parameters

The performances of M1 and M2 are evaluated by the DIC. The DIC is a Bayesian extension
of the Akaike information criterion (AIC) and a popular model selection criterion to deal with
informative priors in Bayesian hierarchical models (Yan et al., 2018). A lower DIC value
indicates a better model fit, and a DIC difference of 3-5 is considered significant (Khana et al.,
2018). The DIC is 45,704.7 for M1 and 46,151.9 for M2, which means the model fit improves
significantly by incorporating the reporting probability.

The estimated a;, by, and ¢; for M1 and M2 are shown in Figure 2. The white lines show
the estimated medians and the areas shaded in grey the 95% posterior intervals for M1. The
black lines and dashed lines show the estimated medians and the corresponding 95% posterior
intervals for M2, respectively. Parameter a; captures the age curvature of the mortality curves.
The same prior for a;, makes the posterior a;, similar for M1 and M2. However, the subsequent
a; (t = tm; m > 2) vary because of the reporting probability =7, ,. Using 7, to correct for
incomplete deaths, M1 has a more stable a;, indicating that the curvature of age is gradually
changing over time. The age curvature in M2 changes more significantly than in M1, implying
M2 recognizes the data incompleteness as a pattern of the mortality profile. As for b, and ¢,
M1 yields a similar trend to M2, but with lower values. Further, M1 gives narrower intervals

for b; and wider intervals for ¢;.

-0.2

at
-06 -05 -04 -0.3

1985 1990 1995 2000 2005 2010 1985 1990 1995 2000 2005 2010 1985 1990 1995 2000 2005 2010
Year Year Year

Figure 2. Estimated parameters for M1 and M2: Posterior medians and the 95% intervals of parameters a;, by,

and ¢;

The medians of ¢g¢ and A} in models M1 and M2 are shown in Figures 3 and 4, respectively.
The dark grey lines and grey shadings respectively show the medians and 95% posterior intervals

for M1. The black lines and dashed lines show the estimated medians and corresponding 95%
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posterior intervals for M2. In agreement with the lower values of b; and ¢; in M1, M1 has higher
posterior distributions of ¢g¢ and k¢ than M2 during 1982-2010 for most provinces, except for
Shanxi Province in 2000. M1 has narrower posterior intervals of g and wider posterior intervals
of h!, which are in line with the interval widths of b; and ¢; in Figure 2. The results for Shanxi
Province are due to data errors, which we will discuss in detail later. In 1990, the intervals
of gi and h¢ in both models for Chongqing Province stand out as being the widest ones. This
is because Chongqing is the only province with missing data in 1990. Data for Chongqing

Province are also missing in 1982, which also result in wider intervals for g; and A in this year.

gt

Beijing
Tianjin —
Hebei —
Shanxi
Inner Mongolia —
Liaoning —
Jilin
Heilongjiang —
Shanghai —
Jiangsu —
Zhejiang —|
Anhui —
Fujian —
Jiangxi
Shandong —
Henan —
Hubei —
Hunan —
Guangdong —
Guangxi —
Hainan —
Chongqing —
Sichuan —
Guizhou —
Yunnan —
Tibet —
Shaanxi —
Gansu —
Qinghai
Ningxia —

-1 05 0 05 1 1 05 0 05 1 -1 -05 0 05 1 -1 05 0 05 1

Figure 3. Estimated parameters for M1 and M2: Posterior medians and 95% intervals for g

4.2. Estimated reporting probability

The posterior medians of reporting probability 7T;7t for every age in M1 are shown in Figure
5. Each colored line represents a province. The thicker black dashed line is the national average

of all provinces, denoted as 7¢,. The posterior medians are flat for some ages due to missing
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Figure 4. Estimated parameters for M1 and M2: Posterior medians and 95% intervals for h}

data. The death distribution methods estimate the death coverage for data in five-year-old age
groups (Hill, 2009); however, if the death coverage for a single age needs to be estimated, our
model can be used as an alternative.

For 1982 and 1990, reporting probability ﬂ;i fluctuates around wgt and has no obvious age
trend. The national average reporting ratios for all ages are 91.3% and 93.6% in 1982 and 1990,
respectively. However, in 2000 and 2010, 77;,1: decreases above age 90 and has a clear trend.
The national average reporting ratios under age 90 are 91.4% and 96.3% in 2000 and 2010,
respectively. The national average reporting ratios above age 95 are only 71.1% and 70.8% in
2000 and 2010, while the minimum values of 7}, in 2000 and 2010 are estimated as 24.7% and
20.8%, respectively. The lower reporting probability for 90+ years old indicates underreporting
could be severe for the oldest ages in China, which is consistent with reports from developed
countries (Gavrilov and Gavrilova, 2019a).

To compare the differences in the posterior intervals between older and younger ages, we
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Figure 5. Posterior median of provincial reporting probability 71';’;’,5 in M1

show the 95% posterior intervals of 7/, , at ages 60, 90, and 95 in 2000 and 2010 ( 7gg ,, 76, and
7Té5’t; t =tz and t4) in Figure 6. The dark grey lines and grey shaded areas show the medians and
the 95% posterior intervals for M1. Overall, the order of the widths of the posterior intervals
is Ths., > oo, > Thoy, reflecting larger uncertainties at older ages. Between 2000 and 2010, the
uncertainty is larger in 2000, indicating census data are more volatile in 2000. In provinces
such as Anhui, the larger posterior intervals occur at ages 90 and 95 (red rectangles) due to
missing data above age 90. However, the larger posterior intervals of less economically developed
provinces such as Tibet and Qinghai (blue rectangles) are because of the small populations and
volatile reported deaths at advanced ages. The posterior intervals of W;’t show that missing or
volatile reported data result in larger reporting probability uncertainty.

The outlier reporting probability for Shanxi in Figure 5(c) is due to reported data errors.
Figure 7(a) shows Shanxi’s posterior medians of 77, in 2000, which are the same as in Figure
5(c). Figure 7(b) shows the reported mortality and estimated median mortality for Shanxi
and other provinces in 2000. The orange points and line in Figure 7(b) are the reported
and estimated mortality rates of Shanxi, respectively. The grey points in Figure 7(b) are the
reported mortality rates of other provinces. The S-shaped reported mortality rates of Shanxi
show systematic errors in 2000: under age 75, the mortality rates are abnormally low compared
to age 60, while the reported mortality rates above age 75 are unusually high compared to other

provinces. As the estimation results are based on reported data, the lower reported mortality
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Figure 6. 95% posterior intervals of provincial reporting probability ﬂﬁ‘,’t at ages 60, 90, and 95 in 2000 and
2010 for M1

under age 75, together with higher reported mortality above age 75, result in the extremely low

reporting probability under age 75 for Shanxi Province.

4.3. Estimated mortality rates

Figure 8 shows the posterior medians of real mortality log(m;,t) and registered mortality
log(rt, ;) for ages 60-99. From Equation (4), we have log(r?, ,) = log(m, ;-7 ;). As there are 160
curves for log(m, ,) and log(r? ), respectively, for the 40 age group and four time points (1982,
1990, 2000, and 2010), we show three provinces representing eastern, central, and western China
(Beijing, Henan, Gansu) in Figure 8. In China, life expectancy is closely related to economic
development (see, e.g., Zhou et al., 2016). Eastern China is the most economically developed
and has a longer life expectancy, while western China is least developed and has a shorter life
expectancy (Zhou et al., 2016). Comparisons of other provinces can be found in the Appendix.

The black dots in Figure 8 are the historical registered data, the black lines are fitted real
mortality log(m},) for model M2, the red lines are fitted real log mortality rates log(m, ,)

for model M1, and the cyan dashed lines are fitted registered log mortality rates log(ri}t) for
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Figure 7. 7T§;7t for Shanxi and reported mortality for all provinces in 2000 (estimated mortality of Shanxi is

shown as orange line)

M1. Using the reporting probability ’/T;jt to correct for death underreporting, M1 gives higher
estimates of real mortality log(m, ,) than M2, and registered mortality log(r., ,) in M1 fluctuates
around log(m},,) in M2. When the reporting probability 7. , is higher, as in 1982 and 1990 (in
the first two rows in Figure 8), the estimations of the real mortality rates are not significantly
impacted, the results being close for M1 and M2.

When 7, , is lower, as for age 90+ in 2000 and 2010 (in the last two rows in Figure 8), the
real mortality for M1 is much higher than that for M2. As a result, the age curvatures of the
fitted real mortality at age 90+ are markedly different between M1 and M2, which confirms
the different evolution of a; in Figure 2. Therefore, the comparison between younger ages
(under age 75) and older ages (above age 90) yields a similar conclusion: the estimations of
real mortality are not significantly impacted when there is good reporting. However, if there is
substantial underreporting, the impact of real mortality on the estimations can be significant.

For age 60, underreporting does not make a significant difference when compared to age
95 because of good reporting. Similarly, the results for the years 1982 and 2010 suggest good
reporting. However, when there is underreporting, the impact is significant. It is important to
note that, in a model without the reporting probability, missing and underreporting data will
dominate the mortality curves at higher ages, leading to unusual age curvatures and underesti-
mation of real mortality. Therefore, without the reporting probability, mortality modeling for
advanced ages might give incorrect mortality profiles. Based on these results, conclusions for
mortality plateaus at advanced ages should be questioned because the deceleration of mortality
at advanced ages can result from death underreporting.

Figure 9 shows the posterior medians and 95% intervals based on model M1 for Beijing,
Henan, and Gansu in 1982 and 2010. The black dots are the reported mortality rates, while

the red lines and pink intervals are the posterior medians and 95% intervals, respectively.
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Figure 8. Posterior medians for real and registered mortality for M1 and M2

The comparison between 1982 and 2010 shows that more volatile reported data produce wider
intervals due to the larger historical uncertainties. The comparison of younger and older ages,
for example under age 70 with above age 90, shows that more underreported data also result
in wider intervals. The posterior intervals of other provinces are provided in the Appendix.

A key feature of the Bayesian framework is that it can naturally deal with missing data.
In our dataset, the death counts for Tibet are missing in 1982. Figure 10 shows the posterior
median and 95% interval for Tibet in 1982 and 2010 based on model M1. In 1982, the mortality
rate has a wider interval than that in 2010, which is the result of larger uncertainty due to

missing data.

5. Forecasting performance

In the previous section, we showed the importance of reporting probability Wi’t for the

estimation. In the following, we present forecasts with and without 7, ,.
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Figure 9. Posterior medians and 95% intervals for M1 in 2010 (Gansu, Henan, and Beijing)
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Figure 10. Posterior medians and 95% intervals for Tibet based on M1

5.1. Median mortality forecasts

Using M1 and M2, we forecast real mortality log(m/, ) for 20 years, up to 2030. The
forecasts for 2020 and 2030 are shown in Figure 11. The red and black lines are the forecasts
for M1 and M2, respectively. Similar to the fittings, the forecasts for M1 and M2 have different
age curvatures. The log(m, ,) forecasts of M2 are lower for ages 60-65 and above age 85. The
model without reporting probability underestimates mortality at advanced ages (above 85).
Compared to 2020 (the first row in Figure 11), the difference is larger in 2030 (the second row
in Figure 11), which indicates that the difference between the M1 and M2 forecasts will increase
with the forecasting years. Furthermore, across provinces (across the columns in Figure 11),
the differences in forecasts are larger for the less developed western provinces than for the
more developed eastern provinces. As the mortality data at advanced ages are more volatile in
Gansu, as shown in Figure 8, the underestimation will be more severe when data quality is not

so good. Therefore, modeling without the reporting probability will underestimate the fit, as
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well as the forecasts, resulting in a possibly spurious mortality plateau at advanced ages.

Eastern (Beijing) Central (Henan) Western (Gansu)
o - . i
—~m . .
§ E”
o O
N O Y- 4 i
0 . i
—M1
© —M2 i i
T
o - . i
—~m . .
g E”
o O
N O Y- . i
0 . i
—M1
© | —M2 , ]
T T T T T T T T T T T T T T T
60 70 80 90 100 60 70 80 90 100 60 70 80 90 100
Age Age Age

Figure 11. Median forecasts of log(m, ;) for M1 and M2 in 2020 and 2030

Figure 12 shows the forecasts of log(m/, ) for M1 over 2011-2030 for three selected provinces.
The results for the other provinces are available in the Appendix. The first and second rows
show the forecasts by age and year, respectively. Compared with historical trends, we also
show the fits for 1982-2010 in Figure 12. Each shaded blue line in the first row represents a
year, and darker shaded lines represent later years; each shaded blue line in the second row
represents a one-year age group, and darker shaded lines represent higher ages. The dashed
lines are the estimates and the solid lines the corresponding forecasts. For different provinces,
the forecasts over 2011-2030 maintain the historical pattern, decreasing more rapidly at some
ages as a result of the different mortality improvements over 1982-2010. For example, the
forecasts for ages 60-70 decrease more rapidly than those for higher ages in Beijing because of
the higher mortality improvement at lower ages during 1982-2010. In Henan and Gansu, the
forecasts decrease evenly at all ages, which is plausible based on the historical trends in Gansu.

The forecasts for model M1 are coherent among provinces. Figure 13 shows the median
estimations and forecasts of log(m/,,) for M1 at ages 65 and 95 for all provinces, where the
dashed lines are the estimations, the solid lines the forecasts, and each colored line represents a
province. Although provinces have different historical mortality profiles, for a specific age, the
mortality forecasts for M1 are coherent among all provinces.

Figure 14 shows the forecasts for Shanxi Province, which has outlier reporting probabilities
and mortality estimations due to the unusual reported mortality data in 2000. Each shaded blue

line in Figure 14(a) represents a year, and each (dashed) blue line in Figure 14(b) represents an
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Figure 13. Median forecasts of log(m, ;) for M1 at ages 65 and 95 for all provinces

age. The fitted mortality in 2000 is higher than that in 1982 and 1990, especially for older ages.
As the common factors and reporting probability maintain a plausible age curvature, despite
the data errors, M1 gives stable and plausible forecasts along the age dimension (Figure 14(a)).
Although the mortality rates of Shanxi in 2000 have higher estimations than in the other years,

as shown in Figure 14(b), M1 generates plausible forecasts along the year dimension.

5.2. Mortality forecast intervals

Figure 15 shows the medians and 95% fitting and forecasting intervals based on M1 for
ages 65 and 95. The black solid and dashed lines are the medians and 95% intervals at age 65,
while the grey solid and dashed lines are the medians and 95% intervals at age 95, respectively.
Overall, the fitting and forecasting intervals are a little wider at age 95 than at age 65, reflecting
the bigger historical uncertainty at higher ages. The forecasts are coherent between ages, as

shown in Figure 15.
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Figure 15. Median mortality fit, forecasts, and 95% intervals for ages 65 and 95 based on M1

In summary, model M2 gives larger age curvatures in the forecasts and lower projections at
younger and advanced ages than model M1. The age curvature for M2 increases with the years
of forecasting; thus, forecasting without the reporting probability may generate spurious pro-
jections. By contrast, model M1, which accounts for the reporting probability, gives plausible

and coherent forecasts despite data errors.

5.8. Forecasts of life expectancy

Figure 16 shows the life expectancy ranks at age 60 (LEg) and 95 (LEys) in 2030. The
dark grey lines and grey shaded areas show the medians and the 95% posterior intervals for
M1 and the black lines and dashed lines the estimated medians and the corresponding 95%
posterior intervals for M2, respectively. The provinces are ranked by LFEg,. Overall, M2 has
higher median LFEgy and LFEg;. Hainan Province, which is a southern island, has the longest
LFEgy. Based on the forecasts for M1, the median for LFEg varies from 20.23 to 25.97 years,
being shown as the map of LFEg, in Figure 17, while it varies from 20.52 to 26.71 years based
on the forecasts for M2. The ranks of LEy5 are different from age 60. The median of LFEys
varies from 3.27 to 8.51 years based on M1. M2 generates much longer median LFy; and wider

intervals at age 95, with LFEy5 varying from 4.44 to 12.68 years. Although Tibet has a shorter
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Figure 16. Forecasts of LEgy and LFEgs; in 2030

LFEgy compared to the other provinces, it has the longest LFEq;. Chongqing Province has much
wider intervals than other provinces because the data are only available from 2000 onward,

which indicates that missing data will lead to larger uncertainties in the projection.

In this paper, we propose a general mortality model for subnational populations at advanced

ages. The model corrects for incomplete death reporting using a reporting probability under
a Bayesian framework. We apply the model to fit and project provincial mortality in China
for the age range 60-99. The proposed model has a better fit and a lower DIC than a similar
model without the reporting probability. It can also deal with missing data, and the fitting

intervals reflect historical uncertainty. Our model also performs well in terms of projections
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Figure 17. Map of provincial LFEgq for model M1 in 2030 (grey areas mean no available data)

and generates coherent and plausible forecasts. Moreover, it provides age-specific estimates of
the reporting probability by a single year of age. With the reporting probability, the estimated
mortality curves have reasonable age curvatures even when the data are volatile or incomplete.
However, without the reporting probability, the missing and underreported data dominate the
mortality curves at higher ages, leading to unusual age curvatures and underestimation of the
real mortality.

Our results show mortality can be modeled when high-quality data are unavailable, as the
reporting probability can correct the underreported mortality and is useful in countries where
registration or census mortality data are incomplete or underreported. Our model can be readily
applied to these countries. Furthermore, even in developed countries with high-quality data,
mortality data at advanced ages can suffer from missing or sparse observations. The proposed
model can also be used in this case. Therefore, given its ability to deal with underreported
data, its simple form, high efficiency (fit and forecasts in one stage), and good performance,
our model is also recommended to developed countries.

There are two possible limitations of the proposed model. First, the model needs assump-

tions on the underreporting level of the reference year. We make assumptions based on previous
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studies. If no such information is available, the assumption on the first-year coverage should
be chosen with caution. Second, our model uses registered data. Systematic errors in regis-
tered data (e.g., low mortality rates reported for Shanxi Province in 2000) will lead to spurious
estimates. Nevertheless, the model can deal with errors in the data and generate plausible
forecasts. Overall, despite these limitations, the model works well when high-quality data are
unavailable.

The proposed model extends the CBD family of models (Cairns et al., 2006), which was
designed for older age mortality (age 60 and older). However, the problem of incomplete deaths
can exist for all ages, and our model is not constrained to a specific model family. Further
research can develop models for other ages or all ages based on other mortality models, such as
the Lee-Carter model (Lee and Carter, 1992). Future research can also simultaneously consider

incomplete population and death reporting.
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Appendix

The posterior medians of real mortality log(m, ,) and registered mortality log(r?, ,) for ages

60-99 for all provinces in 1982 are shown in Figures A1 and A2.
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Figure A2. Posterior medians of real and registered mortality in 1982 (continued)

The posterior medians of real mortality log(m, ,) and registered mortality log(ri,t) for ages

60-99 in all provinces in 2010 are shown in Figures A3 and A4.
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Figure A4. Posterior medians of real and registered mortality in 2010 (continued)

The posterior 95% intervals of real mortality log(m, ;) based on M1 for all provinces in 1982

are shown in Figures A5 and A6.

31



log(m)

log(m)

log(m)

log(m)

log(m)

Beijing Tianjin Hebei
o . - .
0:) - - -
¥ s ) -

eeeData
@ Midog(m)| T
T T T T T T T T T T
Shanxi Inner Mongolia

4 3 2 -
1 1 1 1

-5
I

Heilongjiang

Shanghai

4 3 2 -1
1 1 1 1

-5
I

Zhejiang

4 3 2 -
1 1 1 1

-5
I

Shandong

3 2 -
1 1 1

-4
1

-5
I

60

80 90 100

60

Figure A5. Posterior 95% intervals of real mortality based on M1 in 1982
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Figure A6. Posterior 95% intervals of real mortality based on M1 in 1982 (continued)

The posterior 95% intervals of real mortality log(m?, ) based on M1 for all provinces in 2010

are shown in Figures A7 and AS8.
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Figure AT7. Posterior 95% intervals of real mortality based on M1 in 2010
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Figure A8. Posterior 95% intervals of real mortality based on M1 in 2010 (continued)

The median forecasts of real mortality log(m, ,) for all provinces are shown in Figures A9

and A10.
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Figure A9. Median forecasts of real mortality
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Figure A10. Median forecasts of real mortality (continued)
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